From 164611a24f03a5a37dbb2e1d3d6bc22f8ef5fdaf Mon Sep 17 00:00:00 2001
From: Your Name <you@example.com>
Date: Mon, 12 Jun 2017 16:03:38 +0200
Subject: [PATCH] Tutorial for Hands-on-workshop 2017

---
 beaker-notebooks/hands-on-tutorial.bkr | 2150 ++++++++++++++++++++++++
 1 file changed, 2150 insertions(+)
 create mode 100644 beaker-notebooks/hands-on-tutorial.bkr

diff --git a/beaker-notebooks/hands-on-tutorial.bkr b/beaker-notebooks/hands-on-tutorial.bkr
new file mode 100644
index 0000000..81a8f40
--- /dev/null
+++ b/beaker-notebooks/hands-on-tutorial.bkr
@@ -0,0 +1,2150 @@
+{
+    "beaker": "2",
+    "evaluators": [
+        {
+            "name": "HTML",
+            "plugin": "HTML",
+            "view": {
+                "cm": {
+                    "mode": "htmlmixed"
+                }
+            }
+        },
+        {
+            "name": "JavaScript",
+            "plugin": "JavaScript",
+            "view": {
+                "cm": {
+                    "mode": "javascript",
+                    "background": "#FFE0F0"
+                }
+            },
+            "languageVersion": "ES2015"
+        },
+        {
+            "name": "IPython",
+            "plugin": "IPython",
+            "setup": "%matplotlib inline\nimport numpy\nimport matplotlib\nfrom matplotlib import pylab, mlab, pyplot\nnp = numpy\nplt = pyplot\nfrom IPython.display import display\nfrom IPython.core.pylabtools import figsize, getfigs\nfrom pylab import *\nfrom numpy import *\n",
+            "view": {
+                "cm": {
+                    "mode": "python"
+                }
+            }
+        },
+        {
+            "name": "TeX",
+            "plugin": "TeX",
+            "view": {
+                "cm": {
+                    "mode": "stex"
+                }
+            }
+        }
+    ],
+    "cells": [
+        {
+            "id": "codeOi5KIx",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "json_list_RS = [ ",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PudDm0on_-EHhn0SHX20l2vdbSQ1x.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pp4wUDDucIEdS9euDT89Y6xQA_JPq.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pd5Tx2nPg7dFY-jys9XwKne6OQtKX.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PyukHM_doowQLr1Ipwa8feMxPVmI2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PHiW0XWZCN8j4FL20b8tZzv7Vz59s.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PnhDURE4i9Q5yUaSUbEmarpPFd-oP.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Phw2RDlr8RJrjY8nb2PfCE6Bf--N0.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PxJnNtspUIcqGhneVuSJKposdVxH_.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pl7aTuAjyxpsJM7vLAOVHYwJm-QE6.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PvkvzEExTn8uE2HYyp39OAr0XeTVs.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P5q6OPnbkCI9OZnxRMmigkwjECTEe.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pq_S1pMWXyVEwLQtS_CRQLruINQc7.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PN0Q_OXA7e5yO6EkDKkOpGHM6hyCj.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P49a5P12dU5LYRyFCHIIWWy_T06lE.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Ph7OdXYR4ndMpTcR0zX4mqRoBZpP9.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PAlWHa4oJtvotPEJZkbrlNC_sn0h2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P-R6dmrIaT8iFyy2ObACxIHGWnNOy.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKhAdygZBTTTF8uvQjKv1RdaX-cR-.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKu0vasdF5E6n3C3QydIjCtGOIla4.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PZpgpSkSltbUhJUCSbPqBKkIvQi8v.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PctpEiY3VdEmVYwH7UjqZpiDWZtpM.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PItWNNwGWlKJ12UjZAOfNetX3xlkd.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PrTcNbJ50u8bqAFWGjPJKqnuuEvY7.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PfFPGDGw6-cK5ARIXtsKl496E6A0G.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PeXgyF2iElVtNWSX9xZhroKK8nJJ4.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P7kHL_6prXXdx5_MzMVmwsmStNoc0.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PaMvDXJtsbfDgbdvrFdiFSKpXNYyC.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P9sheCSX6Gol5L-IsCvDlnmT_MEGG.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PSy2hA53Gi7wXfU9SCowqkmFWD2gp.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P51AKUeSNYXrRBK_-uc8y1-bCfUNg.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PaqU_UGMSvVN6niB3zqMYchjsLHRX.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PcyDh6nCotXyohIHh5k1dx5L5D5X9.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PudM2fYFckG7O5R4BJqg04tK_l1bd.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P9Yuhn2S6hqpJ0cf9E9uw5G5bJlzV.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PqmzGiDuYJ-Q8j-KfLDlQBvWb2Gjt.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PCeh79N53GyBSPmZQQJ97G0eAHaDT.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PfgDGZGQLelhbTh9ZtsKqWGFxvhJ9.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PB0yzgD_PWA0LKTKGJ8ZZuD33YEUG.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PAy8gmVjhXEQxzCJ8LOWZakyvudO8.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PxHkLq1KNzXy50hbEPelPan0cCrsH.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PWkXOKoiw0iAE585QkElUZNCYOqYI.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PgemHvDiNrY7gsuhCx0VTL8kPb7AM.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PlIiyctCzbm5lbDOxpwEi3GbORHRD.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PGRvHpDj8bRbzvIL0c9yfOmeZjfah.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PHG50HtPjrXvkxeCITsjzFtq9N4hK.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PZuBrsUzsdX__rAeKn_JQgfX-YGoo.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PshguFKUbvULqOUN80QC-M3xQvrmJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PXoBZDFv4BhXvWTO29YBcGBXXu1vS.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PsmYUa8-6qr40jG7XJhUIynL1Ue8b.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P-M1B6jU_t-kPPKkoFU9kZkEbx332.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pq1Tvh6kPeJ-PO77jXvOsp92PMK4P.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PfA960McVCueQzY_t-TVT0wgbZCC5.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P-eZyP4BB8uo0pdmQIIrat2mhXQBN.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PmenrFglDQWoTWLNvVVobyI3dmkIe.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PoEQrdbxDvcCldS5_cpSOcAS57svB.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PQUYoBu1tULTvysw2jz8XwBnIeewS.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PYOw5h3ttt0tMyUPOvqDPc6yArPTy.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pzl8jOEFAC45VXxnxMJ7_nf2xS6v2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PmkSmszyXIzY3yIzTUnkvOCwqNFFg.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P7JW4GQVa_xQ4YKM88F9LFzyVoXke.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PsL8fyWYvrq6V0pE3zTfoNsWAVUd1.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PbVMALFnpGdoEyabKhI_3DtbUX6W7.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PME2sPwrfVW7U0veuObWai6ryPqou.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PSzD2TkeF0Gg9fnlc1cNvyK7NL24E.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PQB49fu8BN3kua7uLKQLlT5dWdHi0.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PzkPWSKWCQ14F1io7eGkOhK7h0O_Q.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P_18Q5thpEagvBD-4tUdeTopJwCTV.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKmJzuNjx3TVhnGoqyqoWSnwEgjGm.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P7oSkZrV7zs3KG6S8IZyTSE_FmwBQ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PIwvZmuUIIrtn2HcPLoozMo73I4uz.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P-70iigSqFlM9BO7d8xReToc2yoJL.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PS3i4SxrlnWE9AUgOmy00D3f5dMgE.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKSpxMXqdSstTt6Es26kroYBYENnq.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P_DFu-YobOdcOb1mfdI22vrtaSQAh.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PZQkSWOat-bIQV5IVle0tBtpUg_u-.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Po4TFqVuLhanZRORPTA7dDA2sdbrg.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PvVLlR_Pq2Ibks3hWK2HOSJ1GgVRY.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PmmsPJ6ouZjFnoIdGfis_3AHs9clP.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PQESlzgesuFywpq09x-vZ0gikcjPf.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKfJHS4WQGppgde2dACUjMuVoL2sB.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PcEzW227FYLGI2t3jk-gLCgcEZWZe.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P36pL30yblwhze_vHZYZ_cybqeH4V.json'",
+                    "]",
+                    "",
+                    "json_list_ZB = [",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PjGykEyzLOFynTPTNDcycF0GYg1PE.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PRzzJL7OHYeejsIvgfG1ph6BAeS_q.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PNavIaZhgwAeZM0-QhWHe_38iUgEF.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PpxTrTc6NkExiq1nzQkhd3cJ1-yRY.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PVYIDqiD6OslrGDcpUvuqvc0bD8Jr.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PiZTl1-v3bdCUDjxt-w2VxKMGW3-6.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PomJQS9nQ4WsUIr718n6H4YbM0Fi7.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PEC0GOHh7MviqeJkG1qukjk4bALIS.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PNXyczNslCGZT642R9ZFYGvidFvua.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PpyJZtNPyNqX3ofwfNMpvJU_9PEKI.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PA3s37bS9VLUzI5wYL_ntZ6RIM6IJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PvEU0OOwFN7eFqiwt9m9S_SmhCJUm.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PsJUIeSLEotoIZk6R54H-G2JWPnQG.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PUT_umVDXGUamLH1R7nkazwKz95dz.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P_rlThO8Jv0C2YIgYKLbCTM1rvfW-.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PyizrsR40QyxopYKKk2jUtl7nElXJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PQhb3_h4Bo9e5xjhhTUBY_8uOEtTM.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P0tj3NYHfrit7NB0ewfG-fIjRWuJD.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PlrW3wNN03bq-G8TLkXHpALwSTUUg.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P3hSpXydSB6z3p79OEIOQK6llto1K.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pa7ltCNBQsk7Owlu0bJnsE8iY-Rmw.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PYeYlDJb7j4qJ9ol38GSM_eYJsiSe.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PX39jEfgLeDPddrkPuTvUfVv4_thl.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PWNXU92VwL7KkuoxItglRiuifcOnk.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PoWlbXJuGJ4-22DclM15L_g44LN3P.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PEYkIqgUpWfoq4Tcsy8_bFVUs9mko.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pst86UVhV07OfKDhwlp0PNxiMtXki.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PVc9Pn-w-6MEpu41jV4p_keLeM-Yy.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P81vIYtJtOEx4n865B86z-KvUb6hA.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P8BMwwn-g_0Xezs6oK3ay6ZRXIRR-.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P8nQ1bSGP4pyRMOa4i5Uhjpb1Mord.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PCmzvvjhPSzkp_bhkAuDWK375Fs9g.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PhaEAJ72mzGm65KpjGcnVVlFax_l7.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PvXy3VrpadhZLQAwphJE6GVB_0OUp.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P3486jK16L4wlXG0B4v1-csMQ6oJ3.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/POL8lsjGueHjkLb9hMpptti6c8Phg.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PULp85M-UCJ52e4UaGcyeLDmUeq2Z.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pr6E85ezTMa4WX-GTFoms6w0Rb0hT.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P0e8gRRxOvcJquPDa7SeYFk2OCiFS.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Px8VpfH0LzX99ht06ME-0EsmmrSqe.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PM3KjHYJjTA26va4uYXD8homH7pUm.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P6GMfPCT_Fa40hXkVKpqnygEBt4PG.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pu9uI6ldU3ZVgwfmy-Um0D7IBxTCK.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PN0ekL4w0k3A5OXacRBScDJ9KlGMf.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P39GmzBY478BzuXrZM-0i2Z-njyb9.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PEhAEeu8aSPA_d3_dHCjTlAi1y09j.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PVshjrYqjAg_8QtgfGW2ABnR-mlIP.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PDjDFM8OWbY0TtHCY-DBYRJmRQ8fO.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PxkyksXrwYuxnJ_wD7qN890rycd67.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PUDiBRLe2pg5Hjvd3kc_20wMbinMI.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PpikjM2BVj1atNlsbkcJzK9TkUIox.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PcYC-NeMnx_goUeYg8PmaNVo0chDc.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PQFhJGR6USZg0MrTttQvXm1IiHIdq.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PGvuYKpzVCcWnf33I4uy8fGyJVxXq.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PV--hzM8rvSS8a6LZBuuW6IPbqvY6.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PHQ9WIyu3N7whYM_ykFZunv5to3l2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P2_H4gO4T7T7jknE474jzrc1Y4Tjm.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PFs1SxWG79Zqj0jssdOIqUicZk9aH.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PiOIHShEKCjdganj-Sd0MkJaLglGr.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pn-jKNaG1IM7sKsxBh-ekfl3M3hIa.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P_80H6vlBefw1U3rKFDPPtpJAX1GH.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PdHoVKHCES7XtBpTVk0eihbo0kqmR.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PAzsSjYMU1-CdGulNpG_KzgFlfRrK.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PVlh5JoGn6jHWlE96SKt6eRMYTIVK.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PHfNgOoPEHjzs9iOh900vIUv-GVJl.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PVTUPQyCTvrAWV0DEN_xnPgrBPmM2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pws96oc5f7jIltD9Vvqc3svzL4mcW.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PLJBz0uY-AywnUhGMCXMounM-_Af3.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pkole11VWAOiu91qHeq6lOzIM2Y1Y.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P2R4Ds9DFm8USF_AgHtQnWK1TkQiR.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PxrF4NRKjX9jsmVIocs7uQuLwD_cS.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PMxYGoRCMDXQWrNytWJHc-vUgRKTT.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PK3-3e-av7nkv5AOEwjZyyjkI9Hgy.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PC8N-y0PPPHeAwhkYGyYYI9H1UUHy.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PqWPF7Pn3u9LPGyrxipPfrpfm31zz.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PM_ADyGOaL4e2biSXvxQWrEDM78Z3.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PfGXdJkORwLQ-aX-d9bla7obqtnkt.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PmILc9BsSYjJ9OKH4MkPr0D4LGYGC.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Py-J0ezaQ_Fdsh_196hT-XgsYNQAs.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PUJUPZHk2jrE1KVUS7H13mKBH4oVR.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/POIYfYCEIron9yzowfHWhVea-VEFW.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P_1mfRE8eDZ7zCLQwGT_3n8YC34dE.json'",
+                    "]",
+                    "",
+                    "json_list_CsCl = [",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PIRlbBTaMiNQ1VKhqabDhuqB9IOe4.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P3B__zZKVnOmaDBvOs_L14s4wnjHY.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pgp_iFetyKfxr7GRYNkG4WoPfswhL.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PXxYjxQSKW1VJ9wMmb1u-jjLO9FGF.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PGboU_7DdiQ5OSNrmrakqPahp-j7a.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pm0z-JCdEggnZQsNoEe27pbIMAj7L.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PpNRT28QPEW4ZKgm0j3rpxI2ooQRG.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P2pMxxJvJcuhXqGyfMtVkb_66qbcs.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P2o4_lO-SQz2OEqSFGsS5d8w74zpB.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PxQWzrxTo-ma1RGfL0r5bcdZIPsQ0.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pg2GfA754Ig9PHoDokXafaMLztRub.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PscYWBT_tAUMxD2JkgoL1LtUG-wDb.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PA-cUYsCkN5H-9ua4OBzYydK_jcRx.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PPhKvncT-cSOWAbYMJiSm5NVCvnIz.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pbxu3z8rweLYJyp1de799L76lA0ac.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PjTRITuvG0JU5e6n88LU5TTN9jwye.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PhZezMUnCw-bBengeP28IneJN2-0F.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P18HrEcfryJ8AAVVgO9VGB9O5RfoB.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P1VMBzj56okz74wOcW07jLwKF3Cm1.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P5QFFcNxIzzyaJ7UGVaUfG29L_ekI.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PMHhjns0d9kA_zveXjhtgLbeQ9_bc.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PTTqFWfgIK6yIXKCsqxidYjFPxtBX.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P43rGwurooDLNWmhQoYE0jbo7dH_o.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PKTpOd5uojJYFW0otZD1QMilzWvjP.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PWrseUDhfrb56VggdqHYt4z3tEyCE.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pi73S1_KJZVDYQpxV3xzdPxxG_kwN.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pg-uEebhs8tbbyvhpyPH1XhOG1BYQ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P_vULVekRZnDXvZrVRZufjrJu14QY.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pu-XrMkI2Zzal7tY3c7iYso3uIOzV.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PF0DrL1ldhfgZ672Ed2GCuNavzDIr.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PuaEUEAOF0S3AnRk6CLzFd-W4ibx1.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P_Y9e3QHvFCfl9yUq8qH-jUZMoDGc.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PZdv_e1shtOnFEGJSwDQfCizmGhZS.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PYy2RgZDVewnnkkZ9fREWtpZukLm2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PKTRIZkIIPsX2EhU-6auRI-JMZ-nw.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/POV16kLfrFBaEMGVHgzkl-_yVdddN.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P5Md7_re4VEnnoSTEd8anio8pz3a2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P36-nbxTiIV3eFR3HJgDw74yF3wDB.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PQSUMZO2fOt9D6opd-qiWYOlIZ-on.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P1YZwCKtFBWFmPnYQccQoOwiXCd9K.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PyQJnb7G3hm_3gOp8zEGwXEDjTj4v.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PYHAy2GsdfKTsJLk3wAyKAxgxfyOs.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PvIRNmFS5l-8fr_9x6N0nZIWR8jzy.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PKXmS6JHkYsf8FtNg681vApgu-Erc.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PQfoZNBx_GCgQ7YfyD3S7ZcZsyYbP.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PQRRkYOU_MTiiNHXoILzbpgKmmbA8.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P0RFWJAEUbhqLzgNdKzErW4Izt-YM.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P_C5ytIaEHZSTPvmC4I5odzwQpuBD.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PY5anfdrO_36OFXvPhdjpbwjtI4X1.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PMTCY7aPOWy-0JBOQgQC3lONNXBXt.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PH7pLTgzQXypXviKhJnTBdczBLdOJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PawPTbSHU4OTB9QvRdfHjCgjBGptD.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P4jdJovhkzo0PJpi5IN4Mg0Oe-cAX.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PcB_hXovOBjFx0L6OPkS1y0nOY6KB.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PYLeORn3iTTQKJs7qQ6bfrhkR69AV.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PaoP8xeJPeo100rX3JuBxBsDlAq4V.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PHwBj6eF14Y2lPi9j-1EfgyGZSZcV.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PXM_X3DgmWnG5JkcBjnaR2Wep_VfJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PnjsWAHk0RUtoNdeSXXaI7pcdjrfe.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P_gGA6S_wkFW8FDU1zijcihHoo3vb.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PDn8UC1Y6h_RUAlo3VyIDlKh6HAJB.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PcM9XD-ABaiWI6uzFj5WA0ess91L_.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PHBKo3mCEiQgQrHR_eQTdyDUhzqw7.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pq-91p0IUm07LPxaSDXvtSX0gbZ_K.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PnEshqvTW-lapxyg_bXQYZkxHOxD4.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PeAMdpHU6rgdvLGXZ08xI0qVu6kAY.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PevCaOzY29IRg3H6qqCTi_PggLnUP.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PJv5p_rvg7Eh2FQjzGQUk_6w7MQL_.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P2qVzIPhrJUCzsc9ppsKdpQW8ikl6.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pn-2pwSn1Wpgn6SgMM6Ob9mmPmwl7.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P_lwRYHTdbLNTfv9FII1BVBACyorE.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PP9AadG9tqw-S40mSYEt7vXR8RE-m.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/Pc-u47uUy7U8ehQzuq3lTuCjd0lGA.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PaG-lWNnYge66HarUGTg1rtX7I1F4.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P6IBV-w0aSDnxUZsmUuxSg6xCQZ3O.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PIaIOQ6F7cRff_uAzgXprz021EZGk.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PEZtiUxYWUY4i207toEAVm6H0-xqe.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PHYusuVscXWc8wKQrkOH_KxQ0GNTR.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PiPLNzNyrE57iYNj_dRwoh2kU3I5D.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PCK4m5cbknkLjCo4R8RdGovR_kX-6.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/PLmH6G-V3h-7xYecf7NRXStunDxbP.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RdUzye8EKmv-z4LGNHGTSk8S3S1WY/P3HByavMn4jvohNOfczPV2jqcumiv.json'",
+                    "]",
+                    "",
+                    "",
+                    "",
+                    "json_list_NiAs = [",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P-dui2TY4ZxiIXEp4SCRZ49HFDNgJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PmDh50LpQzS_da22TaE8It_YSj77X.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P3gAGM5-mfbLO6EJg-qMQB6cBwr6u.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PuCgYgxUJfNqF1JmXsORr4OM2oINW.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pp_UJWlpTsNowZd5aBe8FSQ17bz-e.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PvDLR-v2wQV54ybbmFxlfVvMo55i_.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pc16cmgCxMGJVfkVyLMch_hka3pr4.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PR-uo-xcVI4wFEQ2iuA-G8JMi7fPN.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pt5UafJZR0_wNRw4WDyXaNjLwJ1n2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PDHg9rVfs-x86OEjd3xtG4TpC8pO1.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PuyaEloJCHIdLU0dGaGx8z1A6ct29.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PQZmsw8Gx5eBJtw4QGtG8ugABWhTX.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PlJ8tz2cijYSfZxRUQyHNg_zca8_C.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PMmOhN6StAnBuYBK4D3XdqHaCYy9Z.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PFpQtJPAYp0SpseuQGgw7aLKiUivG.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pc3daHd1pC3L9nzyS-Iq6f0M8cm9T.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PN_Wh0wFHcOlQUgBiDFgmeYeFGsFL.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PmQjRuQvGKLL-csvI73WgRbjBHJbC.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PGllOLC8l-lLm0CzMnKMSSvpD5n_Q.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PHjmxV6JNYJwAn3B9GCnTNhdIxj1z.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PPObwmHCGMOox3-hjo1VgAJbZnW6O.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PvqTVJMeG3YVfjfj436tUAT_txn0i.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P77v51aHmrMo45DIGqV-iKiYcWxk5.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PfSIi5iq5X6YwT_HkH90wcEOzQYNO.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PgrTwn7a-pHLJRA9evjoWmOJOHkBg.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PMOdnMs8OB6JPkc0CSGDuIwtG2Pjv.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PnMOQn4G6xYtA1FzDVHu6gmh2JLhu.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P0fB4rWmeCLXwIMji3nVfywWr1MIZ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PBDX18aKlWcZ4FW_d-sDB2Kc8e1GU.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PiZJIsQKK_G0RXdXl7Shr2-nZPehw.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PPBAyBlXjQ5c13hrgSoP_58fJs7Mt.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pg6sh0-wd0SbZUa66m24MpSpH9psJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PmXDCgE1pf3rbWcDhtLwup8WYKjwM.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PS1IAWvAiUztTfpnIlrpF3pE8mrhC.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PMaNLiPNAkPV406IjjvU8Bn8-D8lf.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pz4zfRNiVjjhVG-BhJxjCOat81RIi.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PdYwOJxkV70Yw6LkPhdo_vUZxBl_d.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PnxnQpROWkdWAhxvs82rVj7zUjCtZ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P5GgfAowwH2qlLIsze3d8c-Srrfe-.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P82IC7hQk8vOfPVQvBss2BUIx52CR.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P8k-Ht0l4Qlu6u0GEIW8d8Q5rRqFG.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PbqRKCaI9e_0DbSog3SuPVhMA3Wou.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PYga7dCRnhE_l2TrGlHIWN0bxQX3k.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PbPYY6WnJFjc0KBcuaZfZW2UVFg0A.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PrmsxflHOz5iM4Ojqgh0NI5HL2GrL.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Put2dYTn06rYM7Y2pMTwAslFeon7X.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pswr2zKV0lBFiRJAvjzNSwZs7zgej.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PPr89vFU1wKFMqWtWvMR_AxkUvGzB.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P6ei5Lbls-0G2USQ0gTQZofmiuHLT.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PXkw_GHj3WdwT2mbi5oJ8F4nsP5Tv.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PfqD1k8H9wt6x5fcwD-6roTV__cyU.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PRj6m2mOQONofiDHX6xsCElZVKdlZ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PtWwuS-Kdml03aciKwmcb3mk1_iXH.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pz9GwGP_Low_eguK3Ws1vTMpkh7LH.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PKvl01wW0alep8Cun9Twg1RRRdQd9.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PeupS9TsYmtyuAiborqlHwHubKa2t.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PW9UjhkDcCr68OggbpjKz6GRBgCGS.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pgok8pg-gM-VptWfUEQTCTivPtVmu.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PCIiUnQRIQ9F58JgbZykKQhHI01_z.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PtFbkLzE2IMcqOSDDueD8g-RYwuAO.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pxz54y1rA37dfnleQvBqsN3YPWDWO.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PpptaCSwyhQYiFL5KgP06OPipC2gp.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P-w_Gws5_a3GNwtxej-MOj8FZZLXH.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PHLAOlMyML9v5V5hXIY1rKarmMMI-.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P8LviTZq7ANpRbgOKiDrTWAX08JMV.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PB6fpVr2gPp4l9R3pQ6c5YA2flsxH.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PHooClQaguow2eYR00Gd2f0x9O8e8.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P2a0GR1fyyxyT_CF1jISaxB3foanK.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PnXDyhc9V13_Qvyw37vJfJHcgoLBj.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P8nZZeX3oxjD8nOJXUdzo5RpgT-PZ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PEHiNnHqU0ZM5VZfkfTyXJrrucHj7.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PldyGO0-PQ7VBIQXgb25qVHsDEDHW.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PIa5LjcvJEOMu0Xi3vHqewJwW5qR-.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PF8tubPUCksDCVTpvZgngKpb8kL6t.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P7mp2Ig1NFgqjD_YjXT4c-5bgDy7G.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Py7blkZneZAgaAK6keSt-ePL3pmys.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PKpE9ot8R5vjCxeGYSweApq_PWLJb.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PMtHsieZZbVGQHnarL-Qvr3Zeq8Gx.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PwWR77A7fR0TPA99gjoI2xdidmWYs.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/Pzd39xfZyMYzNoM4tpPBRzXHx1hrJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/PBApVd7EB_GhBkA6cImMBoGUeW2ic.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RJYwKZ8zrRB52nhBgpdhktPLdch9O/P8HIVywDyUhq2RMDhtyK9__s1NP_1.json'",
+                    "]",
+                    "",
+                    "json_list_CrB = [",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PSC_K9q2hfzDcaAGtFRyn_PLHBloG.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PR1Sj634F0Mv4bL6dHjnEAAJ4JDba.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PhpM0FELdHaTkpj5gTGhhACAJgg8o.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PS8d5rdlysN7445H8p4VuJULiE4MS.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PZ_dlOeubERAUZQ6KQQpQe_dH0F72.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P-QfEiQlgTaMaU3t-H4T6IHRqp3CD.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PTj1LWzzkxrneCrNOJ06QfMgrwD9w.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P1Q5xYiHj_IQ05TrXJAYIPtV1HQWS.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P3v4iODWzRMxVN03GmqzW-e7N4jAT.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PbaSbJF7UU4_sDuB8dcA81CR01C7_.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PCFfAyImacb9zM2nghsj1Bcil5rGq.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/Pm6m3z7y--FLowSmF2LtFRm0UVn6m.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PvZ73PNlvtEqcYtfosOgM4SbN78Lf.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PTT5Ml0N_JRnPdHNO4drn5KmSrw-e.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PngYDIMXxtY2smAhLl2KAQdRmJ-8F.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PqnQiIlkkiVA2Fi50cYbE9SGWUTn-.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PGvyxy9emQVHxE5V2zT0UrNkI_hp2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PZ-ABniI2ZLHZMlV5HOTwgUT6ryC-.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/R8NxZKmyWQlcHjSkv3A2ukl3l9vcU/P9CEP3FFGaNjBFnVcLRlKp1JQo0qw.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PfPdYofOVMm7oA5nU3nRcKMhKxc2v.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PH34SEPUHaCyxZASB49MvRxzj1VzD.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P5edb9xIGXwj4OrEvXiX8gB987oCl.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PvLSd_9ejLtxJXqDk7pCJvQweHdJr.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PZoZQUKz6m3817hex-REtNAz8d-CL.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PWL3sR53gGpmxIRoy5HAawIGmiPvn.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PUP7kY5_iJ4QM0XWjd7Gpju-DXMk7.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PpC9NPSNfUuedt1f4AlVVJNjJhT-6.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PiDmbXwMvzEpffaB08PvWg2RSJWDa.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P8GzPkERHyO76GajZe-_M7q1o9oWm.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PyyMp0nxGldd0d573c_KWkGDklkb5.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/Pw_WdOT00qyLxpiiFdA6HzamS-KGd.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P6SgskdAJpirHWrBoGjU5cBNA9ExG.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/R8NxZKmyWQlcHjSkv3A2ukl3l9vcU/Pc-X6CASupWziE9sy5A_olIqMHNwR.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P5DUBl5GJxZX67Sbj-hWReqzxFa4v.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PwqUN4-x7bFzgc_lgBXay0YD8p7rC.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PVyhQoRUauLCfQnGnPM5My0RUh8-D.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PyTdvyCFcxXgiOiUQi0v9quzieogr.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PNfWF9Pr3kPSqoFpqvhkDZO1M6msX.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PC1tuFFeyFUNhqKACOVaacZfyqanH.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PSmlcAWl_ZdwM6selq1vY446wljHr.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P5E1rR2O-i5drtBN5qoK9CGm4JuIl.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PpZSVskR8jk7zorA2SWbTqk0aKKu9.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PGYVXnq86HRbq27IP1AW1nV-8M12f.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PGun8u66B_l8MiGSDv4tCw6eRn1yJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PJbuZS3QxLYTl2ZLsQmKUXI4ZWmSb.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PZXpqUGkrePauuPSmzqS9FDE_0Mkc.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PqyJwaNrmKqMdUViLqNN0WpvsjJMW.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PikarIiBW3TXN5SQoDwxJy-k34DNz.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PyxC4tQgRreOKcBAqa7pdbNOjiL2k.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PAz9Q4JFakgyhFms7d9VVtQG8x7Qp.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PQgAuljpyqPeRqnR21TJZmZGH9MOU.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PzCelFywZLQNDfooyDoKTiupFujhr.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PrnxjLdYvMn0ckdpD48dn6LSLlFdI.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PkXPLXBR099RxguAJfeKLx78MofMA.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P6WMd8iNYzawbcJf3T7zl1LSygG2o.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PEENX2U9C6-qZA2hHyzbGB8fLVNFw.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P1ZaGUSq5auh7ETETQXCGbfwTc5G0.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P_6n8-42taBOzwHql88Hcj3uMTUcJ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PFMWeso1xXvtKwNT8-_j9ZKUWcUfF.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PJ_O-2QByC6hNMEIhtt5UxnPfCzuZ.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PCqh0ieDA6A8JtStxEPYl4f0sn7kL.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PQRvCLGtYtFi-iUqylv9gxWKFVZyN.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P1mP2rrgMgFL2Jh8bpsVUhIuA1Abh.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PduJgHCKw3ie13r-y26cr7bHeNC8D.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PZJG4hgqinlpXOh65-J7OcvNPq5qT.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P34o7W2yErNrMo8lYKoUwTQMj6xaC.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PJAurJCC19JJB7kiNQSCegbKMlvgj.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P1Fr3ujHO-bzO60rBUIAJKFE-uH3c.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P0YaujTnEsKIl8S5rgkCpkkDzq5Ex.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P2_ApIqoK5l4CzxBWbmDGaF70Revm.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P0n3dj73sLcDysQCpq6oidBRDcpji.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/Pg1_j-j62C6IHV77CrCsJrpB0HVX1.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P1n6wAD8biF9V2jxg108exDWyimBC.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P4yGX8shyBMvC1NNZEtDcz7qkYo7w.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PS8-Qv7N2kCKONdZmesS1w_Tausnz.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PcbZStKVRBBwjdBQsmIjYkXoiFcdT.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PPNfqOn3-H1S-OkwjTCUA3-2xOE6J.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/P5kIJZn1GeEgprRouYLEkIN-fg3C2.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PIpmcuIBHiIJC4Lqs2R0sv9qyvL-u.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/Pdcr6Adm1jZz-oisSZdbBH1Qwq7nF.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PY7l7lhAx7h9mjAMHhGVBrlNfHUXL.json',",
+                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RtWXnFiiVtrVb-3TOz9-k-ogZr2-t/PhVVJJOydBaE8d2tVngRXEYiX0520.json'",
+                    "]",
+                    "",
+                    "json_lists = {'RS': json_list_RS, 'ZB': json_list_ZB, 'CsCl': json_list_CsCl, 'NiAs': json_list_NiAs, 'CrB':json_list_CrB}"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "selectedType": "Hidden",
+                "pluginName": "IPython",
+                "shellId": "C4475869101842A09C3FED6220F6253E",
+                "elapsedTime": 524
+            },
+            "evaluatorReader": true,
+            "lineCount": 428
+        },
+        {
+            "id": "codeQIGx6m",
+            "type": "code",
+            "evaluator": "TeX",
+            "input": {
+                "body": [
+                    "\\text{Introduce octet binary systems... } (r_s(\\text{A}), r_p(\\text{A}), r_d(\\text{A}), r_s(\\text{B}), r_s(\\text{B}), r_d(\\text{B})) \\text{. Get the data from the nomad repository.}"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Latex",
+                    "object": "\\text{Introduce octet binary systems... } (r_s(\\text{A}), r_p(\\text{A}), r_d(\\text{A}), r_s(\\text{B}), r_s(\\text{B}), r_d(\\text{B})) \\text{. Get the data from the nomad repository.}"
+                },
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 73,
+                "height": 57
+            },
+            "evaluatorReader": true,
+            "lineCount": 1
+        },
+        {
+            "id": "codewqXgZa",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "from nomad_sim.wrappers import get_json_list, plot, calc_descriptor ",
+                    "from nomad_sim.gen_similarity_matrix import load_sim_matrix",
+                    "from nomad_sim.convert import build_sim_matrix",
+                    "from nomad_sim.utils_crystals import convert_energy_substance",
+                    "from pint import UnitRegistry",
+                    "from nomadcore.local_meta_info import loadJsonFile, InfoKindEl",
+                    "from nomad_sim.l1_l0 import  combine_features",
+                    "import hashlib",
+                    "import sys, os",
+                    "import pandas as pd",
+                    "import numpy as np",
+                    "import json",
+                    "import __builtin__",
+                    "__builtin__.isBeaker = True",
+                    "",
+                    "",
+                    "def get_data_from_nomad_sim(calc_desc=True, allowed_operations=None, **kwargs):",
+                    "    __file__ = '/usr/lib/python2.7/nomad_sim/wrappers.py'",
+                    "    __metainfopath__ = '../../../../nomad-meta-info/meta_info/nomad_meta_info/atomic_data.nomadmetainfo.json'",
+                    "    desc_folder = kwargs['tmp_folder']",
+                    "    desc_type = kwargs['desc_type']",
+                    "    energy_unit = kwargs['energy_unit']",
+                    "    length_unit = kwargs['length_unit']",
+                    "    ureg = UnitRegistry(os.path.normpath(\"/usr/lib/python2.7/nomadcore/unit_conversion/units.txt\"))",
+                    "    ",
+                    "    if calc_desc:",
+                    "        descriptor = calc_descriptor(**kwargs)",
+                    "    ",
+                    "    matrix_file = os.path.abspath(",
+                    "        os.path.normpath(",
+                    "            os.path.join(",
+                    "                desc_folder,",
+                    "                'data.npz')))",
+                    "    build_sim_matrix(",
+                    "        desc_folder=desc_folder,",
+                    "        matrix_file=matrix_file,",
+                    "        f_count_max=1000,",
+                    "        desc_type=desc_type)",
+                    "",
+                    "    # load similarity matrix",
+                    "    X, X_labels, target, lookup = load_sim_matrix(matrix_file=matrix_file, desc_type=desc_type)",
+                    "",
+                    "    # target is a list of tuples ",
+                    "    # converter works for either float or lists",
+                    "    # convert target (always in Joule if energy) in energy_unit",
+                    "    target = [convert_energy_substance('J', list(item),",
+                    "                                       ureg=ureg, energy_unit=energy_unit,",
+                    "                                       length_unit=length_unit) for item in target]",
+                    "",
+                    "    # build dataframe with data to combine features",
+                    "    json_file_path = lookup[:, 1]",
+                    "    frame_number = lookup[:, 2]",
+                    "    chemical_formula = lookup[:, 4]",
+                    "    energy = lookup[:, 5]",
+                    "",
+                    "    json_file_path = np.asarray(json_file_path).reshape(-1, 1)",
+                    "    frame_number = np.asarray(frame_number).reshape(-1, 1)",
+                    "    chemical_formula = np.asarray(chemical_formula).reshape(-1, 1)",
+                    "    energy = np.asarray(energy).reshape(-1, 1)",
+                    "    data = np.concatenate((X, json_file_path, frame_number, chemical_formula, energy, target), axis=1)",
+                    "    X_labels.append('json_file_path')",
+                    "    X_labels.append('frame_number')",
+                    "    X_labels.append('chemical_formula')",
+                    "    X_labels.append('energy')",
+                    "    X_labels.append('target')",
+                    "",
+                    "    df = pd.DataFrame(data=data, columns=X_labels)",
+                    "    df['energy'] = df['energy'].apply(pd.to_numeric)",
+                    "    # find rows that correspond to lowest energy structures",
+                    "    df = df.sort_values(by='energy').groupby(['chemical_formula'], as_index=False).first()",
+                    "",
+                    "    # copy dataframe with features only to give to l1-l0 minimization",
+                    "    df_features = df.copy(deep=True)",
+                    "",
+                    "    #for item in df_features['json_file_path'].tolist():",
+                    "    #    print item",
+                    "",
+                    "    target = np.asarray(df['target'].values.astype(float))",
+                    "",
+                    "    # drop columns that are not features",
+                    "    df_col_list = df_features.columns.tolist()",
+                    "",
+                    "    if 'json_file_path' in df_col_list:",
+                    "        df_features.drop('json_file_path', axis=1, inplace=True)",
+                    "    if 'frame_number' in df_col_list:",
+                    "        df_features.drop('frame_number', axis=1, inplace=True)",
+                    "    if 'energy' in df_col_list:",
+                    "        df_features.drop('energy', axis=1, inplace=True)",
+                    "    if 'chemical_formula' in df_col_list:",
+                    "        df_features.drop('chemical_formula', axis=1, inplace=True)",
+                    "    if 'target' in df_col_list:",
+                    "        df_features.drop('target', axis=1, inplace=True)",
+                    "    if 'index' in df_col_list:",
+                    "        df_features.drop('index', axis=1, inplace=True)",
+                    "",
+                    "    # load the file containing the atomic metadata",
+                    "    metadata_info_path = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), __metainfopath__))",
+                    "    metadata_info, warns = loadJsonFile(filePath=metadata_info_path, dependencyLoader=None,",
+                    "        extraArgsHandling=InfoKindEl.ADD_EXTRA_ARGS,uri=None)",
+                    "",
+                    "    # convert numerical columns in float",
+                    "    for col in df_features.columns.tolist():",
+                    "        df_features[str(col)] = df_features[str(col)].astype(float)",
+                    "",
+                    "    # make dict with metadata name: shorname",
+                    "    features = df_features.columns.tolist()",
+                    "    features = [feature.split('(', 1)[0] for feature in features]",
+                    "",
+                    "    shortname = []",
+                    "    # in foor loop to allow exception",
+                    "    for feature in features:",
+                    "        try:",
+                    "            shortname.append(metadata_info[str(feature)]['shortname'])",
+                    "        except:",
+                    "            shortname.append(feature)",
+                    "",
+                    "    features_shortnames = dict(zip(features, shortname))",
+                    "    ",
+                    "    df_combined = combine_features(",
+                    "        df=df_features,",
+                    "        energy_unit=energy_unit,",
+                    "        length_unit=length_unit,",
+                    "        metadata_info=metadata_info,",
+                    "        allowed_operations=allowed_operations)",
+                    "       ",
+                    "    feature_list = df_combined.columns.tolist()",
+                    "    for fullname, shortname in features_shortnames.items():",
+                    "        feature_list = [item.replace(fullname.lower(), shortname) for item in feature_list]",
+                    "",
+                    "    return target, np.array(df_combined), feature_list",
+                    ""
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "selectedType": "Results",
+                "pluginName": "IPython",
+                "shellId": "C4475869101842A09C3FED6220F6253E",
+                "elapsedTime": 16572,
+                "height": 222,
+                "result": {
+                    "type": "Results",
+                    "outputdata": [
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Redefining 'footHTwoO' (<class 'pint.definitions.UnitDefinition'>)\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Could not resolve count: UndefinedUnitError()\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Could not resolve julianYear: UndefinedUnitError()\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Could not resolve waterSixtyF: UndefinedUnitError()\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Could not resolve countsPerSecond: UndefinedUnitError()\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Could not resolve inchHTwoOSixtyF: UndefinedUnitError()\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Could not resolve cps: UndefinedUnitError()\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Could not resolve ly: UndefinedUnitError()\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Could not resolve lightyear: UndefinedUnitError()\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING:pint.util:Could not resolve lightYear: UndefinedUnitError()\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "Using TensorFlow backend.\n"
+                        }
+                    ]
+                }
+            },
+            "evaluatorReader": true,
+            "lineCount": 131
+        },
+        {
+            "id": "codeMVPG8k",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "from nomad_sim.utils_crystals import create_supercell",
+                    "",
+                    "# define parameters",
+                    "json_list = json_list_RS + json_list_ZB",
+                    "op_list = np.zeros(len(json_list))",
+                    "selected_feature_list = ['atomic_rs_max', 'atomic_rp_max', 'atomic_rd_max']",
+                    "",
+                    "kwargs = {'allowed_operations':[], ",
+                    "          'selected_feature_list':selected_feature_list,",
+                    "          'json_list':json_list, ",
+                    "          'op_list':op_list,",
+                    "          'desc_type':'atomic_features',",
+                    "          'spacegroup_tuples':[(225, 221), (216, 227)], # RS vs. ZB structure",
+                    "          'operations_on_structure':[(create_supercell, {'replicas': [3, 3, 3]})],",
+                    "          'tmp_folder':'/home/beaker/.beaker/v1/web/tmp/',  ",
+                    "          'path_to_collection': '/home/beaker/test/nomad_sim/data_zcrs/ExtendedBinaries_Dimers_Atoms_new.json',",
+                    "          'feature_order_by': 'atomic_mulliken_electronegativity',",
+                    "          'energy_unit': 'eV',",
+                    "          'length_unit': 'angstrom'      ",
+                    "         }",
+                    "",
+                    "P, D, feature_list = get_data_from_nomad_sim(**kwargs)",
+                    "# Seperate"
+                ]
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "Results",
+                    "outputdata": [
+                        {
+                            "type": "err",
+                            "value": "INFO: Calculating descriptor: atomic_features\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Writing descriptor to file.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Writing descriptor information to file.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Descriptor calculation: done.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING: No allowed operations selected.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Number of total features generated: 6\n"
+                        }
+                    ]
+                },
+                "selectedType": "Results",
+                "pluginName": "IPython",
+                "shellId": "C4475869101842A09C3FED6220F6253E",
+                "elapsedTime": 19655,
+                "height": 139
+            },
+            "evaluatorReader": true,
+            "lineCount": 23
+        },
+        {
+            "id": "codeCBYp2q",
+            "type": "code",
+            "evaluator": "TeX",
+            "input": {
+                "body": [
+                    "\\text{Target: Find the best low-dimensional descriptors for a linear model. The following equation provides exatly what we want: }\\text{argmin}_{\\mathbf{c} \\in \\mathbb{R}^{m}} \\{\\|\\mathbf{P} - \\mathbf{D}\\mathbf{c}\\|^2_2 +\\lambda \\|\\mathbf{c}\\|_0\\}\\text{. It is solved combinatorial.}"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Latex",
+                    "object": "\\text{Target: Find the best low-dimensional descriptors for a linear model. The following equation provides exatly what we want: }\\text{argmin}_{\\mathbf{c} \\in \\mathbb{R}^{m}} \\{\\|\\mathbf{P} - \\mathbf{D}\\mathbf{c}\\|^2_2 +\\lambda \\|\\mathbf{c}\\|_0\\}\\text{. It is solved combinatorial.}"
+                },
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 31,
+                "height": 57
+            },
+            "evaluatorReader": true,
+            "lineCount": 1
+        },
+        {
+            "id": "code5rtN3R",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "from itertools import combinations",
+                    "",
+                    "def L0(P,D,dimension):",
+                    "    n_rows, n_columns = D.shape",
+                    "    D = np.column_stack((D,np.ones(n_rows)))",
+                    "    MSEdic={}",
+                    "    for permu in combinations(range(n_columns),dimension):",
+                    "        D_ls = D[:,permu+(-1,)]",
+                    "        x = np.linalg.lstsq(D_ls,P)",
+                    "        if not len(x[1]) == 0: ",
+                    "            MSE = x[1][0]/n_rows",
+                    "            MSEdic.update({MSE:[x[0],permu]})",
+                    "    MSE = min(MSEdic)",
+                    "    coefficients, permu_selected = MSEdic[MSE]",
+                    "    RMSE = np.sqrt(MSE)",
+                    "    return RMSE, coefficients, permu_selected",
+                    "",
+                    "for dim in range(1,7):",
+                    "    RMSE, coefficients, selected_indices = L0(P,D,dim)",
+                    "    print RMSE, [feature_list[i] for i in selected_indices]"
+                ]
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "Results",
+                    "outputdata": [
+                        {
+                            "type": "out",
+                            "value": "0.31333947491 [u'r_p(A)']\n0.29493770298 [u'r_p(A)', u'r_d(B)']\n0.280145383704 [u'r_p(B)', u'r_p(A)', u'r_s(B)']\n0.276359790086 [u'r_p(B)', u'r_p(A)', u'r_s(B)', u'r_s(A)']\n0.272705955462 [u'r_p(B)', u'r_p(A)', u'r_s(B)', u'r_s(A)', u'r_d(B)']\n0.272444482677 [u'r_p(B)', u'r_p(A)', u'r_s(B)', u'r_d(A)', u'r_s(A)', u'r_d(B)']\n"
+                        }
+                    ]
+                },
+                "selectedType": "Results",
+                "pluginName": "IPython",
+                "shellId": "C4475869101842A09C3FED6220F6253E",
+                "elapsedTime": 311,
+                "height": 139
+            },
+            "evaluatorReader": true,
+            "lineCount": 20
+        },
+        {
+            "id": "codegBQKBa",
+            "type": "code",
+            "evaluator": "HTML",
+            "input": {
+                "body": [
+                    "However, the l0-method comes up with one crucial drawback: a rapidly increasing computational cost, when the features space is becoming larger. Consider randomly created P, D with different feature space sizes."
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Html",
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\nHowever, the l0-method comes up with one crucial drawback: a rapidly increasing computational cost, when the features space is becoming larger. Consider randomly created P, D with different feature space sizes."
+                },
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 0,
+                "height": 55
+            },
+            "evaluatorReader": true,
+            "lineCount": 1
+        },
+        {
+            "id": "codem84yx2",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "from time import time",
+                    "from nomad_sim.sis import ncr",
+                    "",
+                    "fig = plt.figure()",
+                    "",
+                    "rows = 100",
+                    "dimensions = [2,3]",
+                    "numbers_of_features = [",
+                    "    [10,100,400,600][:4],",
+                    "    [10,30,80,100][:4]",
+                    "    ]",
+                    "",
+                    "P_random = np.random.rand(rows,)",
+                    "for n_dim, dim in enumerate(dimensions):",
+                    "    time_list = []",
+                    "    for n_o_f in numbers_of_features[n_dim]:",
+                    "        D_random = np.random.rand(rows,n_o_f)",
+                    "        n = ncr(n_o_f,dim)",
+                    "        ",
+                    "        t1 = time()",
+                    "        L0(P_random,D_random,dim)",
+                    "        t2 = time()-t1",
+                    "        time_list.append(t2)",
+                    "    plt.plot(numbers_of_features[n_dim], time_list, label='%s-dimensional' %dim)",
+                    "    plt.plot(numbers_of_features[n_dim], time_list, 'rs') ",
+                    "",
+                    "plt.legend(loc='best')",
+                    "plt.xlabel('Number of features')",
+                    "plt.ylabel('Time [s]')",
+                    "plt.show()",
+                    "",
+                    ""
+                ]
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Error",
+                    "object": [
+                        "Interrupted"
+                    ]
+                },
+                "selectedType": "BeakerDisplay",
+                "pluginName": "IPython",
+                "shellId": "C4475869101842A09C3FED6220F6253E",
+                "elapsedTime": 3605,
+                "height": 78
+            },
+            "evaluatorReader": true,
+            "lineCount": 32
+        },
+        {
+            "id": "codehLXC3s",
+            "type": "code",
+            "evaluator": "TeX",
+            "input": {
+                "body": [
+                    "\\text{Use instead approximations, i.e. LASSO: }\\text{argmin}_{\\mathbf{c} \\in \\mathbb{R}^{m}} \\{\\|\\mathbf{P} - \\mathbf{D}\\mathbf{c}\\|^2_2 +\\lambda \\|\\mathbf{c}\\|_1\\}\\text{. } \\lambda\\text{ regulates the sparsity. Try different lambdas for the example of octed binaries. How good does LASSO approximate L0?}"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Latex",
+                    "object": "\\text{Use instead approximations, i.e. LASSO: }\\text{argmin}_{\\mathbf{c} \\in \\mathbb{R}^{m}} \\{\\|\\mathbf{P} - \\mathbf{D}\\mathbf{c}\\|^2_2 +\\lambda \\|\\mathbf{c}\\|_1\\}\\text{. } \\lambda\\text{ regulates the sparsity. Try different lambdas for the example of octed binaries. How good does LASSO approximate L0?}"
+                },
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 48,
+                "height": 57
+            },
+            "evaluatorReader": true,
+            "lineCount": 1
+        },
+        {
+            "id": "coded2PoWQ",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "from sklearn.linear_model import Lasso",
+                    "import scipy.stats as ss",
+                    "",
+                    "D_standardized = ss.zscore(D)",
+                    "lam =0.5",
+                    "",
+                    "lasso =  Lasso(alpha=lam)",
+                    "lasso.fit(D_standardized, P)",
+                    "coef =  lasso.coef_",
+                    "",
+                    "print lam, coef, [feature_list[i] for i in np.nonzero(coef)[0]]"
+                ]
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "Results",
+                    "outputdata": [
+                        {
+                            "type": "out",
+                            "value": "0.5 [-0. -0. -0. -0. -0. -0.] []\n"
+                        }
+                    ]
+                },
+                "selectedType": "Results",
+                "pluginName": "IPython",
+                "shellId": "CF239072B98E4D2890C4EF3EAF36FD99",
+                "elapsedTime": 294,
+                "height": 56
+            },
+            "evaluatorReader": true,
+            "lineCount": 11
+        },
+        {
+            "id": "codevI3556",
+            "type": "code",
+            "evaluator": "HTML",
+            "input": {
+                "body": [
+                    "Methods as LASSO+L0 or SIS+L0 shown to give better approximations to L0. We will focus, now, on LASSO+L0. With LASSO+L0 we can scan large feature spaces efficiently.  ",
+                    "-to improve the model, consider more complex features by applying arithmetic operations: feature space becomes larger"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Html",
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\nMethods as LASSO+L0 or SIS+L0 shown to give better approximations to L0. We will focus, now, on LASSO+L0. With LASSO+L0 we can scan large feature spaces efficiently.  \n-to improve the model, consider more complex features by applying arithmetic operations: feature space becomes larger"
+                },
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 0,
+                "height": 55
+            },
+            "evaluatorReader": true,
+            "lineCount": 2
+        },
+        {
+            "id": "code1xeZvT",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "def iter_LASSO(P ,D, lambda_grid, lasso_number=30, print_lasso=False):",
+                    "    collection=[]",
+                    "    if print_lasso:",
+                    "        print 'lamda      #collected   Indices'",
+                    "    for lam in lambda_grid:",
+                    "        lasso = Lasso(alpha=lam)",
+                    "        lasso.fit(D, P)",
+                    "        coef = lasso.coef_ ",
+                    "        collection = collection + list(set(np.nonzero(coef)[0]) - set(collection))",
+                    "        if print_lasso:",
+                    "            print '%.10f   %s   %s'%(lam,len(collection), np.nonzero(coef)[0])",
+                    "        if len(collection) > lasso_number - 1:",
+                    "            break",
+                    "    collection=collection[:lasso_number]",
+                    "    collection.sort()",
+                    "    return collection   ",
+                    "",
+                    "def evaluate_lambda_grid(P, D, lambda_grid_points=150, lambda_max_factor=1.0, lambda_min_factor=0.001):",
+                    "    correlations = abs(np.dot(P,D))",
+                    "    lam_max = max(correlations)/(len(P)) ",
+                    "    lam_min = lam_max*lambda_min_factor",
+                    "    lam_max = lambda_max_factor * lam_max",
+                    "    log_max,log_min = np.log10(lam_max),np.log10(lam_min)",
+                    "    lambda_grid = [pow(10,i) for i in np.linspace(log_min,log_max,lambda_grid_points)]",
+                    "    lambda_grid.sort(reverse=True)",
+                    "    return lambda_grid",
+                    "",
+                    "def get_string(RMSE, selected_features, coefficients):",
+                    "    dimension = len(selected_features)",
+                    "    string = '%sD:\\t%8f\\t' %(dimension, RMSE)",
+                    "    for i in range(dimension+1):",
+                    "        if coefficients[i]>0:",
+                    "            sign = '+' ",
+                    "            c = coefficients[i]",
+                    "        else:",
+                    "            sign = '-'",
+                    "            c = abs(coefficients[i]) ",
+                    "        if i < dimension:",
+                    "            string += '%s %.3f %s ' %(sign,c,selected_features[i])",
+                    "        else:",
+                    "            string += '%s %.3f\\n' %(sign,c)",
+                    "    return string",
+                    "    ",
+                    "    ",
+                    "def LILO(P,D,features, dimrange=range(1,1+3),lasso_number=30,lambda_grid_points=150,lambda_max_factor=1.0,lambda_min_factor=0.001,print_lasso=False,lambda_grid=None, print_model=False):    ",
+                    "    Dstan=np.array(ss.zscore(D))",
+                    "    lambda_grid = evaluate_lambda_grid(P, Dstan)",
+                    "    collection = iter_LASSO(P ,Dstan, lambda_grid, lasso_number=lasso_number, print_lasso=print_lasso)    ",
+                    "    if len(collection) < lasso_number:",
+                    "        print \"Only %s features are collected\" %len(collection)      ",
+                    "    D_collection = D[:,collection]",
+                    "    D_collection = np.column_stack( (D_collection,np.ones(len(P))) ) ",
+                    "    out = []",
+                    "    string = ''",
+                    "    for dimension in dimrange:",
+                    "        RMSE, coefficients, good_permu = L0(P, D_collection, dimension)",
+                    "        indices_for_D = [collection[gp] for gp in good_permu]",
+                    "        selected_features = [features[collection[gp]] for gp in good_permu]",
+                    "        string += get_string(RMSE, selected_features, coefficients)",
+                    "        out.append((indices_for_D,coefficients,RMSE))",
+                    "    if print_model:",
+                    "        print string",
+                    "    return out",
+                    ""
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "selectedType": "Hidden",
+                "pluginName": "IPython",
+                "shellId": "CF239072B98E4D2890C4EF3EAF36FD99",
+                "elapsedTime": 422,
+                "height": 1074
+            },
+            "evaluatorReader": true,
+            "lineCount": 64
+        },
+        {
+            "id": "codeSa0aqN",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "op_lists = [[], ['+','|-|'], ['+','|-|','exp'], ['+','|-|','exp', '^2'] ,['+','|-|','exp', '/'], ['+','|-|','exp', '/', '^2']]",
+                    "X, Y = [], np.empty([3,len(op_lists)])",
+                    "for n_op, op_list in enumerate(op_lists):",
+                    "    kwargs['allowed_operations'] = op_list",
+                    "    P, D, feature_list = get_data_from_nomad_sim(calc_desc=False, **kwargs)",
+                    "    out = LILO(P, D, feature_list, print_lasso=False, lasso_number=50, print_model=True)",
+                    "    number_of_features = len(feature_list)",
+                    "    X.append(number_of_features)",
+                    "    for i in range(3):",
+                    "        Y[i][n_op] = out[i][2] #RMSE",
+                    "",
+                    "for i in range(3):",
+                    "    print Y[i]",
+                    "    plt.plot(X,Y[i],label='%s-dimensional' %(i+1))",
+                    "    ",
+                    "    ",
+                    "#plt.xscale('log', nonposy='clip')",
+                    "plt.xlabel('Number of features')",
+                    "plt.ylabel('RMSE [eV]')",
+                    "plt.legend(loc='best')",
+                    "plt.show()"
+                ]
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "Results",
+                    "outputdata": [
+                        {
+                            "type": "err",
+                            "value": "WARNING: No allowed operations selected.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Number of total features generated: 6\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Selected operations:\n ['+', '|-|']\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Number of total features generated: 36\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "Only 6 features are collected\n1D:\t0.313339\t- 0.477 r_p(A) + 1.014\n2D:\t0.294938\t- 0.498 r_p(A) - 0.379 r_d(B) + 1.771\n3D:\t0.280145\t- 5.845 r_p(B) - 0.439 r_p(A) + 8.426 r_s(B) - 0.348\n\nOnly 23 features are collected"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.296668\t- 0.484 r_p(A)+r_d(B) + 1.944\n2D:\t0.265921\t- 0.527 r_p(A)+r_d(B) + 0.315 |r_p(A)-r_d(B)| + 1.911\n3D:\t0.230570\t- 0.601 |r_p(B)-r_p(A)| - 3.919 |r_p(B)-r_s(B)| + 0.460 |r_p(A)-r_d(B)| + 0.943\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Selected operations:\n ['+', '|-|', 'exp']\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Number of total features generated: 57\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\nOnly 42 features are collected"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.296668\t- 0.484 r_p(A)+r_d(B) + 1.944\n2D:\t0.227539\t- 1.371 r_p(A)+r_s(B) + 0.047 exp(r_p(A)+r_s(B)) + 2.898\n3D:\t0.200506\t- 4.621 |r_p(B)-r_s(B)| - 1.346 |r_p(A)-r_s(B)| + 0.098 exp(r_p(A)) + 1.412\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Selected operations:\n ['+', '|-|', 'exp', '^2']\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Number of total features generated: 99\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.296668\t- 0.484 r_p(A)+r_d(B) + 1.944\n2D:\t0.210940\t- 2.497 r_p(A) + 0.499 r_p(A)^2 + 2.826\n3D:\t0.185127\t- 2.487 r_p(A) - 1.459 |r_p(B)-r_s(B)| + 0.491 r_p(A)^2 + 3.016\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Selected operations:\n ['+', '|-|', 'exp', '/']\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Number of total features generated: 813\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.192323\t+ 21.112 |r_s(B)-r_d(B)|/exp(r_p(A)+r_d(B)) - 0.543\n2D:\t0.129760\t- 20.783 |r_p(B)-r_s(B)|/exp(r_p(A)+r_s(A)) + 26.784 |r_s(A)-r_d(B)|/exp(r_p(A)+r_d(B)) - 0.284\n3D:\t0.112322\t- 19.562 |r_p(B)-r_s(B)|/exp(r_p(A)+r_s(A)) + 2.299 |r_p(A)-r_d(A)|/exp(r_p(A)+r_d(B)) + 25.103 |r_s(A)-r_d(B)|/exp(r_p(A)+r_d(B)) - 0.342\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Selected operations:\n ['+', '|-|', 'exp', '/', '^2']\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Number of total features generated: 2367\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.159652\t+ 10.095 r_p(B)+r_p(A)/exp((r_p(A)+r_s(B))^2) - 0.102\n2D:\t0.107856\t+ 16.302 r_s(B)/exp((r_p(A)+r_s(B))^2) + 4.448 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.412\n3D:\t0.077499\t+ 9.331 r_p(B)+r_p(A)/exp((r_p(A)+r_s(B))^2) - 12.329 |r_p(B)-r_s(B)|/exp(r_s(B)+r_d(A)) - 1.898 |r_p(B)-r_s(A)|/exp(r_s(A)) + 0.235\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n[ 0.31333947  0.29666785  0.29666785  0.29666785  0.19232315  0.15965235]\n[ 0.2949377   0.26592148  0.22753931  0.21094036  0.1297597   0.10785618]\n[ 0.28014538  0.23056963  0.20050649  0.1851272   0.11232199  0.07749948]\n"
+                        }
+                    ],
+                    "payload": "<div class=\"output_subarea output_png\"><img src=\"\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX6//H3HRJKCAFCDS24WGiCoCIWIIoKYgFEMeyC\nilIEyyqriy6K2MCCFWxYWOGLgq4NEAX5YbAiiICCICgECAEEQkmAkPb8/nhmYJJMJgnTJ/fruuZy\nyjlznhlDPjnnOee+xRiDUkop5Y2oYA9AKaVU+NMwUUop5TUNE6WUUl7TMFFKKeU1DROllFJe0zBR\nSinlNb+HiYj0FpENIrJRRMa6ef0aEVkjIqtE5CcRucTltTSX15b7e6xKKaVOjvjzOhMRiQI2Aj2B\nDGAFkGKM2eCyTKwx5ojj/pnAx8aYUx2PNwNnG2P2+22QSimlvObvPZMuwCZjzFZjTB4wG+jruoAz\nSBzigL0ujyUAY1RKKeUlf/+ibgpsd3mc7niuCBHpJyLrgQXAXS4vGeBLEVkhIsP9OlKllFInLTrY\nAwAwxnwCfCIiFwEzgTMcL11ojNkpIg2wobLeGPNt0AaqlFLKLX+HyQ6ghcvjZo7n3DLGfCsi0SJS\nzxizzxiz0/H8HhH5GHvYrESYiIgWGFNKqQoyxoiv3svfh7lWAKeKSJKIVAVSgLmuC4hIK5f7nQGM\nMftEJFZE4hzP1wQuB9aWtiFjjN6M4eGHHw76GELhpt+Dfhf6XXi++Zpf90yMMQUicgewCBtcbxlj\n1ovISPuymQYMEJEbgVzgMHCDY/VGwMeOvY5oYJYxZpE/x6uUUurk+H3OxBjzBSfmQJzPve5y/2ng\naTfrbQHO8vf4lFJKeU9Pu40wycnJwR5CSNDv4QT9Lk7Q78J//HrRYqCIiImEz6GUUoEiIhgfTsCH\nxKnBSin/admyJVu3bg32MFSQJCUlkZaW5vft6J6JUhHO8RdosIehgqS0//++3jPROROllFJe0zBR\nSinlNQ0TpZRSXtMwUUqFraFDhzJ+/HgAvv32W9q0aRPkERXVp08fZs6c6fftREVFsXnzZr9vx+MY\ngrp1pVSl9/LLL3PuuedSvXp1brnllpN+n4suuoj169f7cGTeW7BgAUOGDPH7dkR8No9+0vTUYKVU\nUDVt2pSHHnqIhQsXcvTo0WAPJyyFwtl6umeilAqqfv36cc0115CQkFDmsqtWreLss8+mdu3apKSk\nkJOTc/y1pUuX0rx58+OPTznlFCZPnkyHDh2Ij49n2LBh/PXXX/Tp04fatWtz+eWXc/DgwePLL1u2\njAsvvJC6devSqVMnli5devy1iy++mPHjx3PRRRcRHx9P7969yczMBODYsWMMGTKE+vXrU7duXc47\n7zz27NlzfL23334bsL/wH3/8cVq2bEnjxo25+eabOXToEABbt24lKiqKGTNmkJSURMOGDZk4ceLx\n7a9YsYILLriAunXr0rRpU+68807y8/NP5uv2Gw0TpVRYyMvLo3///tx0001kZmZy/fXX8+GHHxZZ\npvjhno8++oglS5bw+++/M2/ePK644gqefPJJ9uzZQ0FBAS+99BIAO3bs4KqrrmL8+PHs37+fyZMn\nM2DAAPbt23f8vd577z3eeecd9uzZw7Fjx5g8eTIA77zzDocOHWLHjh1kZmby2muvUaNGjRLjnz59\nOjNmzGDp0qVs3ryZrKws7rjjjiLLfPfdd2zatInFixfz6KOP8vvvvwNQpUoVXnjhBTIzM/nhhx9Y\nsmQJr7zyivdfqg9pmChVyYn45uZvy5YtIz8/n7vuuosqVaowYMAAzj33XI/r3HnnndSvX5/ExES6\ndetG165d6dChA1WrVqV///6sWrUKgFmzZnHllVfSq1cvAHr27Mk555zDggULjr/X0KFDadWqFdWq\nVWPgwIGsXr0agJiYGPbt28fGjRsRETp16kRcXFyJsbz77ruMGTOGpKQkYmNjmTRpErNnz6awsBCw\nQThhwgSqVq1Khw4d6NixI2vWrAGgc+fOdOnSBRGhRYsWjBgxosieUyjQMFGqkjPGNzdf69OnD7Vq\n1SI+Pp733nuPjIwMmjYt2vU7KSnJ43s0atTo+P0aNWqUeJydnQ3Yw0zvv/8+CQkJJCQkULduXb77\n7jt27dp1fPnGjRsfvx8bG3t83SFDhtCrVy9SUlJo1qwZY8eOpaCgoMRYMjIyiow3KSmJ/Px8du/e\n7Xa8rtvYtGkTV199NYmJidSpU4dx48axd+9ej5890DRMlFIhacGCBWRlZXHo0CEGDRpEYmIiO3YU\nbdS6bds2n2yrefPm3HjjjWRmZpKZmcn+/fvJysrivvvuK3Pd6OhoHnroIdatW8f333/P/PnzmTFj\nRonlmjRpUqRG2tatW4mJiSkSIKUZNWoUbdq04c8//+TAgQM88cQTITHp7krDRCkVVAUFBeTk5FBQ\nUEB+fj7Hjh1z+5f9+eefT3R0NFOmTCE/P5+PPvqI5cuX+2QMgwcPZt68eSxatIjCwkJycnJYunQp\nGRkZZa6bmprK2rVrKSwsJC4ujpiYGKpUqVJiuUGDBvH888+TlpZGdnY248aNIyUlhago+2vYUzhk\nZWURHx9PbGwsGzZs4NVXXz35D+snGiZKqaB6/PHHiY2N5amnnmLWrFnExsbyxBNPlFguJiaGjz76\niOnTp1OvXj0++OADBgwYUOr7Fp+M93QtRrNmzfj000+ZOHEiDRo0ICkpicmTJxeZzyjNrl27uO66\n66hduzbt2rXj4osvZvDgwSXWu+WWWxgyZAjdu3enVatWxMbGHj8BoKzxTp48mVmzZhEfH8/IkSNJ\nSUkp92cLFK0arFSE06rBlZtWDVZKKRU2NEyUUkp5TcNEKaWU1zRMlFJKeU3DRCmllNciJkzS04M9\nAqWUqrwiJkw++ijYI1BKqcorYsKkWPFQpZRSARQxYbJmDbjUS1NKVQLattfStr0+dMUV8MknwR6F\nUqoicnNzGTZsGC1btqR27dp07tyZL7744qTeS9v2Bpffw0REeovIBhHZKCJj3bx+jYisEZFVIvKT\niFxS3nVdDRig8yZKhZv8/HxatGjBN998w8GDB3nssccYOHCgz6oBVxahUC7Hr2EiIlHAVKAX0A4Y\nJCKtiy222BjT0RjTCRgKTKvAusddcQUsWwb79/vhgyil/CI2Npbx48cfb7d75ZVXcsopp7By5Uq3\ny2vb3srbtrcLsMkYs9UYkwfMBvq6LmCMOeLyMA7YW951XdWsCT17wty5Ph2/UiqAdu/ezaZNm2jX\nrl2J17Rtb2i37Y328/s3Bba7PE7HhkQRItIPmAQ0xu6JlHtdVwMGwJw5cNNN3gxZqcpFHvHN8Xbz\nsHeHWvLz8xk8eDA333wzp59+eonXXdv2AhVq2wvQrVs3GjVqRIcOHQDo378/S5YsATy37XXOeTjb\n9gIMHDiQefPmAUXb9p555pl06tTJ7Vhc2/YCTJo0ifbt2/Pf//4XKL1t7xlnnEHnzp2Pv49r217n\ndxEK/B0m5WKM+QT4RES6ATOBM07mfa66CkaPhqwsqFXLp0NUKmJ5GwI+GYMxDB48mGrVqjFlyhTA\nngn1zTffICK8/vrrREVF+b1trzMgjDHk5+fTs2fP48t7atubnp5OSkoKBw8e5B//+AcTJ04s0SDL\n27a9Y8aM4aeffuLo0aPk5+dz9tlne/zsgebvMNkBtHB53MzxnFvGmG9EJFpE6lV03QkTJgDQsCE8\n80wyjz6afNKDVkoF1q233srevXtZsGDB8V/CCxYsKLLM119/7bZt76mnnur19p1te19//fUKr+ts\n2/vQQw+xbds2rrjiClq3bs3QoUOLLOepbe/27duLv20Ro0aNonPnzsyZM4fY2FhefPHFEof4ypKa\nmkpqamqF1qkIf4fJCuBUEUkCdgIpwCDXBUSklTHmT8f9zgDGmH0icqCsdV05w6RFC/jgA/jhh9IH\nJQJnnQXVq5/8B1NK+cZtt93Ghg0bWLx4MVWrVi11Ode2vaNGjWLu3LksX76cSy65pNR1ymvw4MF0\n6dKFAQMGcOmll5Kbm8uPP/7IaaedRpMmTTyum5qaSv369Wnbtm2ZbXuffvppevfuTf369b1u29uw\nYcMKfcbk5GSSk5OPP37kkUcqtH5Z/BomxpgCEbkDWISd7H/LGLNeREbal800YICI3AjkAoexoVHq\numVts18/O28yZkzpy2Rn2yD5+GNo1szLD6mUOmnbtm1j2rRpVK9e/fghHudhrUGDiv7t6GzbO2zY\nMB588EH69Onj87a99913H4MGDSI6OpouXboc77VeVtve2267jR07dhAXF0dKSkqpbXt37txJ9+7d\nOXbsGL17965Q294RI0bw9NNP06lTJ1JSUo7P95Q1vkCplG17jYFnnoEXX7R7MRdc4MfBKRVk2ra3\nctO2vRV0IOdAuZcVgX//G954w+7JvPmmHwemlFKVQMSEyZpdayq8Tp8+8M03MHky3HEH5OX5YWBK\nKVUJRE6Y7K54mACccQb8+COkpcHll4PjwlWllFIVEDFhsnrX6pNet3Zt+PRTOP986NIFVp/8Wyml\nVKUUMWFysnsmTlWqwMSJ8OSTcNlldmJeKaVU+YTEFfC+sH7PevIK8oipEuPV+9xwA5x+OvTvb3uk\nPPooREVM5CqllH9EzK/JFrVbsGHvBp+8V6dOsGKFnZzv2xdcCosqpZRyI2LC5KzGZ3l9qMtVgwaw\neLG9or5rV9i40WdvrZRSESeiwsSbSXh3YmLg5Zft1fTdusFJNoBTSvmJtu21tG2vD3Vs1NHnYeI0\nfLjt4njLLfbKeb2YWCnfGTJkCImJidSuXZtWrVrxxBNPnNT7aNve4IqYMHEe5vJX2YgLL7TXo8yZ\nA4MHw9GjftmMUpXOAw88wJYtWzh48CCff/45U6ZMYeHChcEeVlgJhXI5ERMmjWMbEiVRZGRl+G0b\nzZvbSXkRuOgiKKNqtFKqHNq2bUt1RwlvYwwxMTE0aNDA7bLatrfytu0NGNm716+Hupxq1ICZM2HQ\nIDjvPPj2W79uTqlK4fbbb6dmzZq0b9+ecePGFeks6KRte0O7bW/EhAnp6T4/o6s0InDvvfD223Dt\ntTBtmt83qZT/iPjm5oWXX36Z7OxsFi9ezIMPPsiKFStKLOPatrdKlSoVatubmJhIt27d6Nq1Kx06\ndKBq1ar079+fVatWAZ7b9jo52/ZWq1aNgQMHstpRKsO1ba+I0KlTJ+Li4kqMxbVtb2xsLJMmTWL2\n7NkUFhYCpbftBejcuTNdunRBRIq07Q0lERcm/t4zcdW7t90zef552y44Nzdgm1bKd4zxzc1LIkKP\nHj0YOHAg7777Ln369KFWrVrEx8fz3nvvkZGR4fe2vQkJCSQkJFC3bl2+++47du3adXx5T217e/Xq\nRUpKCs2aNWPs2LEUFBSUGIu3bXuvvvpqEhMTqVOnDuPGjWPv3r0eP3ugRU6Y7NgRkMNcxZ1+up2Y\nT0+3ZVj++iugm1cq4uTl5VGzZk0WLFhAVlYWhw4dYtCgQSQmJrpt2+sLzra9mZmZZGZmsn//frKy\nsrjvvvvKXNfZtnfdunV8//33zJ8/nxkzZpRYzlPb3rKMGjWKNm3a8Oeff3LgwAGeeOKJkJh0dxU5\nYZKezhn1z2BH1g6yc7MDuun4ePjkE+jeHc49Fxx7zkqpMuzZs4c5c+Zw+PBhCgsLWbhwIR988AF9\n+/Ytsaxr2978/Hw++ugjli9f7pNxDB48mHnz5rFo0SIKCwvJyclh6dKlZGSUfUJPamoqa9eupbCw\nsMy2vc8//zxpaWlkZ2d73bY31ERUmERHRdO2QVt+3f1rwDcfFQWPPWZ7o1x+OcyeHfAhKBV2RIRX\nX32V5s2bU69ePR566CFmzpzpdi7E2bZ3+vTp1KtXjw8++MDnbXsnTpxIgwYNSEpKYvLkyUXmM0qz\na9currvuOmrXrk27du24+OKLS23bO2TIELp3706rVq2IjY2tUNveWbNmER8fz8iRI0lJSSn3ZwuU\nyGnbe/HFsGQJw+YO45wm53DbObcFbTxr1tgOjikp8PjjtiKxUsGibXsrN23bW1Hp6YB/yqpUVMeO\ntlDksmVwzTVaKFIpFfkiK0yMCYkwAahfHxYtgr/9zV6P4jhdXCmlIlLkhEnVqrB/P23qt+H3faHx\nmzsmBqZMgfvus4UiXU5ZV0qpiBI5YdKsGaSnk1AjgSN5RziaFzrFs2691Z7tNXy47eSoh6+VUpEm\n4sJERGgc15hd2bvKXieALrjAXo/y4Ye2FMuRI8EekVJK+U7EhQlAk1pN2Jm9M8gDKqlZM/j6a3v4\n66KLwEfXWymlVNBFTA941zBJjEtkZ1bohQnYQpEzZtgSLOedZ0vad+8e7FGpSJaUlBQS1yGo4Cir\n5IyvRFaY/PADYMPEn6XovSViuzeeeSZcfz1MmACjRgV7VCpSpaWlBXsIqhKInMNcTZue2DOplRiS\nh7mKu+wy+O47mDoVbrtNC0UqpcJX5IRJ8cNcYRAmAKeeai9u3LULevYElwKiSikVNvweJiLSW0Q2\niMhGERnr5vW/i8gax+1bEeng8lqa4/lVIuK5olvxCfgQnTNxp1Yt22P+kktsociVK4M9IqWUqhi/\nzpmISBQwFegJZAArRORTY8wGl8U2A92NMQdFpDcwDejqeK0QSDbG7C9zY3XqQH4+HDoUNoe5XEVF\nwSOPQIcOtk/Kiy/C3/8e7FEppVT5+HsCvguwyRizFUBEZgN9geNhYoxZ5rL8MsC1+41Q3r0nEbt3\nsmMHic1DewLekwEDbI+Ufv1swciJE7VQpFIq9Pn7MFdTYLvL43SKhkVxw4DPXR4b4EsRWSEiw8vc\nmuNQV4OaDTiYc5DcgvCc0T7zTFi+HH76Ca66CvaXvV+mlFJBFTKnBovIxcBQ4CKXpy80xuwUkQbY\nUFlvjPnW3foTJkyAvXth6lSSY2JoULMBu7N307x28wCM3vfq1YOFC22v+fPOg08/hTZtgj0qpVS4\nSk1NJTU11W/v7+8w2QG0cHnczPFcEY5J92lAb9f5EWPMTsd/94jIx9jDZqWHSV4eVK8Oyck02WSv\ngg/XMAGIjoYXXrAl7Xv0gLfftnsqSilVUcnJySQnJx9//Mgjj/j0/f19mGsFcKqIJIlIVSAFmOu6\ngIi0AD4Ehhhj/nR5PlZE4hz3awKXA2s9bs31WpMQv3CxIoYOhblz7bUoEydqoUilVOjxa5gYYwqA\nO4BFwDpgtjFmvYiMFJERjsUeAhKAV4qdAtwI+FZEVmEn5ucZYxZ53KBjAh5Cu6TKyeja1c6jfPop\n3HADHD4c7BEppdQJfp8zMcZ8AZxR7LnXXe4PB0pMrhtjtgBnVWhjrhcuhuHpwWVp0gSWLrV7KBde\naMvat2wZ7FEppVQkXQEPYVPs0RvVq8P06XDzzXD++eDH+TSllCq3yAqT+vUhKwuOHqVJrSZkZEfG\nnElxInD33TBzpj3k9fLLOo+ilAquyAqTqCg7Cb9jhz3MFYF7Jq4uvRS+/x5efRVGjIBjx4I9IqVU\nZRVZYQLHD3WFU7FHb7RqZSvv79tna3vtCq0Gk0qpSiJiw6RRXCP2HtlLfmF+sEfkd7Vqwf/+B716\n2UKRK1YEe0RKqcom8sLEca1JdFQ0CTUS+OvwX8EeUUBERcH48TBlCvTpA//3f8EekVKqMom8MAnj\nUvS+0K8ffPUVPPywLcWSH/k7ZkqpEBDRYVJZ5k2Ka9/eHupaswauvFILRSql/M/jRYsi0rkc75Fn\njPnVR+PxXgRfBV8RCQnw+efw739Dly72yvm2bYM9KqVUpCrrCvil2Ppa4mGZU4CWvhqQ15o1g23b\ngMi8Cr4ioqPhuedOFIp86y245ppgj0opFYnKCpMVxphLPC0gIkt8OB7vJSbCgQNw9CiJcYn8+lfo\n7DQFy0032fL1AwbYQ1/jxtkJe6WU8hWPv1LKCpLyLhNQUVHQogVs3UrT+KZsObAl2CMKCV262EKR\nCxbAwIGQnR3sESmlIonHMBGR30TkQRFpFagB+UTLlpCWRs9TerIyYyWb928O9ohCQmKireUVHw8X\nXABbNGeVUj5S1sGOQUBNYJGILBeRe0SkSQDG5Z1TToEtW6hVrRbDOw/n+R+eD/aIQka1anbuZPhw\nWyhySWgdpFRKhamyDnOtMcY8YIxpBdyF7Zq4TES+KldP9mBx7JkA3Hnencz6dRb7juwL6pBCiQjc\neSe8+y78/e/2QkctFKmU8ka5p2GNMcuMMfcANwJ1gKl+G5W3XMKkSa0m9Gvdj1d/ejWoQwpFl1xi\n63q98QYMG6aFIpVSJ69cYSIi54rIcyKyFZgAvA6E7uEulzAB+Nf5/2Lq8qnk5OcEbUih6pRTbOXh\ngwchORl2Vt4zqZVSXihrAn6iiPwJvALsAC40xiQbY14zxoTucaNiYdKuYTvObnI2M9fMDNqQQllc\nHLz/vq3pde659qwvpZSqiLL2THKA3saYc40xzxpj0gMxKK81bgyHDhVplH7fBffx7A/PUmgKgziw\n0BUVBQ89ZBttXXklzJgR7BEppcJJWRPwjxpjNolIrIg8JCJvAIjIaSJyVWCGeBJcrjVx6pHUg7iq\ncczfOD+IAwt9ffva04cfewzuuUcLRSqlyqe8E/DTgWPA+Y7HO4DH/TIiXyl2qEtEuO+C+3jm+2eC\nNqRw0a4d/Pgj/PYb9O5tG28ppZQn5Q2TVsaYp4E8AGPMETzX6wq+YmECMKDtANIPpbMsfVlQhhRO\nEhLgs8+gUyd79fzatcEekVIqlJU3THJFpAZgABxXxIf2iaRuwiQ6Kpp7ut7D5O8nB2VI4SY6Gp55\nBh55BC6+GD7+ONgjUkqFqvKGycPAF0BzEZkF/D/g334blS+4CROAWzrdQmpaKmt2rQn4kMLV4MG2\nptddd9lgKdRzGJRSxZQrTIwxXwLXAjcD7wHnGGNS/TcsH3CUVCkurmocL/R+gZ4zejLxm4nkFuQG\nYXDhx9lbftEiuO46yMoK9oiUUqGkrOtMGjvvG2P2GWM+M8bMN8bsdbdMSCllzwRgcIfB/DTiJ77b\n/h2dX+/MD9t/COjQwlXjxraWV0KCLRS5WetnKqUcytozWVCO9yjPMoHXqJGts15KrfWWdVoyf9B8\nxvcYz4D3B3D7Z7dzMOdggAcZfqpVs+VXbrvNFopcvDjYI1JKhYKywqSjiBzycMsCGgVioBUmAklJ\nRa41KbmIMLDdQNaNXkdeYR7tXmnHR+s/wmjVQ49E4PbbYc4cGDIEXnhBC0UqVdmVddFiFWNMvIdb\nLWNMU0/vISK9RWSDiGwUkbFuXv+7iKxx3L4VkQ7lXbdMHg51uapboy7Trp7GewPeY9yScfSf05/0\nQ+FxsX8wJSfbQpH//S8MHQo5WvpMqUrLr81bRSQKW124F9AOGCQirYstthnobozpiL0QcloF1vWs\nlEn40nRL6sbqkavp1LgTnV7vxJQfp1BQWFChTVY2LVvCd9/BkSO2z3xGRrBHpJQKBn93Au8CbDLG\nbDXG5AGzgb6uCzhK2zsnK5YBTcu7bpnKuWfiqlp0NR5Ofphvhn7DB799wAVvX8Avu3+p0HtUNjVr\n2kNeffvaCxyX6TWhSlU6/g6TpsB2l8fpnAgLd4YBn5/kuiW1bAkbN1ZoFafW9VuTenMqwzsP59IZ\nl3L/4vs5knfkpN6rMhCB//wHXnsNrrkGpk8P9oiUUoEU7elFEbnEGLPEcf8UY8wWl9euNcZ85KuB\niMjFwFDgopNZf8KECcfvJycnk5ycDJdeCqNH20n4pKQKv2eURDGs8zCuOv0q7v7ibs589Uxeu/I1\nLmt12ckMsVK46ipYutTupaxeDZMnQ0xMsEellEpNTSU1NdVv7y+ezlwSkZ+NMZ2L33f3uJT1uwIT\njDG9HY/vB4wx5qliy3UAPsSWu/+zIus6XjOlfo4HHoADB+BV7zstLti0gNGfjaZ7UneevfxZGtRs\n4PV7Rqr9+2HQIMjLs71S6tUL9oiUUq5EBGOMz2oslnWYS0q57+6xOyuAU0UkSUSqAinA3CJvItIC\nGyRDnEFS3nXLZcwYe0B/+/ayly1Dn9P6sHb0WhrENqD9q+15Z/U7ehpxKerWtYUizz7bXj3/66/B\nHpFSyp/8umfiWK438CI2uN4yxjwpIiOxexnTHD1SrgW2YgMqzxjTpbR1S9lG6XsmAPfdZ89bnTKl\nrOGW28qMlYyYP4I61evw2pWvcVq903z23pHm3Xfhn/+08ykDBgR7NEop8P2eSVlhcgD4GvtLvpvj\nPo7HFxlj6vpqIN4oM0x27YK2bWHdOkhM9Nl28wvzeenHl5j4zUTGnD+Gey+4l6pVqvrs/SPJypXQ\nvz/cfDNMmGD7lymlgifQYdLD08rGmKW+Gog3ygwTgLvvtr/BnnvO59tPO5DG6M9Gs/3QdqZdNY3z\nm59f9kqV0O7dds+kRg3o2dM2w2zRApo3hyZNdKJeqUAKaJi42XgM0B7YYYz5y1eD8Fa5wiQjA9q3\nh/Xrbd0uHzPG8P6697ln4T30b92fiT0nUrt6bZ9vJ9zl5sI778Aff8C2bXYqa9s2GzQNG54IGHe3\nOnXsKchKKe8Fes/kNWCKMWadiNQGfgAKgATgXmPMe74aiDfKFSYAd9wBsbHw9NN+G8v+o/sZu3gs\nCzYtYMoVU+jfpr/fthVJ8vNt3m/bVvotP99z2DRrBlX1KKNS5RLoMFlnjGnnuH83kGyM6ecoO/+5\nMaaTrwbijXKHyfbt0LEj/P47NPDvab3fbP2GEfNHcEa9M5jaZyrN4pv5dXuVwaFDJ/Zk3N0yMuwp\nyM2blx449evr3o1SEPgwWeUMDBH5DPjAGPPf4q8FW7nDBGzt9IQEmDjRv4MCjuUf48lvn2TqiqmM\n7z6e0eeOpkpUFb9vt7IqKLDnWngKnCNHToSNu9Bp3tzO6SgV6QIdJl8BzwI7gK+A1saYXSISDaw1\nxlSs8KKfVChM0tLsxQ+//27/TA2A9XvWM3L+SI4VHOONq9+gQ6MOZa+k/OLw4RNh4y50tm+H+PiS\nAeP6uFEcgplVAAAan0lEQVQjPRtNhb9Ah8npwEtAY+AFl72SXsDlxph/+Wog3qhQmACMG2dngSdO\ntA3OA/CbodAU8tbPbzFuyThu7XQr43uMp0aM/gkcagoLYc8e9yHjvH/gADRt6n6vxnk/Li7Yn0Qp\nz4J6NleoqnCYgG3Ecc899tjIc89Bt27+GVwxu7J3cfcXd7MiY4XW+QpTOTmQnu45cKpVK33epnlz\ne7lTtMfKeEr5V6D3TF7ytLIx5i5fDcQbJxUmYP8MnT0b7r8fzjsPnnoK/vY33w/QDa3zFbmMgcxM\nz2em7d0LjRt7Pjuttp5Zrvwo0GGSC6wF3gcyKFaPyxjzjq8G4o2TDhOnI0fs3snzz8OwYfYwWHy8\n7wZYiuzcbB7+6mH+79f/4+lLn+bGjjcieqpRpZCb6/lU6K1b7VlnnsKmaVO90FOdvECHST3geuAG\nIB+YA/zPGHPAVwPwBa/DxCkjAx58ED7/3Nb8uPXWgByL0Dpfqjhj4OBBz2em7dplz3D3dCp0QoKe\nCq3cC9qciYg0w1buHQOMNcbM9NUgvOWzMHH6+WdbbXjfPrvHcpn/5zW0zpeqqPx82Lmz9DPTtm2D\nY8dKPyvNeaFn9erB/iQqGIISJiLSGRgEXAasBJ41xvzmq0F4y+dhAvZPw08+sRWHW7e2XZ5a+/9M\naK3zpXwpK6tk0Lg+Tk+37QI8nQrdsKHu3USiQB/mehS4EliP7cH+hTEm31cb9xW/hInTsWMwdSo8\n+aTt9vTww37v9KR1vlSgFBbaumju9mqcoZOVZfdgSjsVunlzqFkz2J9EVVSgw6QQ2AI4m587FxZs\nP5KQuPrOr2HitGePnUf54APb7Hz0aL8XgtI6XyoUHDni/lRo19CpWdPzqdCNG0MVLf4QUgIdJh4b\npxtjtvpqIN4ISJg4/fYb/Otf8Oef9tDX1Vf7/RjA11u/ZsS8EbSu31rrfKmQY4w91dnTqdCZmbbN\ngKfACcAJlMpFyFy0KCI3GGPm+Gog3ghomDh98YUNlcaN7SR9x45+3dyx/GNM+nYSU5dPZULyBEad\nM0rrfKmwcewY7NjhOXBiYjyfmdakiV7o6UuB3jOpCYwEWgHrgNeAvsATwCZjTF9fDcQbQQkTsKfT\nTJsGjzwC11wDjz1mw8WPnHW+cgtymXb1NK3zpSKCMbB/v/uTBJy33bvtPy9PgaM9b8ov0GHyIZCF\n7WNyGdAcyAH+aYxZ7atBeCtoYeJ04AA8/jj89792b+Wee/x6vqWzztd/lvyHYZ2GaZ0vVSnk5ZW8\n0LN46BQUlH0qtPa8sQIdJr84J9lFpAqwE2hhjMnx1QB8Iehh4vTHH/Dvf9vrVJ56CgYO9OufSc46\nXz9l/MRrV73GpX+71G/bUioceLrQc/v2Ez1vPJ0KXVl63gQ6TH42xnQu7XGoCJkwcUpNtRc91qhh\nS7R06eLXzX228TNuX3C71vlSqgzOnjee5m6OHi29100k9bwJdJgUAIedD4Ea2NOEnacGh8T5FyEX\nJmB/amfMsOVZLr4YJk2yP4V+onW+lPIN15437m7p6SV73hS/NWwY+j1vQuZsrlASkmHilJ1tD3m9\n8grcfrs9DObHZhcrM1YyfN5w6taoy+tXvc6pCaf6bVtKVUaFhfDXX57L2Bw86L7njeteTrB73miY\nuBHSYeK0bRs88AAsXWon62+80W9/uuQX5vPisheZ9O0k/nX+v7j3gnuJqaLlZZUKlKNHT1zoWVrg\nVK/uee8mMdG/F3pqmLgRFmHitGyZPdsrN9fOp3Tv7rdNaZ0vpUKTMbaOrKcGa3v32kBxN39z6aW2\nAZs3NEzcCKswAfuTNGcOjB0L55wDTz8NrVr5aVO2ztfdC+/m2tbXap0vpcJEbq77Cz23b4f//Q9i\nY717fw0TN8IuTJyOHrV7J889B0OH2sl6P7XXyzyaydgvx/L5H59rnS+llIaJO2EbJk67dtkgmT/f\nViUePtxvdSOWpi1l5PyRtGnQhilXTNE6X0pVUr4OE7+fvCYivUVkg4hsFJGxbl4/Q0S+F5EcERlT\n7LU0EVkjIqtEZLm/xxo0jRvDm2/ael/vvw9nnQULF/plUz1a9mDNbWvo2KgjZ712FlOXT6WgsMAv\n21JKVR5+3TMRkShgI9AT20N+BZBijNngskx9IAnoB+w3xjzn8tpm4GxjzP4ythPeeyaujIFPP7VN\nuU4/3VYmbtPGL5tav2c9I+aPIK8gT+t8KVXJhNueSRdsQcitxpg8bIOtIsUhjTF7jTErsT3mi5MA\njDG0iEC/frBuHfTsac/2uvNOe+qHj7Vp0IalNy/l1k630nNGTx5Y/ABH8476fDtKqcjn71/UTYHt\nLo/THc+VlwG+FJEVIjLcpyMLdVWr2pIs69fbvZXWre1kfW6uTzcTJVEMP3s4v9z2C5sPbObMV89k\n8ebFPt2GUiryhXp3gAuNMTtFpAE2VNYbY751t+CECROO309OTiY5OTkwI/S3+vVt2+DRo+Hee+HV\nV+GZZ2zJex+WS0mslcic6+bw2cbPuHXurfRI6qF1vpSKIKmpqaSmpvrt/f09Z9IVmGCM6e14fD+2\nptdTbpZ9GMhynTMp7+sRNWdSloUL7R5Lo0b2lOKzzvL5JrJzsxn/1Xhm/TqLZy57hiEdhmidL6Ui\nTLjNmawAThWRJBGpCqQAcz0sf/yDiUisiMQ57tcELgfW+nOwYaFXL1izBq6/Hnr3hmHD7KnFPhRX\nNY7nej3Hgr8v4IVlL3DZzMv4I/MPn25DKRVZ/BomxpgC4A5gEbZT42xjzHoRGSkiIwBEpJGIbAfu\nAcaJyDZHiDQCvhWRVcAyYJ4xZpE/xxs2oqNh1CjYsAHq1oX27WHiRHsRpA+d3eRslg9fzhWnXkHX\nN7sy6ZtJ5BXk+XQbSqnIoBctRoI//7TViFeuhCefhBtu8Hl3n7QDaYz6bBTph9J54+o36Nqsq0/f\nXykVWHoFvBuVPkycli618ynVqtkzv847z6dvb4xhzro53LPwHga0GcDEnhOJrxYSLW2UUhUUbnMm\nKpB69IAVK2DECLj2WvjHP2xlOB8REVLap7Bu9Dpy8nNo+3JbPl7/sc/eXykVvnTPJFJlZ9tqxC+/\nbE8rHjvW5914tM6XUuFL90xU+cTFwaOPwurVsGULnHEGTJ9u28T5SI+WPVh922o6NOxAp9c78fLy\nl7XOl1KVlO6ZVBY//mibcuXk2PmUHj18+va/7fmNkfNHap0vpcKETsC7oWFSTsbYqsRjx0LnzvZK\neh825So0hbz585uMWzKOYZ2GMb7HeGrE1PDZ+yulfEcPc6mTJ2JPG16/Hs49157tde+9cOCAT94+\nSqIYcfYIrfOlVCWkYVIZ1agBDzwAa9fCwYO2iOQrr0C+u8LNFees8/VC7xe4de6t3Pjxjew5vMcn\n762UCk0aJpVZ48bwxhu23teHH0LHjrZBl49cdfpVrBu9jvqx9Wn/antmrJmBHo5UKjLpnImyjIF5\n8+xhr1at4NlnoW1bn739Txk/MXzecOrVqMcrV77CaQmnafFIpYJIJ+Dd0DDxodxce8hr4kRbTPKR\nR2wZfB/IL8znxWUv8ujXj5JbkEv92PpFbg1iG5R4znmrV6Me1aKr+WQcSikNE7c0TPxg3z4bJO+9\nB/ffb7s9Vq3qs7c/kneEvUf2Hr/tObynyOO9R/cWfXxkLzWia5QaNu5uCTUSiI4K9ZY9SgWHhokb\nGiZ+tGGDPfS1YYPtR9+3r8+LSJaHMYZDxw6VCBhPAbT/6H5qV69dNGRqeA6g2tVrEyU6lagin4aJ\nGxomAfDll7aIZP369qJHPzTl8rWCwgL25+z3HEDFbofzDpNQI6HUAGpQs+ShuJoxNXX+R4UdDRM3\nNEwCJD8f3nwTJkyAK6+Exx+HxMRgj8qncgtyyTyaWWrY7Dmyp8RzBYUFFTr8Vj+2PtWjqwf7o6pK\nTsPEDQ2TADt4EJ54At5+25ZoGTPGXrtSSR3JO8K+I/vKffht75G9xETFlNzT8XAILqFGAjFVYoL9\nUVUE0TBxQ8MkSDZvtk25VqywTblSUoIynxJujDFk52aXa6/Hecs8mkmtarVKBk2xAHINpzrV6+j8\njyqVhokbGiZB9vXXdu8kJsbOp3TVLoy+VmgKOZBzoELzP1m5WdStXrdCh99qVa2l8z+VhIaJGxom\nIaCwEGbOhHHjoHt3u6fSokWwR1Wp5RfmV/jw27H8YxW6/qd+bH0t5hmmNEzc0DAJIYcP26ZcU6fC\nqFH2GhUfN+VS/pOTn+MxgNwdiqsSVaXMw2+uh+Hq1ain8z8hQMPEDQ2TEJSebotJLlkCjz0GN90E\nVaoEe1TKx4wxHM47XKHDb/uO7qNmTM0KHX6rW70uVaL058eXNEzc0DAJYcuX2/mUw4ftfEpycrBH\npIKs0BQWuQC1RPUDN4fgDuYcpE71Ou73dko5DBdfLV7nfzzQMHFDwyTEGQMffGCbcp11Fjz1FJx2\nmp75pcotvzCf/Uc9XIBaLHz2HN5DTn4O9WLrVagCQmxMbKUJIA0TNzRMwkRODrz4ou3wmJcHLVva\nW1LSifvOW926GjbKK8fyj7HvqIcTENzMBwHlOunAeQvnAqQaJm5omIQZY2x3x7S0E7etW0/c37LF\nLlNa0LRsCQkJGjbK54oXIC3rBIR9R/ZRPbp6maHjGk4JNRJCYv5Hw8QNDZMI5Cls0tJsaRdPYVOv\nnoaN8rtwLkCqYeKGhkkldOBA0YApHja5uaUHTcuWtmClho0KgoLCghIXoHqqfrD3SMkCpPMGzSO+\nWrxX49AwcUPDRJVw8OCJgCkeNGlpdv7GU9g0aKBho0JG8QKk3Vp08/pQWdiFiYj0Bl7A9pt/yxjz\nVLHXzwCmA52B/xhjnivvui7LaZioijl0yHPYHDniOWwaNtSwUWEtrMJERKKAjUBPIANYAaQYYza4\nLFMfSAL6AfudYVKedV3eQ8NE+VZWlg0Zd0GTlmavm2nRovSwadRIw0aFNF+Hib97mnYBNhljtgKI\nyGygL3A8EIwxe4G9InJVRddVym9q1YL27e3NnezskmHz888n7mdllR02UVrRV0UOf4dJU2C7y+N0\nbEj4e12l/CsuDtq1szd3Dh8uGTaffHLi/sGDpYdNUpJtOqZho8KIv8NEqcqpZk1o29be3DlyBLZt\nK3robO7cE/cPHIDmzT2HjdY6UyHE32GyA3CtQ97M8ZzP150wYcLx+8nJySRrDSgVymJjoXVre3Pn\n6NGSYTN//on7mZmew6ZJEw0bVURqaiqpqal+e39/T8BXAX7HTqLvBJYDg4wx690s+zCQbYx59iTW\n1Ql4Vbnk5JQMG9fbvn3QrJn7oGnZEpo21bCp5MLqbC44fnrvi5w4vfdJERkJGGPMNBFpBPwE1AIK\ngWygrTEm2926pWxDw0QpVzk5sH176WGzd68NFE9hE61HwSNZ2IVJIGiYKFVBx46VHjZbt8Jff9lD\nZe6CpmVLu9ejYRPWNEzc0DBRysdycz2Hze7d9iQAT2ETo90UQ5mGiRsaJkoFWG6u7abpLmjS0mDX\nLmjcuPSwad5cwybINEzc0DBRKsTk5XkOm5077YWbnsKmatVgjb5S0DBxQ8NEqTCTlwc7dpQeNhkZ\ntv6Zu6Bxhk218GxKFSo0TNzQMFEqwuTnlwwb12oCO3bYys6lhU2LFho2ZdAwcUPDRKlKJj/f7r2U\nFjbp6bZnjaewqV49WKMPCRombmiYKKWKKCjwHDbbt9tunO6Cxhk2NWoEa/QBoWHihoaJUqpCCgrs\nSQCldercvh3q1i09bJKSwj5sNEzc0DBRSvlUYaHnsNm2DerUKb2BWlKSrb8WwjRM3NAwUUoFVGGh\nvZamtE6dW7dC7dqew6ZmzWCNHtAwcUvDRCkVUgoLbZUAT2FTq5bnsImL8+sQNUzc0DBRSoWVwkJb\n/8xT2MTGlt6ps00br6s+a5i4oWGilIooxtiwcRc0W7bAihVe77lomLihYaKUUhXj6zDRJtNKKaW8\npmGilFLKaxomSimlvKZhopRSymsaJkoppbymYaKUUsprGiZKKaW8pmGilFLKaxomSimlvKZhopRS\nymsaJkoppbymYaKUUsprGiZKKaW8pmGilFLKa34PExHpLSIbRGSjiIwtZZmXRGSTiKwWkU4uz6eJ\nyBoRWSUiy/09VqWUUifHr2EiIlHAVKAX0A4YJCKtiy1zBdDKGHMaMBJ41eXlQiDZGNPJGNPFn2ON\nFKmpqcEeQkjQ7+EE/S5O0O/Cf/y9Z9IF2GSM2WqMyQNmA32LLdMXmAFgjPkRqC0ijRyvSQDGGFH0\nH4ul38MJ+l2coN+F//j7F3VTYLvL43THc56W2eGyjAG+FJEVIjLcb6NUSinllehgD6AMFxpjdopI\nA2yorDfGfBvsQSmllCrKrz3gRaQrMMEY09vx+H7AGGOeclnmNeArY8wcx+MNQA9jzO5i7/UwkGWM\nec7NdrQBvFJKVZAve8D7e89kBXCqiCQBO4EUYFCxZeYCtwNzHOFzwBizW0RigShjTLaI1AQuBx5x\ntxFffiFKKaUqzq9hYowpEJE7gEXY+Zm3jDHrRWSkfdlMM8YsEJE+IvIHcBgY6li9EfCxY68jGphl\njFnkz/EqpZQ6OX49zKWUUqpyCOvTbstzQWSkcXchp4jUFZFFIvK7iCwUkdouyz/guCB0vYhcHryR\ne09E3hKR3SLyi8tzFf7sItJZRH5x/Ny8EOjP4QulfBcPi0i6iPzsuPV2eS0ivwsRaSYiS0RknYj8\nKiJ3OZ6vdD8Xbr6LOx3PB+bnwhgTljdsEP4BJAExwGqgdbDHFYDPvRmoW+y5p4B/O+6PBZ503G8L\nrMIeJmzp+L4k2J/Bi89+EXAW8Is3nx34ETjXcX8B0CvYn81H38XDwBg3y7aJ1O8CaAyc5bgfB/wO\ntK6MPxcevouA/FyE855JeS6IjETuLuTsC7zjuP8O0M9x/xpgtjEm3xiTBmzCfm9hydjTwvcXe7pC\nn11EGgO1jDErHMvNcFknbJTyXYD9+SiuLxH6XRhjdhljVjvuZwPrgWZUwp+LUr4L5zV7fv+5COcw\nKc8FkZHI9ULOYY7nGhnHqdTGmF1AQ8fzni4IjRQNK/jZm2J/Vpwi7efmDkeNuzddDu1Uiu9CRFpi\n99aWUfF/E5H6XfzoeMrvPxfhHCaV1YXGmM5AH+B2EemGDRhXlfmsisr82V8B/maMOQvYBTwb5PEE\njIjEAf8D/un4q7zS/ptw810E5OcinMNkB9DC5XEzx3MRzRiz0/HfPcAn2MNWu531zBy7qH85Ft8B\nNHdZPRK/o4p+9oj9Towxe4zjIDfwBicOaUb0dyEi0dhfnjONMZ86nq6UPxfuvotA/VyEc5gcvyBS\nRKpiL4icG+Qx+ZWIxDr+6sDlQs5fsZ/7ZsdiNwHOf1BzgRQRqSoipwCnAuFeyl8oevy3Qp/dccjj\noIh0EREBbnRZJ9wU+S4cvzSdrgXWOu5H+nfxNvCbMeZFl+cq689Fie8iYD8XwT4DwcuzF3pjz1jY\nBNwf7PEE4POegj1rbRU2RO53PJ8ALHZ8F4uAOi7rPIA9S2M9cHmwP4OXn/9dIAM4BmzDXuBat6Kf\nHTjb8f1tAl4M9ufy4XcxA/jF8TPyCXbeIKK/C+BCoMDl38XPjt8LFf43EcHfRUB+LvSiRaWUUl4L\n58NcSimlQoSGiVJKKa9pmCillPKaholSSimvaZgopZTymoaJUkopr2mYqJAmIoUi8ozL43+JyHgf\nvfd0EbnWF+9VxnauE5HfROT/uXntGUe58KfcrVvG+3YUkSt8M0qlvKNhokLdMeBaEUkI9kBciUiV\nCix+KzDMGNPTzWvDgQ7GmJPpx3MWtkZbhTiualbKpzRMVKjLB6YBY4q/UHzPQkSyHP/tISKpIvKJ\niPwhIk+KyGARWS62sdgpLm9zmaMC8wYRudKxfpSIPC0iPzoqrQ53ed+vReRTYJ2b8QxyNBT6RUQm\nOZ57CNt75K3iex+O94kDVorI9SJSX0T+59jujyJyvmO5c0XkexFZKSLfishpIhIDPAoMdDQ8ul5s\nE6QxLu//q4i0cJQc2iAi74jIr0AzEbnM8Z4/icgcEYl1rPOkiKx1fO6nK/x/S1VewS4BoDe9eboB\nh7C/cLcAtYB/AeMdr00HrnVd1vHfHkAmtux4VWyRugmO1+4CnnNZf4Hj/qnYctxVsXsL/3E8XxVb\nBy7J8b5ZQAs340wEtmLLeEQB/w+4xvHaV0Cn0j6fy/1ZwAWO+82xNZZwfP4ox/2ewP8c928CXnJZ\nv0gTJGwJjRaOsedzotlRPWApUMPx+N/Ag46xb3BZPz7Y///1Fj636Aolj1JBYIzJFpF3gH8CR8u5\n2gpjzF8AIvIHsNDx/K9Assty7zu28YeI/IntTHc5cKaIXO9YJh44DcjDFsLb5mZ75wJfGWMyHduc\nBXTnRPHR0g4tuT5/KdDG5TBUnGOPoQ4wQ0ROw5ZSL++/W9f33mpONDvqiu04+J1jWzHA98BB4KiI\nvAl8Bswv53aU0jBRYeNFbOG66S7P5eM4VOv4pVjV5bVjLvcLXR4XUvTn3rU4nTgeC3CnMeZL1wGI\nSA/gsIcxnsxcRPHtn2ds51DX7b4MLDHGXCsiSdg9HXeOfx8O1V3uu45bgEXGmH8UfwMR6YLd+7ke\nuMNxX6ky6ZyJCnUCYIzZj92LuNXltTTgHMf9vti/sCvqerFaYasy/47dixkttjcEjjmK2DLeZznQ\nXUQSHJPzg4DUcmzfNYAWYfe+cGy3o+NuPCf6SQx1WT7L8ZpTGtDZsW5nx+dxt51lwIWOz+xsbXCa\n2LYGdYwxX2DnqDqUY/xKARomKvS5/uX+LPZ4v2ujnx4isgp76Ka0vQZPpbG3YYPgM2CkMSYXeBP4\nDfjZMWH9GuDx7C1je0Dcjw2QVdjDbM7DRJ627/raP4FzHCcJrAVGOp5/BnhSRFZS9N/sV0Bb5wQ8\n8CFQzzHm0dhgLLEdY8xebK+P90RkDfYQ1xnYOan5jue+Bu7x9JmVcqUl6JVSSnlN90yUUkp5TcNE\nKaWU1zRMlFJKeU3DRCmllNc0TJRSSnlNw0QppZTXNEyUUkp5TcNEKaWU1/4/fSa2eTqtEg4AAAAA\nSUVORK5CYII=\n\"></div>"
+                },
+                "selectedType": "Results",
+                "pluginName": "IPython",
+                "shellId": "9F533114F51B41D4A9DB4EF14E0B36FC",
+                "elapsedTime": 29259,
+                "height": 1124
+            },
+            "evaluatorReader": true,
+            "lineCount": 21
+        },
+        {
+            "id": "codeN23KOq",
+            "type": "code",
+            "evaluator": "HTML",
+            "input": {
+                "body": [
+                    "<script>",
+                    "var run_lasso = function() {",
+                    "  $(\"#lasso_result_button\").removeClass(\"active\").addClass(\"disabled\");",
+                    "  getFeatures();",
+                    "  getOperators();",
+                    "  beaker.max_dim = $(\"#lasso_max_dim_selector\").val();",
+                    "  beaker.structures_diff = $(\"#lasso_structures_diff\").val();",
+                    "  beaker.n_comb = $(\"#n_comb\").val();",
+                    "  beaker.n_sis = $(\"#n_sis\").val();",
+                    "  beaker.units = $(\"#units_select\").val();",
+                    "  beaker.evaluate(\"calc_cell\"); // evaluate cells with tag \"lasso_cell\"",
+                    " // view_result()",
+                    "};",
+                    "var reset_lasso = function(){",
+                    "  beaker.evaluate(\"lasso-settings-cell\");",
+                    "  var e = document.getElementById('lasso-hidden-settings-div');",
+                    "  var b = document.getElementById('lasso-hidden-settings-button');",
+                    "  e.style.display = 'block';",
+                    "  b.style.display = 'inline';",
+                    "};",
+                    "var getFeatures = function() {",
+                    "    beaker.selected_feature_list = [];",
+                    "    $('#lasso_features_select input:checkbox').each(function () {",
+                    "        if(this.checked )",
+                    "          beaker.selected_feature_list.push(this.value);",
+                    "    });",
+                    "};",
+                    "var getOperators = function() {",
+                    "    beaker.allowed_operations = [];",
+                    "    $('#lasso_operators_select input:checkbox').each(function () {",
+                    "        if(this.checked )",
+                    "          beaker.allowed_operations.push(this.value);",
+                    "    });",
+                    "};  ",
+                    "",
+                    "var toggle_settings = function(){",
+                    "  var e = document.getElementById('lasso-hidden-settings-div');",
+                    "  var b = document.getElementById('lasso-hidden-settings-button');",
+                    "  if(e.style.display == 'block'){",
+                    "    e.style.display = 'none';",
+                    "    b.style.display = 'none';",
+                    "  }",
+                    "  else{",
+                    "    e.style.display = 'block';",
+                    "    b.style.display = 'inline';",
+                    "  }",
+                    "};",
+                    "beaker.view_result = function(result_link) {",
+                    "//   beaker.evaluate(\"lasso_viewer_result\").then(function(x) {",
+                    "    $(\"#lasso_result_button\").attr(\"href\", result_link);",
+                    "//   }); ",
+                    "  $(\"#lasso_result_button\").removeClass(\"disabled\").addClass(\"active\");",
+                    "}",
+                    "",
+                    "",
+                    "",
+                    "",
+                    "",
+                    "",
+                    "",
+                    "</script>",
+                    "<style type=\"text/css\">",
+                    " .lasso_instructions{",
+                    "    font-size: 15px;",
+                    "  } ",
+                    "</style>",
+                    "<!-- Button trigger modal -->",
+                    "<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-motivation-modal\">",
+                    " Background",
+                    "</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;",
+                    "",
+                    "<!-- Modal -->",
+                    "<div class=\"modal fade\" id=\"lasso-motivation-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-motivation-modal-label\">",
+                    "  <div class=\"modal-dialog modal-lg\" role=\"document\">",
+                    "    <div class=\"modal-content\">",
+                    "      <div class=\"modal-header\">",
+                    "        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>",
+                    "        <h4 class=\"modal-title\" id=\"lasso-motivation-modal-label\">Background</h4>",
+                    "      </div>",
+                    "      <div class=\"modal-body lasso_instructions\">",
+                    "        <p>We present a tool for predicting the crystal structure of octet binary compounds, by using a set of descriptive parameters (a descriptor) based on free-atom data of the atomic species constituting the binary material. This task is similar to the one presented in the tutorial <a href=\"http://analytics-toolkit.nomad-coe.eu/tutorial-LASSO_L0\">\"[Predicting energy differences between different crystal structures I: large feature space]\"</a>\". In contrast to that tutorial, here we apply a newly developed method: Sure Independence Screening - Sparse Approximation (SIS-SA), that allows to find an optimal descriptor in a huge feature space containing billions of features.",
+                    "The method is described in:",
+                    "<div style=\"padding: 1ex; margin-top: 1ex; margin-bottom: 1ex; border-style: dotted; border-width: 1pt; border-color: blue; border-radius: 3px;\">",
+                    "R. Ouyang, E. Ahmetcik, L. M. Ghiringhelli, and M. Scheffler: <span style=\"font-style: italic;\">Descriptor identification for material properties via compressed sensing</span>, in preparation.",
+                    "</div>",
+                    "</p>",
+                    " ",
+                    "<p>SIS-SA works iteratively. In the first iteration, a number k of features is collected as those that have the largest correlation (scalar product) with the property vector. The feature with the largest correlation is simply the 1D descriptor. Next, a residual is constructed as the error made at the first iteration. A new set of k features is now selected as those having the largest  correlation with the residual. The 2D descriptor is the pair of features that yield the smallest fitting error upon least square regression, among all possible pairs contained in the union of the sets selected in this and the first iteration. In each next iteration a new residual is constructed as the error made in the previous iteration, then a new set of k features is extracted as those that have largest correlation with each new residual. The nD descriptor is the n-tuple of features that yield the smallest fitting error upon least square regression, among all possible n-tuples contained in the union of the sets obtained in each new iteration and all the previous iterations. If k=1 the method collapses to the so-called orthogonal matching pursuit.",
+                    "</p>",
+                    "",
+                    "        <p>The prediction of the ground-state structure for binary compounds from a simple descriptor has a notable history in materials science [1-7], where descriptors were designed by chemically/physically-inspired intuition. The tool presented here allows for the machine-learning-aided automatic discovery of a descriptor and a model for the prediction of the difference in energy between a selected pair of structures for 82 octet binary materials.</p>",
+                    "",
+                    "",
+                    "        <p> By running the tutorial with the default setting, the (RS vs. ZB) results of the <a href=\"http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.105503\" target=\"_blank\">PRL 2015</a> identified by the LASSO+L0 method can be recovered.</p>",
+                    "        ",
+                    "",
+                    "        <p>References:</p>",
+                    "        <ol>",
+                    "          <li>J. A. van Vechten, Phys. Rev. 182, 891 (1969).</li>",
+                    "          <li>J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).</li>",
+                    "          <li>J. St. John and A.N. Bloch, Phys. Rev. Lett. 33, 1095 (1974).</li>",
+                    "          <li>J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 17, 2453 (1978).</li>",
+                    "          <li>A. Zunger, Phys. Rev. B 22, 5839 (1980).</li>",
+                    "          <li>D. G. Pettifor, Solid State Commun. 51, 31 (1984).</li>",
+                    "          <li>Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. Andreoni, Phys. Rev. B 85, 104104 (2012).</li>",
+                    "        </ol>",
+                    "      </div>",
+                    "      <div class=\"modal-footer\">",
+                    "        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>",
+                    "<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->",
+                    "      </div>",
+                    "    </div>",
+                    "  </div>",
+                    "</div>",
+                    "",
+                    "<!-- Button trigger modal -->",
+                    "<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-instructions-modal\">",
+                    " Instructions",
+                    "</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;",
+                    "",
+                    "<!-- Modal -->",
+                    "<div class=\"modal fade\" id=\"lasso-instructions-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-instructions-modal-label\">",
+                    "  <div class=\"modal-dialog\" role=\"document\">",
+                    "    <div class=\"modal-content\">",
+                    "      <div class=\"modal-header\">",
+                    "        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>",
+                    "        <h4 class=\"modal-title\" id=\"lasso-instructions-modal-label\">Instructions</h4>",
+                    "      </div>",
+                    "      <div class=\"modal-body lasso_instructions\">",
+                    "<p>In this example, you can run a compressed-sensing based algorithm for finding the optimal descriptor and model that predicts the difference in energy between crystal structures (here, rocksalt vs. zincblende vs. CsCl structure). </p>",
+                    "",
+                    "<p>The descriptor is selected out of a large number of candidates constructed as functions of basic input features, the primary features. </p>",
+                    "",
+                    "<p>By clicking <b>Settings</b> you can select the structure pair of interest (either RS/ZB, CsCl/ZB, NiAs/ZB or CrB/ZB), the primary features as well as which kind of unary and binary operations are allowed from the checklist below. Moreover the dimension of the output energies (kcal/mol or eV) and the following three parameters of the SIS+L0 algorithm can be specified: ",
+                    "        <ul>",
+                    "          <li>Number of iterations for the construction for the feature space: How often the selected operations are applied to build the feature space. At each step the opreations are applied on all features created untill the current step. </li>",
+                    "          <li>Optimal descriptor maximum dimension: Number of SIS+SA iterations.</li>",
+                    "          <li>Number of collected features per SIS iteration.</li>",
+                    "        </ul>    ",
+                    "        ",
+                    "</p>",
+                    "    ",
+                    "  ",
+                    "<p>        After the preferred settings have been adjusted, click <b>RUN</b> for performing the calculations (loading the values of the primary features, creation of the feature space, and optimization via SIS+L0). </p>",
+                    "",
+                    "During the run, a brief summary is printed out below the <b>RUN</b> button. At the end of the run: ",
+                    "  <ul>",
+                    "  <li> the solution (machine-learned descriptor, model, and its performance in terms of training error) is printed out underneath starting from the one-dimensional solution to the selected maximum dimensionality and</li>",
+                    "<li> the “View interactive 2D scatter plot” button unlocks; by clicking, the scatter plot with the two-dimensional descriptor appears in a separate tab. In case a dimensionality higher than 2 was selected for the descriptor, the plot displays the two-dimensional descriptor.</li>",
+                    "</ul>",
+                    "<p>Note: the plot stays active also after another run is performed, so that the output of several sets of input parameters can be compared in the viewer tabs.</p>",
+                    "      </div>",
+                    "      <div class=\"modal-footer\">",
+                    "        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>",
+                    "<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->",
+                    "      </div>",
+                    "    </div>",
+                    "  </div>",
+                    "</div>",
+                    "",
+                    "<!-- Button trigger modal -->",
+                    "<button type=\"button\" class=\"btn btn-default\" onclick='toggle_settings()'>",
+                    " Settings",
+                    "</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;",
+                    "",
+                    "<a target=\"_blank\" href=\"http://forum.analytics-toolkit.nomad-coe.eu/\" class=\"btn btn-primary\"> Tell us what you think</a>",
+                    "",
+                    ""
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Html",
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<script>\nvar run_lasso = function() {\n  $(\"#lasso_result_button\").removeClass(\"active\").addClass(\"disabled\");\n  getFeatures();\n  getOperators();\n  beaker.max_dim = $(\"#lasso_max_dim_selector\").val();\n  beaker.structures_diff = $(\"#lasso_structures_diff\").val();\n  beaker.n_comb = $(\"#n_comb\").val();\n  beaker.n_sis = $(\"#n_sis\").val();\n  beaker.units = $(\"#units_select\").val();\n  beaker.evaluate(\"calc_cell\"); // evaluate cells with tag \"lasso_cell\"\n // view_result()\n};\nvar reset_lasso = function(){\n  beaker.evaluate(\"lasso-settings-cell\");\n  var e = document.getElementById('lasso-hidden-settings-div');\n  var b = document.getElementById('lasso-hidden-settings-button');\n  e.style.display = 'block';\n  b.style.display = 'inline';\n};\nvar getFeatures = function() {\n    beaker.selected_feature_list = [];\n    $('#lasso_features_select input:checkbox').each(function () {\n        if(this.checked )\n          beaker.selected_feature_list.push(this.value);\n    });\n};\nvar getOperators = function() {\n    beaker.allowed_operations = [];\n    $('#lasso_operators_select input:checkbox').each(function () {\n        if(this.checked )\n          beaker.allowed_operations.push(this.value);\n    });\n};  \n\nvar toggle_settings = function(){\n  var e = document.getElementById('lasso-hidden-settings-div');\n  var b = document.getElementById('lasso-hidden-settings-button');\n  if(e.style.display == 'block'){\n    e.style.display = 'none';\n    b.style.display = 'none';\n  }\n  else{\n    e.style.display = 'block';\n    b.style.display = 'inline';\n  }\n};\nbeaker.view_result = function(result_link) {\n//   beaker.evaluate(\"lasso_viewer_result\").then(function(x) {\n    $(\"#lasso_result_button\").attr(\"href\", result_link);\n//   }); \n  $(\"#lasso_result_button\").removeClass(\"disabled\").addClass(\"active\");\n}\n\n\n\n\n\n\n\n</script>\n<style type=\"text/css\">\n .lasso_instructions{\n    font-size: 15px;\n  } \n</style>\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-motivation-modal\">\n Background\n</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n\n<!-- Modal -->\n<div class=\"modal fade\" id=\"lasso-motivation-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-motivation-modal-label\">\n  <div class=\"modal-dialog modal-lg\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h4 class=\"modal-title\" id=\"lasso-motivation-modal-label\">Background</h4>\n      </div>\n      <div class=\"modal-body lasso_instructions\">\n        <p>We present a tool for predicting the crystal structure of octet binary compounds, by using a set of descriptive parameters (a descriptor) based on free-atom data of the atomic species constituting the binary material. This task is similar to the one presented in the tutorial <a href=\"http://analytics-toolkit.nomad-coe.eu/tutorial-LASSO_L0\">\"[Predicting energy differences between different crystal structures I: large feature space]\"</a>\". In contrast to that tutorial, here we apply a newly developed method: Sure Independence Screening - Sparse Approximation (SIS-SA), that allows to find an optimal descriptor in a huge feature space containing billions of features.\nThe method is described in:\n</p><div style=\"padding: 1ex; margin-top: 1ex; margin-bottom: 1ex; border-style: dotted; border-width: 1pt; border-color: blue; border-radius: 3px;\">\nR. Ouyang, E. Ahmetcik, L. M. Ghiringhelli, and M. Scheffler: <span style=\"font-style: italic;\">Descriptor identification for material properties via compressed sensing</span>, in preparation.\n</div>\n<p></p>\n \n<p>SIS-SA works iteratively. In the first iteration, a number k of features is collected as those that have the largest correlation (scalar product) with the property vector. The feature with the largest correlation is simply the 1D descriptor. Next, a residual is constructed as the error made at the first iteration. A new set of k features is now selected as those having the largest  correlation with the residual. The 2D descriptor is the pair of features that yield the smallest fitting error upon least square regression, among all possible pairs contained in the union of the sets selected in this and the first iteration. In each next iteration a new residual is constructed as the error made in the previous iteration, then a new set of k features is extracted as those that have largest correlation with each new residual. The nD descriptor is the n-tuple of features that yield the smallest fitting error upon least square regression, among all possible n-tuples contained in the union of the sets obtained in each new iteration and all the previous iterations. If k=1 the method collapses to the so-called orthogonal matching pursuit.\n</p>\n\n        <p>The prediction of the ground-state structure for binary compounds from a simple descriptor has a notable history in materials science [1-7], where descriptors were designed by chemically/physically-inspired intuition. The tool presented here allows for the machine-learning-aided automatic discovery of a descriptor and a model for the prediction of the difference in energy between a selected pair of structures for 82 octet binary materials.</p>\n\n\n        <p> By running the tutorial with the default setting, the (RS vs. ZB) results of the <a href=\"http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.105503\" target=\"_blank\">PRL 2015</a> identified by the LASSO+L0 method can be recovered.</p>\n        \n\n        <p>References:</p>\n        <ol>\n          <li>J. A. van Vechten, Phys. Rev. 182, 891 (1969).</li>\n          <li>J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).</li>\n          <li>J. St. John and A.N. Bloch, Phys. Rev. Lett. 33, 1095 (1974).</li>\n          <li>J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 17, 2453 (1978).</li>\n          <li>A. Zunger, Phys. Rev. B 22, 5839 (1980).</li>\n          <li>D. G. Pettifor, Solid State Commun. 51, 31 (1984).</li>\n          <li>Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. Andreoni, Phys. Rev. B 85, 104104 (2012).</li>\n        </ol>\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>\n<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->\n      </div>\n    </div>\n  </div>\n</div>\n\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-instructions-modal\">\n Instructions\n</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n\n<!-- Modal -->\n<div class=\"modal fade\" id=\"lasso-instructions-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-instructions-modal-label\">\n  <div class=\"modal-dialog\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h4 class=\"modal-title\" id=\"lasso-instructions-modal-label\">Instructions</h4>\n      </div>\n      <div class=\"modal-body lasso_instructions\">\n<p>In this example, you can run a compressed-sensing based algorithm for finding the optimal descriptor and model that predicts the difference in energy between crystal structures (here, rocksalt vs. zincblende vs. CsCl structure). </p>\n\n<p>The descriptor is selected out of a large number of candidates constructed as functions of basic input features, the primary features. </p>\n\n<p>By clicking <b>Settings</b> you can select the structure pair of interest (either RS/ZB, CsCl/ZB, NiAs/ZB or CrB/ZB), the primary features as well as which kind of unary and binary operations are allowed from the checklist below. Moreover the dimension of the output energies (kcal/mol or eV) and the following three parameters of the SIS+L0 algorithm can be specified: \n        </p><ul>\n          <li>Number of iterations for the construction for the feature space: How often the selected operations are applied to build the feature space. At each step the opreations are applied on all features created untill the current step. </li>\n          <li>Optimal descriptor maximum dimension: Number of SIS+SA iterations.</li>\n          <li>Number of collected features per SIS iteration.</li>\n        </ul>    \n        \n<p></p>\n    \n  \n<p>        After the preferred settings have been adjusted, click <b>RUN</b> for performing the calculations (loading the values of the primary features, creation of the feature space, and optimization via SIS+L0). </p>\n\nDuring the run, a brief summary is printed out below the <b>RUN</b> button. At the end of the run: \n  <ul>\n  <li> the solution (machine-learned descriptor, model, and its performance in terms of training error) is printed out underneath starting from the one-dimensional solution to the selected maximum dimensionality and</li>\n<li> the “View interactive 2D scatter plot” button unlocks; by clicking, the scatter plot with the two-dimensional descriptor appears in a separate tab. In case a dimensionality higher than 2 was selected for the descriptor, the plot displays the two-dimensional descriptor.</li>\n</ul>\n<p>Note: the plot stays active also after another run is performed, so that the output of several sets of input parameters can be compared in the viewer tabs.</p>\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>\n<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->\n      </div>\n    </div>\n  </div>\n</div>\n\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" onclick=\"toggle_settings()\">\n Settings\n</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n\n<a target=\"_blank\" href=\"http://forum.analytics-toolkit.nomad-coe.eu/\" class=\"btn btn-primary\"> Tell us what you think</a>\n\n"
+                },
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 0,
+                "height": 73
+            },
+            "evaluatorReader": true,
+            "lineCount": 168
+        },
+        {
+            "id": "codeLLo3xr",
+            "type": "code",
+            "evaluator": "HTML",
+            "input": {
+                "body": [
+                    "<style type=\"text/css\">",
+                    "  .lasso_control{",
+                    "    margin-left: 10px;",
+                    "  }",
+                    "</style>",
+                    "<div class=\"lasso_control\" id=\"lasso-hidden-settings-div\">",
+                    "  <div class=\"row\">",
+                    "    <p class=\"lasso_selection_description\"><b>Primary features </b>",
+                    "  (hover the mouse",
+                    "pointer over the feature names to see a full description):</p>",
+                    "    <form id=\"lasso_features_select\">",
+                    "      <div class=\"lasso_form_group\">",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_ionization_potential\" CHECKED > <span title=\"Atomic ionization potential\"><i>IP</i> </span></label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_electron_affinity\" CHECKED > <span title=\"Atomic electron affinity\"> <i>EA</i></span></label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_homo\" CHECKED> <span title=\"Energy of highest occupied molecular orbital\"><i>E</i> <sub>HOMO</sub></span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_lumo\" CHECKED> <span title=\"Energy of lowest unoccupied molecular orbital\"> <i>E</i> <sub>LUMO</sub>  </span> </label>",
+                    "        ",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_rs_max\" CHECKED > <span title=\"Radius at which the radial probability density of the valence s orbital is maximum\"> <i>r</i><sub>s</sub>  </span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_rp_max\" CHECKED > <span title=\"Radius at which the radial probability density of the valence p orbital is maximum\"> <i>r</i><sub>p</sub>  </span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_rd_max\" CHECKED > <span title=\"Radius at which the radial probability density of the valence d orbital is maximum\"> <i>r</i><sub>d</sub>  </span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_number\" > <span title=\"Atomic number\"> <i>Z</i>  </span> </label>",
+                    "        <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_number_valence_electrons\" > <span title=\"Number of valence electrons\"> <i>Z</i><sub>val</sub>  </span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"period\" > <span title=\"Period (in the periodic table)\"> <i>n</i> <sub>period</sub>  </span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_r_by_2_dimer\" > <span title=\"Bond length of the dimer\"> <i>d</i> <sub>dimer</sub> </span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_electronic_binding_energy_dimer\" > <span title=\"Binding energy of the dimer\"> <i>E</i> <sub>b</sub> </span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_homo_lumo_diff\" > <span title=\"HOMO-LUMO gap of the dimer\"> Δ<i>E</i><sub>HL</sub>  </span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"r_sigma\" > <span title=\"John-Bloch's indicator1: |rp(A) + rs(A) - rp(B) -rs(B)| ",
+                    "           [Phys. Rev. Lett. 33. 1095 (1974)]\"> r<sub>σ</sub>  </span> </label>",
+                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"r_pi\" > <span title=\"John-Bloch's indicator2: |rp(A) - rs(A)| +| rp(B) -rs(B)| ",
+                    "          [Phys. Rev. Lett. 33. 1095 (1974)]\">  r<sub>π</sub>  </span> </label>",
+                    "      </div>",
+                    "    </form>",
+                    "  </div>  <!-- End of row-->",
+                    "  <div class=\"row\"> <!-- Start of second row-->",
+                    "    <p class=\"lasso_selection_description\"><b>Allowed operations:</b> <br>",
+                    "  Given features x and y, apply these operations:</p>",
+                    "    <form id=\"lasso_operators_select\">",
+                    "      <div class=\"lasso_form_group\">",
+                    "        <label class =\"col-xs-4 col-md-4 col-lg-1\"> <input type=\"checkbox\" value=\"+\" CHECKED > x+y  </label>",
+                    "        <label class =\"col-xs-4 col-md-4 col-lg-1\"> <input type=\"checkbox\" value=\"-\" > x-y  </label>",
+                    "        <label class =\"col-xs-4 col-md-4 col-lg-1\"> <input type=\"checkbox\" value=\"|-|\" CHECKED > |x-y|  </label>",
+                    "        <label class =\"col-xs-4 col-md-4 col-lg-1\"> <input type=\"checkbox\" value=\"*\" > x &middot y  </label>",
+                    "        <label class =\"col-xs-4 col-md-4 col-lg-1\"> <input type=\"checkbox\" value=\"/\" CHECKED > x/y  </label>",
+                    "        <label class =\"col-xs-4 col-md-4 col-lg-1\"> <input type=\"checkbox\" value=\"^2\" CHECKED > x^2  </label>",
+                    "        <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"^3\" > x^3  </label>",
+                    "        <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"exp\" CHECKED > exp(x)  </label>",
+                    "      </div>",
+                    "    </form>",
+                    "  </div>  <!-- End of row-->",
+                    "  <div class=\"row\"> <!-- Start of third row-->",
+                    "  <p class=\"lasso_selection_description\"><b>Optimal descriptor maximum dimension: </b> ",
+                    "  <select id='lasso_max_dim_selector'>",
+                    "    <option value=\"2\" > 2D</option>",
+                    "    <option value=\"3\" > 3D</option>",
+                    "    <option value=\"4\" > 4D</option>",
+                    "    <option value=\"5\" > 5D</option>",
+                    "  </select> </p>",
+                    "  </div><!-- End of row-->",
+                    "  <div class=\"row\"> <!-- Start of forth row-->",
+                    "  <p class=\"lasso_selection_description\"><b>Units of measurement: </b> ",
+                    "  <select id='units_select'>",
+                    "    <option value=\"eV_angstrom\" > [energy]=eV;&nbsp;&nbsp;[length]=angstrom</option>",
+                    "    <option value=\"J_m\" > [energy]=J;&nbsp;&nbsp;[length]=m</option>",
+                    "    <option value=\"kcal/mol_angstrom\" > [energy]=kcal/mol;&nbsp;&nbsp;[length]=angstrom</option>",
+                    "  </select> </p>",
+                    "  </div><!-- End of row-->",
+                    " ",
+                    "</div>"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Html",
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<style type=\"text/css\">\n  .lasso_control{\n    margin-left: 10px;\n  }\n</style>\n<div class=\"lasso_control\" id=\"lasso-hidden-settings-div\">\n  <div class=\"row\">\n    <p class=\"lasso_selection_description\"><b>Primary features </b>\n  (hover the mouse\npointer over the feature names to see a full description):</p>\n    <form id=\"lasso_features_select\">\n      <div class=\"lasso_form_group\">\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_ionization_potential\" checked=\"\" type=\"checkbox\"> <span title=\"Atomic ionization potential\"><i>IP</i> </span></label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_electron_affinity\" checked=\"\" type=\"checkbox\"> <span title=\"Atomic electron affinity\"> <i>EA</i></span></label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_homo\" checked=\"\" type=\"checkbox\"> <span title=\"Energy of highest occupied molecular orbital\"><i>E</i> <sub>HOMO</sub></span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_lumo\" checked=\"\" type=\"checkbox\"> <span title=\"Energy of lowest unoccupied molecular orbital\"> <i>E</i> <sub>LUMO</sub>  </span> </label>\n        \n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_rs_max\" checked=\"\" type=\"checkbox\"> <span title=\"Radius at which the radial probability density of the valence s orbital is maximum\"> <i>r</i><sub>s</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_rp_max\" checked=\"\" type=\"checkbox\"> <span title=\"Radius at which the radial probability density of the valence p orbital is maximum\"> <i>r</i><sub>p</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_rd_max\" checked=\"\" type=\"checkbox\"> <span title=\"Radius at which the radial probability density of the valence d orbital is maximum\"> <i>r</i><sub>d</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_number\" type=\"checkbox\"> <span title=\"Atomic number\"> <i>Z</i>  </span> </label>\n        <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_number_valence_electrons\" type=\"checkbox\"> <span title=\"Number of valence electrons\"> <i>Z</i><sub>val</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"period\" type=\"checkbox\"> <span title=\"Period (in the periodic table)\"> <i>n</i> <sub>period</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_r_by_2_dimer\" type=\"checkbox\"> <span title=\"Bond length of the dimer\"> <i>d</i> <sub>dimer</sub> </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_electronic_binding_energy_dimer\" type=\"checkbox\"> <span title=\"Binding energy of the dimer\"> <i>E</i> <sub>b</sub> </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_homo_lumo_diff\" type=\"checkbox\"> <span title=\"HOMO-LUMO gap of the dimer\"> Δ<i>E</i><sub>HL</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"r_sigma\" type=\"checkbox\"> <span title=\"John-Bloch's indicator1: |rp(A) + rs(A) - rp(B) -rs(B)| \n           [Phys. Rev. Lett. 33. 1095 (1974)]\"> r<sub>σ</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"r_pi\" type=\"checkbox\"> <span title=\"John-Bloch's indicator2: |rp(A) - rs(A)| +| rp(B) -rs(B)| \n          [Phys. Rev. Lett. 33. 1095 (1974)]\">  r<sub>π</sub>  </span> </label>\n      </div>\n    </form>\n  </div>  <!-- End of row-->\n  <div class=\"row\"> <!-- Start of second row-->\n    <p class=\"lasso_selection_description\"><b>Allowed operations:</b> <br>\n  Given features x and y, apply these operations:</p>\n    <form id=\"lasso_operators_select\">\n      <div class=\"lasso_form_group\">\n        <label class=\"col-xs-4 col-md-4 col-lg-1\"> <input value=\"+\" checked=\"\" type=\"checkbox\"> x+y  </label>\n        <label class=\"col-xs-4 col-md-4 col-lg-1\"> <input value=\"-\" type=\"checkbox\"> x-y  </label>\n        <label class=\"col-xs-4 col-md-4 col-lg-1\"> <input value=\"|-|\" checked=\"\" type=\"checkbox\"> |x-y|  </label>\n        <label class=\"col-xs-4 col-md-4 col-lg-1\"> <input value=\"*\" type=\"checkbox\"> x · y  </label>\n        <label class=\"col-xs-4 col-md-4 col-lg-1\"> <input value=\"/\" checked=\"\" type=\"checkbox\"> x/y  </label>\n        <label class=\"col-xs-4 col-md-4 col-lg-1\"> <input value=\"^2\" checked=\"\" type=\"checkbox\"> x^2  </label>\n        <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"^3\" type=\"checkbox\"> x^3  </label>\n        <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"exp\" checked=\"\" type=\"checkbox\"> exp(x)  </label>\n      </div>\n    </form>\n  </div>  <!-- End of row-->\n  <div class=\"row\"> <!-- Start of third row-->\n  <p class=\"lasso_selection_description\"><b>Optimal descriptor maximum dimension: </b> \n  <select id=\"lasso_max_dim_selector\">\n    <option value=\"2\"> 2D</option>\n    <option value=\"3\"> 3D</option>\n    <option value=\"4\"> 4D</option>\n    <option value=\"5\"> 5D</option>\n  </select> </p>\n  </div><!-- End of row-->\n  <div class=\"row\"> <!-- Start of forth row-->\n  <p class=\"lasso_selection_description\"><b>Units of measurement: </b> \n  <select id=\"units_select\">\n    <option value=\"eV_angstrom\"> [energy]=eV;&nbsp;&nbsp;[length]=angstrom</option>\n    <option value=\"J_m\"> [energy]=J;&nbsp;&nbsp;[length]=m</option>\n    <option value=\"kcal/mol_angstrom\"> [energy]=kcal/mol;&nbsp;&nbsp;[length]=angstrom</option>\n  </select> </p>\n  </div><!-- End of row-->\n \n</div>"
+                },
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 0,
+                "height": 379
+            },
+            "evaluatorReader": true,
+            "lineCount": 68
+        },
+        {
+            "id": "code8GyXFv",
+            "type": "code",
+            "evaluator": "HTML",
+            "input": {
+                "body": [
+                    "<div class=\"lasso_control\">",
+                    "",
+                    "  <p style=\"margin-top: 1ex;\"></p>",
+                    "  <button class=\"btn btn-default\" onclick='run_lasso()' style=\"font-weight: bold;\">RUN</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;",
+                    "  <div id=\"lasso-hidden-settings-button\"><button class=\"btn btn-default\" onclick='reset_lasso()'>RESET</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</div>",
+                    "  <label title=\"This button becomes active when the",
+                    "run is finished. By clicking it, an interactive plot of the first 2",
+                    "dimensions of the optimized descriptor will be opened\"> ",
+                    "  <a href=\"#\" target=\"_blank\" class=\"btn btn-primary disabled\" id=\"lasso_result_button\" >View interactive 2D scatter plot</a> </label>",
+                    "</div>"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Html",
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<div class=\"lasso_control\">\n\n  <p style=\"margin-top: 1ex;\"></p>\n  <button class=\"btn btn-default\" onclick=\"run_lasso()\" style=\"font-weight: bold;\">RUN</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n  <div id=\"lasso-hidden-settings-button\"><button class=\"btn btn-default\" onclick=\"reset_lasso()\">RESET</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</div>\n  <label title=\"This button becomes active when the\nrun is finished. By clicking it, an interactive plot of the first 2\ndimensions of the optimized descriptor will be opened\"> \n  <a href=\"/user/tmp/7719891784df6878.html\" target=\"_blank\" class=\"btn btn-primary active\" id=\"lasso_result_button\">View interactive 2D scatter plot</a> </label>\n</div>"
+                },
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 0,
+                "height": 196
+            },
+            "evaluatorReader": true,
+            "lineCount": 10
+        },
+        {
+            "id": "codeo0JBr5",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "",
+                    "if beaker.units == 'eV_angstrom':",
+                    "    energy_unit = 'eV'",
+                    "    length_unit = 'angstrom'",
+                    "elif beaker.units == 'J_m':",
+                    "    energy_unit = 'J'",
+                    "    length_unit = 'm'",
+                    "elif beaker.units == 'kcal/mol_angstrom':",
+                    "    energy_unit = 'kcal/mol'",
+                    "    length_unit = 'angstrom'",
+                    "",
+                    "kwargs['energy_unit'] = energy_unit",
+                    "kwargs['length_unit'] = length_unit",
+                    "kwargs['selected_feature_list'] = beaker.selected_feature_list",
+                    "print beaker.selected_feature_list",
+                    "print beaker.allowed_operations",
+                    "",
+                    "P, D, feature_list = get_data_from_nomad_sim(beaker.allowed_operations, **kwargs)",
+                    "out = LILO(P, D, feature_list, print_lasso=False, lasso_number=30, print_model=True)"
+                ]
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "Results",
+                    "outputdata": [
+                        {
+                            "type": "err",
+                            "value": "INFO: Calculating descriptor: atomic_features\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Writing descriptor to file.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Writing descriptor information to file.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Descriptor calculation: done.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "WARNING: No allowed operations selected.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Number of total features generated: 8\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "['atomic_ionization_potential', 'atomic_electron_affinity', 'atomic_rs_max', 'atomic_rp_max']\n['+', '|-|', '/', '^2', 'exp']\nOnly 8 features are collected"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.313339\t- 0.477 r_p(A) + 1.014\n2D:\t0.304003\t- 0.285 r_p(B) - 0.498 r_p(A) + 1.294\n3D:\t0.280145\t- 5.845 r_p(B) - 0.439 r_p(A) + 8.426 r_s(B) - 0.348\n\n"
+                        }
+                    ]
+                },
+                "selectedType": "Results",
+                "pluginName": "IPython",
+                "shellId": "CF239072B98E4D2890C4EF3EAF36FD99",
+                "elapsedTime": 15202,
+                "height": 309
+            },
+            "evaluatorReader": true,
+            "lineCount": 19,
+            "tags": "calc_cell"
+        },
+        {
+            "id": "codekH7ZWC",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "parameter_list = beaker.selected_feature_list",
+                    "parameter_list.append(beaker.allowed_operations)",
+                    "name_html_page = hashlib.sha224(str(parameter_list)).hexdigest()[:16]",
+                    "",
+                    "data_folder='/parsed/prod-017/FhiAimsParser2.0.0/RdUzye8EKmv-z4LGNHGTSk8S3S1WY'",
+                    "lookup_file = '/home/beaker/.beaker/v1/web/tmp/lookup.dat'",
+                    "control_file = '/home/beaker/.beaker/v1/web/tmp/control.json'",
+                    "legend_title='Reference E(RS)-E(ZB)'",
+                    "target_name='E(RS)-E(ZB)'",
+                    "",
+                    "json_list, frame_list, x_list, y_list, target_list, target_pred_list = get_json_list(method='file', data_folder=data_folder,",
+                    "    path_to_file=lookup_file, drop_duplicates=False, displace_duplicates=True, predicted_value=True)",
+                    "beaker.viewer_result = name_html_page",
+                    "",
+                    "",
+                    "plot_result = plot(name=name_html_page, json_list=json_list, frames='list', frame_list=frame_list, ",
+                    "    file_format='NOMAD', clustering_x_list=x_list, clustering_y_list=y_list, target_list=target_list,",
+                    "    target_unit=energy_unit, legend_title=legend_title, target_name=target_name,",
+                    "    target_pred_list=target_pred_list,",
+                    "    plot_title='SIS+L0 structure map',",
+                    "    clustering_point_size=12, tmp_folder=kwargs['tmp_folder'], control_file=control_file,",
+                    "    op_list=kwargs['op_list'], operations_on_structure=kwargs['operations_on_structure'])"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "Results",
+                    "outputdata": [
+                        {
+                            "type": "err",
+                            "value": "INFO: Generating figures and geometry files.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Generating figures and geometry files: done.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: The color in the plot is given by the target value.\n"
+                        },
+                        {
+                            "type": "err",
+                            "value": "INFO: Click on the button 'View interactive 2D scatter plot' to see the plot.\n"
+                        }
+                    ]
+                },
+                "selectedType": "Results",
+                "pluginName": "IPython",
+                "shellId": "CF239072B98E4D2890C4EF3EAF36FD99",
+                "elapsedTime": 5043,
+                "height": 142
+            },
+            "evaluatorReader": true,
+            "lineCount": 22,
+            "tags": "calc_cell"
+        },
+        {
+            "id": "codepqAHnM",
+            "type": "code",
+            "evaluator": "JavaScript",
+            "input": {
+                "body": [
+                    "var result_link = '/user/tmp/' + beaker.viewer_result + '.html';",
+                    "beaker.view_result(result_link);"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "selectedType": "BeakerDisplay",
+                "pluginName": "JavaScript",
+                "elapsedTime": 92
+            },
+            "evaluatorReader": true,
+            "lineCount": 2,
+            "tags": "calc_cell"
+        },
+        {
+            "id": "codebAh66z",
+            "type": "code",
+            "evaluator": "HTML",
+            "input": {
+                "body": [
+                    "We obtain good fits. But what about predicting Ediff of a new material? We test the prediction performance via leave one out CV. How often is the same descriptor selected?"
+                ],
+                "hidden": true
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "BeakerDisplay",
+                    "innertype": "Html",
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\nWe obtain good fits. But what about predicting Ediff of a new material? We test the prediction performance via leave one out CV. How often is the same descriptor selected?"
+                },
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 0,
+                "height": 92
+            },
+            "evaluatorReader": true,
+            "lineCount": 1
+        },
+        {
+            "id": "codel2Xara",
+            "type": "code",
+            "evaluator": "IPython",
+            "input": {
+                "body": [
+                    "def split_data(P, D, cv_i):",
+                    "    P_1, P_test, P_2 = np.split(P, [cv_i, cv_i+1])",
+                    "    P_train = np.concatenate((P_1,P_2))",
+                    "    D_1, D_test, D_2 = np.split(D, [cv_i, cv_i+1])",
+                    "    D_train = np.concatenate((D_1,D_2))",
+                    "    D_test = np.column_stack( (D_test, np.ones(1)) )  ",
+                    "    return P_train, P_test, D_train, D_test",
+                    "",
+                    "# Leave-one-out cross-validation",
+                    "compounds = len(P)",
+                    "dimensions = range(1,4)",
+                    "",
+                    "",
+                    "P_predict = np.empty([len(dimensions),compounds])",
+                    "for cv_i in range(compounds):",
+                    "    P_train, P_test, D_train, D_test = split_data(P, D, cv_i)",
+                    "    out = LILO(P_train, D_train, feature_list, print_lasso=False, lasso_number=20, print_model=True)",
+                    "    for dim in dimensions:",
+                    "        indices_for_D, coef,RMSE = out[dim-1]",
+                    "        P_predict[dim-1,cv_i] = np.dot(D_test[:, indices_for_D+[-1]], coef)",
+                    "print np.linalg.norm(P-P_predict, axis=1)/np.sqrt(compounds)",
+                    "",
+                    "",
+                    "",
+                    "# plot",
+                    "for dim in dimensions:",
+                    "    predict = P_predict[dim-1]",
+                    "    if dim == 1:",
+                    "        maxi = max(max(P), max(predict))",
+                    "        mini = min(min(P), min(predict))",
+                    "        plt.plot([maxi,mini], [maxi,mini], 'k')",
+                    "    plt.scatter(P, predict, color=['b','r', 'g'][dim-1], label='%s-dimensional' %dim)",
+                    "plt.legend(loc='best')",
+                    "plt.show()",
+                    "",
+                    ""
+                ]
+            },
+            "output": {
+                "state": {},
+                "result": {
+                    "type": "Results",
+                    "outputdata": [
+                        {
+                            "type": "out",
+                            "value": "1D:\t0.138036\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100832\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.482 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.083799\t+ 16.030 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.261 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.519 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n\n1D:\t0.137927\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100832\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.483 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.081872\t+ 16.058 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.084 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.117 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.247\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.135085\t- 0.101 EA(A)+IP(B)/r_p(A)^2 - 0.378\n2D:\t0.104454\t+ 16.080 r_s(B)/exp((r_s(B)+r_p(A))^2) + 4.572 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.418\n3D:\t0.094990\t+ 13.047 r_p(B)/exp((r_p(B)+r_p(A))^2) + 3.209 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 + 6.377 |r_s(A)-r_d(B)|/exp(r_p(A)+r_d(B)) - 0.388\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137849\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100774\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.477 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.084110\t+ 16.054 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.268 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.504 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.236\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137448\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100631\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.500 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.142\n3D:\t0.084212\t+ 16.063 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.266 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.504 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136161\t+ 0.340 |EA(B)-IP(B)|/exp(r_p(A)^2) - 0.190\n2D:\t0.098612\t+ 0.115 |EA(B)-IP(B)|/r_p(A)^2 - 1.440 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.150\n3D:\t0.079913\t+ 15.994 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.199 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.632 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.253\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137532\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100733\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.492 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.143\n3D:\t0.084231\t+ 16.070 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.261 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.502 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137751\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100807\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.487 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.081838\t+ 16.105 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.076 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.102 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.248\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136271\t- 0.056 IP(A)+IP(B)/r_p(A)^2 - 0.336\n2D:\t0.106724\t+ 16.583 r_s(B)/exp((r_s(B)+r_p(A))^2) + 4.441 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.411\n3D:\t0.079819\t+ 16.363 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.086 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.095 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.246\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137217\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100763\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.493 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.143\n3D:\t0.084225\t+ 16.065 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.264 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.504 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137573\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100639\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.498 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.142\n3D:\t0.083509\t+ 16.002 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.286 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.530 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.235\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.133112\t- 0.211 IP(A)+IP(B)/(r_p(A)+r_s(A))^2 - 0.408\n2D:\t0.111514\t+ 11.570 r_p(B)/exp((r_p(B)+r_p(A))^2) + 3.926 r_s(B)/(r_p(B)+r_p(A))^2 - 0.424\n3D:\t0.083829\t+ 16.337 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.250 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.495 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.239\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137692\t- 0.056 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100776\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.485 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.081220\t+ 16.266 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.096 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.093 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.244\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.129244\t- 0.057 IP(A)+IP(B)/r_p(A)^2 - 0.339\n2D:\t0.110603\t+ 11.242 r_p(B)/exp((r_p(B)+r_p(A))^2) + 4.036 r_s(B)/(r_p(B)+r_p(A))^2 - 0.433\n3D:\t0.080562\t+ 16.071 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.311 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.412 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.226\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137869\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.099810\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.509 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.082653\t+ 16.043 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.289 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.540 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.239\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137337\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.330\n2D:\t0.100226\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.476 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.143\n3D:\t0.083912\t+ 16.107 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.259 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.462 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.234\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137129\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.329\n2D:\t0.099823\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.479 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.142\n3D:\t0.081447\t+ 16.147 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.089 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.039 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.240\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136799\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.329\n2D:\t0.098896\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.489 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.140\n3D:\t0.081126\t+ 16.180 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.097 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.005 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.236\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137952\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.099938\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.522 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.139\n3D:\t0.080669\t+ 16.071 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.137 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.018 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.234\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137994\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.108145\t+ 16.328 r_s(B)/exp((r_s(B)+r_p(A))^2) + 4.410 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.410\n3D:\t0.093789\t- 1.313 EA(A)/exp(r_d(A)^2) + 11.839 r_p(B)/exp((r_p(B)+r_p(A))^2) + 3.528 r_s(B)/(r_p(B)+r_p(A))^2 - 0.367\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137905\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100560\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.468 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.147\n3D:\t0.083683\t+ 16.121 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.244 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.464 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137820\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100406\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.459 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.149\n3D:\t0.081052\t+ 16.158 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.056 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.061 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.248\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137730\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100358\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.484 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.147\n3D:\t0.084091\t+ 16.054 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.260 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.523 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.240\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137813\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100440\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.476 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.147\n3D:\t0.084127\t+ 16.094 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.259 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.491 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138054\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100784\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.484 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.084231\t+ 16.071 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.261 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.501 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137936\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100466\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.487 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.084120\t+ 16.079 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.263 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.502 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137892\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100323\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.488 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.084222\t+ 16.070 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.260 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.500 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137783\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100253\t+ 0.115 |EA(B)-IP(B)|/r_p(A)^2 - 1.486 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.084030\t+ 16.049 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.262 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.528 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.240\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.119515\t- 0.254 IP(B)/exp(r_p(A)^2) - 0.178\n2D:\t0.099153\t+ 0.288 |EA(B)-IP(B)|/exp(r_p(A)^2) - 0.306 r_p(B)+r_d(A)/exp(r_d(A)^2) - 0.123\n3D:\t0.073519\t+ 0.281 |EA(B)-IP(B)|/exp(r_p(A)^2) - 11.139 |r_p(B)-r_s(B)|/exp(r_s(B)+r_d(A)) - 1.092 |r_p(B)-r_s(A)|/exp(r_s(A)) + 0.063\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.131019\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.095780\t+ 0.113 |EA(B)-IP(B)|/r_p(A)^2 - 1.484 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.082295\t+ 16.038 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.267 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.436 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.233\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136280\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100196\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.485 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.084215\t+ 16.077 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.260 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.507 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.135518\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.335\n2D:\t0.098696\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.499 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.083156\t+ 16.105 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.275 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.448 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.233\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136780\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.329\n2D:\t0.100551\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.463 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.082495\t+ 15.940 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.298 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.616 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.244\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.135764\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.328\n2D:\t0.098737\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.468 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.143\n3D:\t0.084132\t+ 16.026 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.261 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.543 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.241\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136102\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.328\n2D:\t0.098713\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.477 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.142\n3D:\t0.084227\t+ 16.080 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.261 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.493 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136488\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.329\n2D:\t0.098292\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.496 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.139\n3D:\t0.081134\t+ 16.172 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.100 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.010 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.236\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.135465\t- 0.219 IP(A)+IP(B)/(r_p(A)+r_s(A))^2 - 0.419\n2D:\t0.100194\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.449 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.148\n3D:\t0.082983\t+ 15.976 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.214 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.579 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.248\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138046\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100710\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.481 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.084223\t+ 16.064 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.261 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.505 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137978\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100731\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.477 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.084211\t+ 16.062 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.263 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.505 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137670\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100787\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.475 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.084212\t+ 16.064 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.266 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.502 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137741\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100254\t+ 0.115 |EA(B)-IP(B)|/r_p(A)^2 - 1.487 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.084046\t+ 16.054 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.262 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.524 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.240\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137931\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100266\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.485 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.083981\t+ 16.108 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.264 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.480 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.236\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138056\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100772\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.486 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.084232\t+ 16.071 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.261 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.501 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138019\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100470\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.492 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.083999\t+ 16.084 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.268 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.499 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137971\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100221\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.495 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.084230\t+ 16.071 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.262 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.502 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137807\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100113\t+ 0.115 |EA(B)-IP(B)|/r_p(A)^2 - 1.491 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.083967\t+ 16.049 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.264 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.528 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.240\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137647\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.335\n2D:\t0.099798\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.501 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.083654\t+ 16.059 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.272 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.523 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.239\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137721\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100527\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.480 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.147\n3D:\t0.084099\t+ 16.049 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.258 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.527 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.240\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.134586\t- 0.101 EA(A)+IP(B)/r_p(A)^2 - 0.380\n2D:\t0.099977\t+ 0.115 |EA(B)-IP(B)|/r_p(A)^2 - 1.437 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.150\n3D:\t0.083558\t+ 15.999 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.220 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.567 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.247\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136996\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.335\n2D:\t0.100271\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.459 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.149\n3D:\t0.083902\t+ 16.103 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.245 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.495 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.240\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138001\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100812\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.487 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.084230\t+ 16.072 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.262 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.501 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137844\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.331\n2D:\t0.100812\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.489 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.083479\t+ 16.096 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.297 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.485 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.233\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138047\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100152\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.518 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.142\n3D:\t0.083888\t+ 16.081 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.284 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.498 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.235\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137839\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.099667\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.510 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.083605\t+ 16.057 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.278 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.523 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136889\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100367\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.498 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.143\n3D:\t0.084202\t+ 16.075 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.265 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.490 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.236\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136322\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.335\n2D:\t0.100832\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.483 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.084182\t+ 16.085 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.253 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.495 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137980\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100831\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.482 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.084062\t+ 16.093 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.257 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.493 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137706\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100486\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.488 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.143\n3D:\t0.084039\t+ 16.037 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.263 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.524 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138006\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100720\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.487 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.084229\t+ 16.067 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.261 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.504 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138000\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.099521\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.520 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.138\n3D:\t0.083198\t+ 0.111 |EA(B)-IP(B)|/r_p(A)^2 - 2.799 |r_p(B)-r_s(B)|/exp(r_d(A)^2) - 1.510 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.107\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138038\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100817\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.482 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.084230\t+ 16.069 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.261 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.504 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137752\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100552\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.479 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.146\n3D:\t0.084216\t+ 16.073 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.260 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.503 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137742\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100521\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.480 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.147\n3D:\t0.084141\t+ 16.070 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.262 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.495 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.236\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137753\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100473\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.481 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.147\n3D:\t0.084055\t+ 16.045 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.258 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.531 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.241\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138044\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100832\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.483 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.082042\t+ 16.081 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.085 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.109 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.247\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137211\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100832\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.482 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.145\n3D:\t0.084133\t+ 16.046 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.268 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.513 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137854\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100559\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.500 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.141\n3D:\t0.083432\t+ 16.007 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.287 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.522 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.234\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.134610\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.329\n2D:\t0.099178\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.428 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.150\n3D:\t0.079162\t+ 15.947 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.019 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.207 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.260\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137906\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100747\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.482 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.081263\t+ 16.027 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.087 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.129 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.247\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138048\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100805\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.484 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.083314\t+ 16.015 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.268 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.521 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137924\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.100821\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.486 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.083532\t+ 16.032 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.282 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.505 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.234\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137775\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.331\n2D:\t0.100821\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.486 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.144\n3D:\t0.083994\t+ 16.056 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.275 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.519 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.135541\t- 0.220 IP(A)+IP(B)/(r_p(A)+r_s(A))^2 - 0.421\n2D:\t0.100592\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.464 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.147\n3D:\t0.083796\t+ 16.022 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.234 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.552 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.244\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136449\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.329\n2D:\t0.099449\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.471 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.143\n3D:\t0.083734\t+ 16.126 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.258 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.445 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.232\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137564\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.099958\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.469 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.148\n3D:\t0.080928\t+ 16.169 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.076 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.061 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.246\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136468\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.329\n2D:\t0.099160\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.477 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.142\n3D:\t0.081401\t+ 16.162 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.089 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.027 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.239\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137497\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100296\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.463 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.149\n3D:\t0.081273\t+ 16.154 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.067 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.076 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.248\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137896\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.332\n2D:\t0.100514\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.492 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.143\n3D:\t0.084158\t+ 16.081 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.257 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.495 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.238\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.138049\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.333\n2D:\t0.099991\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.516 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.139\n3D:\t0.083761\t+ 0.111 |EA(B)-IP(B)|/r_p(A)^2 - 2.799 |r_p(B)-r_s(B)|/exp(r_d(A)^2) - 1.507 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.108\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137738\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.331\n2D:\t0.100468\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.488 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.143\n3D:\t0.084189\t+ 16.063 r_p(B)/exp((r_p(B)+r_p(A))^2) - 1.263 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.503 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.136542\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.329\n2D:\t0.098501\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.491 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.139\n3D:\t0.081466\t+ 16.177 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.097 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.013 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.237\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n1D:\t0.137428\t- 0.055 IP(A)+IP(B)/r_p(A)^2 - 0.334\n2D:\t0.100543\t+ 0.114 |EA(B)-IP(B)|/r_p(A)^2 - 1.460 |r_p(B)-r_s(A)|/exp(r_s(A)) - 0.149\n3D:\t0.081218\t+ 16.146 r_s(B)/exp((r_s(B)+r_p(A))^2) - 1.054 |r_p(B)-r_s(A)|/exp(r_s(A)) + 4.092 |r_s(B)-r_d(A)|/(r_p(A)+r_d(A))^2 - 0.251\n"
+                        },
+                        {
+                            "type": "out",
+                            "value": "\n[ 0.19000064  0.1441343   0.12024634]\n"
+                        }
+                    ],
+                    "payload": "<div class=\"output_subarea output_png\"><img src=\"\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOW9+PHPN5lJMgHCOoJlyXhdUGstiyC4EQUUcMHt\nUvJTQIh1qdqiXCtct9Sq1RavIIhib6To1WhrraBiwaixglUjgnUBq+IAguAgEiHrLM/vjzNJJslM\n1klmJvN9v155ZebMk3OeHMJ59ucrxhiUUkolp5RYZ0AppVTsaCGglFJJTAsBpZRKYloIKKVUEtNC\nQCmlkpgWAkoplcTaXQiISLqIvCsim0TkExG5N0K6h0TkcxHZLCLD2ntdpZRS7Wdr7wmMMVUicqYx\nplxEUoENInKqMWZDTRoRmQwcaYw5WkROBh4FxrT32koppdonKt1Bxpjy4Mv04Dm/b5BkKvBEMO27\nQE8R6R+NayullGq7qBQCIpIiIpuAPUCxMebTBkkGAjtD3u8KHlNKKRVD0WoJBIwxw4FBwBkiMi4a\n51VKKdWx2j0mEMoY84OIvAycBLwZ8tEuYHDI+0HBY42IiG5mpJRSrWSMkbb8XDRmB/UTkZ7B1w5g\nIrC5QbLVwMxgmjHAAWPM3kjnNMbE9dedd94Z8zxoPjWfmk/NZ81Xe0SjJXA4sFJEBKtQedIY85qI\nXG09z81jxpg1IjJFRL4AyoDZUbiuUkqpdorGFNGPgBFhji9v8P769l5LKaVUdOmK4TbIycmJdRZa\nRPMZXZrP6NJ8xgdpb39StImIibc8KaVUPBMRTBsHhqM6O6gjuVwutm/fHutsqBjJzs7G7XbHOhtK\ndTkJ0xIIlnQxyJGKB/rvr1Rk7WkJ6JiAUkolMS0ElFIqiWkhoJRSSUwLgRibPXs2d9xxBwDr16/n\nuOOOi3GO6psyZQpPPvlkh18nJSWFbdu2dfh1lFL1aSEQBQ8//DCjRo0iIyODOXPmtPk8p512Glu2\nbIliztpvzZo1zJgxo8OvYy04V0p1toSZItpWXi/86U+wYweMGQPnnhv9awwcOJDbb7+dtWvXUlFR\nEf0LJAGd+aNUbCR8S2DnTliyBJYuhT176n/m98NZZ8HcuXD33TBtGvzmN9HPw4UXXsgFF1xAnz59\nmk27adMmRo4cSc+ePZk+fTqVlZW1n7355psMHly32eoRRxzBwoULOfHEE8nKyuLKK6/k22+/ZcqU\nKfTs2ZOzzz6b0tLS2vTvvPMOp556Kr1792b48OG8+WbdRq5nnnkmd9xxB6eddhpZWVlMmjSJ/fv3\nA1BVVcWMGTPo168fvXv35uSTT8bj8dT+3OOPPw5YD+q7774bl8vFgAEDuOKKK/jhhx8A2L59Oykp\nKTzxxBNkZ2dz2GGHce+9dZFGS0pKOOWUU+jduzcDBw7khhtuwOfzteV2K6WiKKELga1b4YQT4Ne/\nhptvhuOPh6++qvv8jTdg82YoD8Y9Ky+He+6BkOcuhw7BxRdDt25w+OHw1792XH69Xi8XXXQRs2bN\nYv/+/fznf/4nf21wwYbdIs8//zyvv/46n332GS+++CKTJ0/mvvvuw+Px4Pf7eeihhwDYtWsX5513\nHnfccQfff/89Cxcu5JJLLuG7776rPVdhYSErV67E4/FQVVXFwoULAVi5ciU//PADu3btYv/+/Tz6\n6KM4HI5G+V+xYgVPPPEEb775Jtu2bePgwYNcf339LaE2bNjA559/TlFREXfddRefffYZAKmpqSxa\ntIj9+/fzz3/+k9dff51ly5a1/6YqpdoloQuBm2+Ggweth3plJZSWQnCMFYAffoCUBr+hSF2hADBz\nJqxZYx3bs8d6//77HZPfd955B5/Pxy9/+UtSU1O55JJLGDVqVJM/c8MNN9CvXz8OP/xwTj/9dMaM\nGcOJJ55IWloaF110EZs2bQLgqaee4txzz+Wcc84BYPz48Zx00kmsWbOm9lyzZ8/myCOPJD09nWnT\nprF5s7Xjt91u57vvvuPf//43IsLw4cPp3r17o7w8/fTT3HTTTWRnZ5OZmcnvfvc7nnnmGQKBAGAV\nYPn5+aSlpXHiiSfy05/+lA8//BCAESNGMHr0aESEIUOGcNVVV9VrqSilYiOhC4Fvv4XQruRAoH6X\n0Cmn1P/cZoNjj4XeveuOrV0LVVV176uq4NVXo5O/KVOm0KNHD7KysigsLGT37t0MHFg/qmZ2dnaT\n5+jfvy4Us8PhaPT+0KFDgNUd8+c//5k+ffrQp08fevfuzYYNG9gTckMGDBhQ+zozM7P2Z2fMmME5\n55zD9OnTGTRoELfccgt+v79RXnbv3l0vv9nZ2fh8PvburQsNEZq/0Gt8/vnnnH/++Rx++OH06tWL\nW2+9lX379jX5uyulOl5CFwIXXgiZmXXvMzPhoovq3g8YAK+9Zj34s7LgjDNg3TqrNVAjK6v+OdPS\noFev6ORvzZo1HDx4kB9++IHc3FwOP/xwdu2qH1Btx44dUbnW4MGDmTlzJvv372f//v18//33HDx4\nkJtvvrnZn7XZbNx+++188sknvP3227z00ks88cQTjdL96Ec/qrd/0/bt27Hb7fUe/JFce+21HHfc\ncXz55ZccOHCAe+65RweDlYoDCV0I3HIL/PznVn9+t27WAPC119ZPM2oUbNlidRW99ho0fF4tWQIO\nB6SmWt8HDbK6hFrD7/dTWVmJ3+/H5/NRVVUVtiY9duxYbDYbS5Yswefz8fzzz/Pee++18rcO7/LL\nL+fFF19k3bp1BAIBKisrefPNN9m9e3ezP1tcXMzHH39MIBCge/fu2O12UlNTG6XLzc3lwQcfxO12\nc+jQIW699VamT59OSrDPramH+sGDB8nKyiIzM5OtW7fyyCOPtP2XVSrOBAIBPv/881hno00SuhBI\nSYFFi6zB3UOHrEHf1k43v/RSePNN+O1v4YEHYNMmq0BpjbvvvpvMzEzuv/9+nnrqKTIzM7nnnnsa\npbPb7Tz//POsWLGCvn378pe//IVLLrkk4nkbDhI3NZd+0KBBrFq1invvvRen00l2djYLFy6s118f\nyZ49e7j00kvp2bMnP/7xjznzzDO5/PLLG/3cnDlzmDFjBmeccQZHHnkkmZmZtQPTzeV34cKFPPXU\nU2RlZXH11Vczffr0Fv9uSsWzbdu2cdZZZzFv3rxYZ6VNdBdRlRD031/Fm0AgwLJly8jPz2fBggXM\nnTs3bAu6MyRFPAGllIoX27ZtY86cOVRXV7NhwwaGDh0a6yy1Wbu7g0RkkIi8LiKfiMhHIvLLMGnG\nicgBEfkg+HVbe6+rlFKdLRAIsHTpUkaPHs3555/PW2+9ldAFAESnJeADbjLGbBaR7sBGEVlnjNna\nIN0/jDEXROF6SinV6bpS7T9Uu1sCxpg9xpjNwdeHgC3AwDBJdeRPKZVwumLtP1RUxwRExAUMA94N\n8/FYEdkM7AJuNsZ8Gs1rK6VUtHXV2n+oqE0RDXYFPQf8KtgiCLURGGKMGQYsBV6I1nWVUiraunrt\nP1RUWgIiYsMqAJ40xqxq+HlooWCMeUVElolIH2PM/nDny8/Pr32dk5NDTk5ONLKplFLNSoTaf3Fx\nMcXFxVE5V1TWCYjIE8A+Y8xNET7vb4zZG3w9GvizMcYVIa2uE1CN6L+/6mjxNO+/tdqzTiAaU0RP\nBS4DzhKRTcEpoJNE5GoRuSqY7FIR+VhENgGLgJ+197pdiYaYtGiISRUrNat+n376aTZs2MC8efMS\npgBor2jMDtpgjEk1xgwzxgw3xowwxvzdGLPcGPNYMM3DxpgTgp+fYowJN3CcsKqrq7nyyitxuVz0\n7NmTESNG8Pe//71N59IQk0p1nmTq+4+k668Y7oT4kj6fjyFDhvDWW28xePBgXn75ZaZNm8bHH3/M\nkCFDon69rkq7e1RnSoS+/86Q0BvIAXERXzIzM5M77rijNjTkueeeyxFHHMHGjRvDptcQkxpiUsWO\n1v4bMMbE1ZeVpcbCHt+yxZisLGMyMqyv3r2N2bat7vNXXzWme3djrNgy1pfdbkxFRV2agweNuegi\nYzIzjRkwwJjnngt7/dbYs2ePcTgc5rPPPmv0WXV1tcnOzjaLFy82Pp/PPPfcc8Zut5vbb7/dGGNM\ncXGxGTx4cG16l8tlxo4dazwej9m9e7c57LDDzIgRI8yHH35oqqqqzFlnnWXuuusuY4wxX3/9tenb\nt6/5+9//bowxpqioyPTt29fs27fPGGNMTk6OOeqoo8wXX3xhKisrTU5OjlmwYIExxpjly5ebCy64\nwFRWVppAIGA++OADc/DgwdqfKygoMMYYU1BQYI4++mjjdrtNWVmZufjii82MGTOMMca43W4jIuaq\nq64yVVVV5sMPPzTp6elm69atxhhjNm7caN59910TCATM9u3bzfHHH28WL15c+7uKiPnyyy/D3tNI\nfxdKtcaXX35pxo0bZ8aOHVv7d9kVBP9/tOmZm9gtgTiML+nz+bj88su54oorOOaYYxp9riEmNcSk\n6nxa+48ssccEOjK+5EkntTo7xhguv/xy0tPTWbJkCWDNrHnrrbcQEZYvX05KSkqHh5h88cUXa/Pj\n8/kYP358bfqmQkx+/fXXTJ8+ndLSUi677DLuvffeRjMk2hti8qabbuL999+noqICn8/HyJEjm/zd\nlWov7ftvWmK3BOIsvmReXh779u3j+eefr314aojJOhpiUnUmrf23TGIXAvESXxK45ppr2Lp1K6tX\nryYtLS1iOg0xqSEmVcdL5nn/rZXYhUCcxJfcsWMHjz32GJs3b6Z///706NGDrKwsCgsLG6XVEJMa\nYlJ1HK39t56Gl1QJQf/9VXNC+/5XrFiRVA//mG4boZRSsaS1//ZJ7NlBSqmkpjN/2k9bAkqphKO1\n/+jRloBSKqFo7T+6tCWglEoIWvvvGNoSUErFPa39dxxtCSil4pbW/juetgSUUnFJa/+dQ1sCcUDD\nS1o0vKQCrf13Nm0JRMmMGTMoKiqivLycfv36MWfOHG699dZWnydew0t2Bt02Qmntv/NFI9D8IBF5\nXUQ+EZGPROSXEdI9JCKfi8hmERnW3uu2lNfv5Y8b/8jtr9/Oy/9+ucOus2DBAr766itKS0t55ZVX\nWLJkCWvXru2w63VFui1E8tLaf+xEozvIB9xkjPkxMBa4TkSODU0gIpOBI40xRwNXA49G4boA7Czd\nyZJ3l7D0vaXsOVQ/vKQ/4OesJ85i7tq53P3W3Ux7bhq/KY5+eEmA448/noyMDMB6mNntdpxOZ9i0\nGl5Sw0uqOrrjZ4y1NSRZpC/gBWB8g2OPAj8Leb8F6B/h55sKn1bPFs8Wk3Vvlsn4bYbJuDvD9L6v\nt9m2vy685Ktfvmq639vdkE/tl/0uu6nw1oWXPFh10Fz0zEUm855MM+APA8xzn7Q9vOQvfvELk5mZ\naWw2m3nkkUfCptHwkhpeUln8fr9ZsmSJ6du3r1m4cKHx+XyxzlLCIl7CS4qICxgGvNvgo4HAzpD3\nu4LH2uXmdTdzsPoglf5KKn2VlFaVcscbdeElf6j6gZQGv6KIUO6tCy85828zWfP5Gsq95ewp28PM\nv83k/d1tCy/58MMPc+jQIYqKirjtttsoKSlplEbDS2p4SaW1/3gStYFhEekOPAf8yhhzqD3nys/P\nr32dk5NDTk5O2HTfln2Loa4fOWAC9bqEThl8Sr3PbSk2ju13LL0z6sJLrv1yLVX+uvCSVf4qXv3y\nVU76UevDS4L1EBw3bhzTpk3j6aef5s4779TwkhpeUgUFAgGWLVtGfn4+CxYsYO7cufrwb4Pi4mKK\ni4ujcq6oFAIiYsMqAJ40xqwKk2QXMDjk/aDgsbBCC4GmXHjchXzs+bi2Zp9pz+Si4+rCSw7oPoDX\nZr7GzBdmsvvgbk760Uk8ffHT9WahZKVl1WsZpKWm0SujbeElQ3m9Xvr06dNoZs0//vGPsOEljzrq\nqHZfsya85PLly1v9szXhJW+//XZ27NjB5MmTOfbYY5k9e3a9dE2Fl9y5c2fD09Zz7bXXMmLECJ59\n9lkyMzNZvHgxf/3rX1udV5WYuvLMH0+ZB/cBN65eLpzdwo8FRlPDyvFvftP2sc5odQc9DnxqjFkc\n4fPVwEwAERkDHDDG7I2QtsVuOfUWfj7i53Szd6ObvRtzT57LtSfVDy85auAotly3hdL5pbw28zX6\nd68fXnLJlCU4bA5SJRWHzcGgrEHM/Gnrwkt6PB6effZZysrKCAQCrF27lr/85S9MnTq1UVoNL6nh\nJZNNV5/5U/hRIdmLspn45ESyF2VT+HHjiILxrN0tARE5FbgM+EhENgEG+G8gG2uw4jFjzBoRmSIi\nXwBlwOzIZ2y5FElh0aRFLJq0qM3nuPT4S8numU3RtiJ6ZfRi5k9n0i2tdeElRYRHHnmEa6+9FmMM\nRx99NE8++WTYvv6a8JJXXnklt912G1OmTIl6eMmbb76Z3NxcbDYbo0ePrn3YNhde8pprrmHXrl10\n796d6dOnRwwv+c0333DGGWdQVVXFpEmTWhVe8qqrruL3v/89w4cPZ/r06bz++ust+t1UYurKtX+w\nWgB5q/Oo8FVQ4asAIG9VHhOOmNApLYJo0PCSKiHov39iSZa+/5JdJUx8ciKlVXXTtLPSsyiaUcSo\ngU1P+Iim9oSX1BXDSqmo6uq1/1CuXi6q/dX1jnn9Xly9XLHJUBvo3kFKqajo6n3/4Ti7OSmYWoDD\n5iArPQuHzUHB1IKE6QoC7Q5SCUL//eNbaO1/xYoVXf7h31Bnzw5qqD3dQdoSUEq1WTLW/sNxdnMy\nauCohGoB1NAxAaVUIy2p2SZT339Xpi0BpVQ9zc1719p/15IwYwIul6veSlWVXLKzs3G73bHORpfn\nKfOQvSi7ds47gMPmYPvc7Ti7OZO+7z8ijwfcbnC5IMLuwR0pKcYE3G531Hc81a/E+dICoHO4D7hJ\nS02rd8yeamfb/m1a+4+ksBCys2HiROt7YWKtGE6YloBSquN5yjxkPzCIClM39z39ezsjN47C+I3W\n/hvyeKwHf0VdywmHA7Zv79QWQVK0BJRSHc9ZDgUvGBxe6FEB9rfBvtTLxRPO1tp/OG43pNVvOWG3\nW8cThM4OUkrVcbvJ3ZbJUQ+Uck0AUnzwf45uDJ0yBbrgtg/t5nJBdf0Vw3i91vEEoS0BpVStwJAh\nLC0vZ3Il/L9qeCcAQwOBhHqodSqnkw15BZTjoJQsynGwIa8gJoPDbaVjAkopIGTe/+7drNixg6Hp\n6VattqAAcnNjnb24VDMk0K3Cgws3blyUOZydPSSgYwJKqbZrNO9/yxaG7twJRUXWAKcWABHVDAns\nw8n7jGIfzkQbEtAxAaWSWcRVv05nQnVpxEoXGBLQloBSyUhX/UaH02n1ljkckJVlfS9IrCEBHRNQ\nKtnoqt/oi/GCYR0TUEo1T2v/HcfphFGjEqsFUEPHBJRKArrjp4okKi0BESkQkb0i8q8In48TkQMi\n8kHw67ZoXFcp1TSt/avmRKslsAJYAjzRRJp/GGMuiNL1lFLN0Nq/aomotASMMeuB75tJ1qZBC6VU\n62jtX7VGZ44JjBWRzcAu4GZjzKedeG2lkoLW/lVrdVYhsBEYYowpF5HJwAvAMZES5+fn177Oyckh\nJyeno/OnVEILBAIsW7aM/Px8FixYwNy5c0nVDd+6rOLiYoqLi6NyrqitExCRbOBFY8yJLUj7FTDS\nGLM/zGe6TkCpVtB5/ype1gkIEfr9RaR/yOvRWIVPowJAKdVy2vevoiEq3UEi8jSQA/QVkR3AnUAa\nYIwxjwGXisi1gBeoAH4Wjesqlay0719Fi24boVQC0b5/FU57uoN0xbBSCUJr/6oj6N5BSsU57ftX\nHUlbAkrFMa39q46mLQGl4lCsa/8eD5SUWN9V16YtAaXiTKxr/4WFkJdnhU2srtYQw12dtgSUihOx\nrv2DVfPPy4OKCigttb7n5WmLoCvTloBScSDWtf8aNYHTKyrqjtUETk/EgCmqedoSUCqG4qH2H6or\nBE5XraMtAaViJF5q/6FqAqfn5VktAK838QKnq9bRloBSnSzeav8N5ebC9u1QVGR910Hhrk1bAkp1\nonis/YfjdGrtP1loS0CpThDvtX+VvLQloFQHS5Tav0pO2hJQqhU8ZR5KdpXgKWt+4rzW/lUi0JaA\nUi1U+FEheavzSCGNANUUTC0g94Two6Za+1eJQlsCSrWAp8zDFX/Lo8JXQZmvlApfBVc8n9eoRaC1\nf5VotCWgkprHY62Gdbmang2z6Ss31RVpkFG3lLa6ws6mr9ycfYL1g9u2bSMvL4+qqiqt/auEoS0B\nlbQKC2HY0C1ck7uSYUO3UFjYROIDLkhtsJQ21QsHXAQCAR5++GFOPvlkzjvvPK39q4SiLQEVt1pa\nS2/ruZfdfwPf/2Iph/zgTYVl913PhAlLwl5r+FAnp1+Xx/vnL8XmB18qjHwxj95TDzJ+/DSqqqpY\nv369PvxVwolKjGERKQDOA/YaY06MkOYhYDJQBlxhjNkcIZ3GGFYdvp3x6y9v4bx/Hk+Fve6Ywwsv\njf2Us849rvEPeDz4BmXzva0Cdy8Y8j08W23nt72ymK+xflWMtSfGcLS6g1YA50T6UEQmA0caY44G\nrgYejdJ1VRfUGdsZm6r3sPvrH7P5reNhud3YHGk4y6HvbpheAc8QYP2jjzJv3jwtAFTCikohYIxZ\nD3zfRJKpwBPBtO8CPUWkfzSurbqemu2MQ9VsZxwtJ540Gm+D57Yv1ToelstFoKqKh4GTsZq9b9nt\nDB03LnqZUioGOmtgeCCwM+T9ruAxpRrpjO2MnUOOo2Dw9Ti8kFVpdQUVDL4e55AwXUHAtoMHGf8f\n/8FTKSms79aNeQ4HqY8/rhvsqIQXlwPD+fn5ta9zcnLIycmJWV5U5+us7Yxzr17ChB2/wP3Ze7iG\njg5bAAQCAR555BHy8/OZP38+cy+7jNSdOztmtFqpFiouLqa4uDgq54rKwDCAiGQDL4YbGBaRR4E3\njDHPBt9vBcYZY/aGSasDwwro2NlBLRE673/FihU680fFrXgYGAaQ4Fc4q4GZACIyBjgQrgBQKpTT\nCaNGdX4BoPP+VTKJSneQiDwN5AB9RWQHcCeQBhhjzGPGmDUiMkVEvsCaIjo7GtdVKtpCa/86718l\ng6h1B0WLdgepWGjU96/z/lUCaU93UFwODCvVmbT2r5KZ7h2kkpb2/SulLQGVpLT2r5RFWwIqqWjt\nX6n6tCWgkobW/pVqTFsCqsvT2r9SkWlLQHVpWvtXqmnaElBdktb+lWoZbQmo+NXGzYO09q9Uy2lL\nQMWnwkLIzoaJE63vTQYAtmjtX6nW020jVPzxeKwHf0VF3TGHA7Zvr20ReMo8uA+4cfVy4ezm1B0/\nVVLTbSNU11ITWiy0EKgJLeZ0UvhRIXmr80hLTaPKW8X0yum89NhLuuePUm2gLQEVf5poCXgyIXtR\nNhW+CtgPrAbxp/DSyvVMOXNs5FM2aDko1ZXESzwBpaKjJrSYwwFZWdb3YGgx9wE3drHDe8D/AseA\n+X/duDjPFnHYoPCjQrIXZTPxyYlkL8qm8OPmxxeUShbaElDxK8zsoJKPSxhzwRgC3gBcCPQDvA54\ncDsO4wwdNrBOUeapazkEOWwOts/dri0C1WVoS0B1TSGhxWpm/kw5cwq5l+SSdmUG9MiyCoBVBVDu\nrB02COU+4CYtNa3eMXuqHfeBBgmVSlI6MKziXrh5/7dtupXpF7/HoW+Pond5Gm48lHmduFz1f9bV\ny0W1v7reMa/fi6tXg4RKJSltCai4FXHef2Ehx546kvd3X8vbnMb//Oh03s8cwqt5hY3WlDm7OSmY\nWoDD5iArPQuHzUHB1ALtClIqSMcEVFyKOO8/ZOZQ4QmQNxXS/FCdCgVr7OSu3RV2dbHODlJdWczH\nBERkkohsFZF/i8gtYT4fJyIHROSD4Ndt0biu6nqaXfUbXEPgybQKgAo7lGZY3/OmePF8tinseZ3l\nMGq39V0pVafdYwIikgIsBcYDu4ESEVlljNnaIOk/jDEXtPd6qutq0Z4/LhdUV+PubbUAKux1H9n9\n4O4Fjer5hYWQl2ctQKuutqab5uZ24G+iVOKIRktgNPC5MWa7McYLPANMDZOuTU0V1fW1as+f4BoC\nV2UG1Q0WBnsdabiOGF7/oMdjFQAVFVBaan3Py7OOK6WiUggMBHaGvP86eKyhsSKyWUReFpHjo3Bd\n1QVs27aNM84Yz/LlT7F69XrmzZvX/LYPubnI+h3cdfhvcaRkkGXrZg34Xvynxv39NVtQhAo3l1Sp\nJNVZU0Q3AkOMMeUiMhl4ATgmUuL8/Pza1zk5OeTk5HR0/lQnCwQCPPLIIyxYkE9FxXwyM+cyfnxq\ni3pqrN4dJ2lpt2FSr+bmhW6unhZhwDfYfVSP10ujuaRKJZDi4mKKi4ujcq52zw4SkTFAvjFmUvD9\nfMAYY+5v4me+AkYaY/aH+UxnB3VxNX3/hw5VsfPDB/iJ9yAAmxlOmaPxqt9QLdhgtLGaMQG73SoA\ndExAdTGx3kW0BDhKRLKBb4DpQL3/YSLS3xizN/h6NFbh06gAUJ2rjTFb2mzvwb088NADPP7g4yxY\nsIAh7wxg7Kfj2O304joAPcvtXGNW4nbnRsxPMxuMhpeby75hE/j2PTeHjXbR7zidIqpUjXYXAsYY\nv4hcD6zDGmMoMMZsEZGrrY/NY8ClInIt4AUqgJ+197qqbWoe/B98ADfe2HkTZha9soh5181D/ILt\nchvfZ3Wn39bZHHOjF5sfqm2weI2Xhz+YQ3n3CYSZ4wO0rXenrvvIqZODlGpAF4t1QZFq+DW9IjYb\nHDxY/2ea7VJpo0AgwO8X/Z4Fty+A04AxQAqkeu3Y8VIZMsUTA0tftnPdsg3WnkERtKZ3p03dR0ol\nmJgvFlPxI1JUxtCZkg0LAGjDhBmPB0pK6k+1bHBs27ZtjB8/nqeffpru13SHU6j9i7PjhUCDcwrM\nm+TF07+7dboyDyW7SvCU1Z/OmZtrPcSLiqzvTdXqdXKQUk3TQqALaWpKfLiHYahWTZgpLMRkZ+M7\ncyKmpqRk1ZiOAAAVi0lEQVQJKX0CQ4bw8OzZtfP+172+Dn8ff71TVNqgMkx+7PYM3KmHmo0BELLB\naJN0cpBSTdPuoC6kpMRqAZSW1h3LyrJqzC5XsFtEPNDLDQdcUO6kRw/w+VrRT+7x4BuUja26rn/F\nZ3dgSzV4UirZ0B0W7oMAKaxYv56hY61oX4XLb2DOzqVU2qi/bNDUf++wOdh41UZGPjYyajEAdHKQ\n6upiPTtIxYmmar1OJ+Q9WMjSnXkQSIOUaub0K+CaU3NbNTto+6pN9KuWen84ld4U/nZCNXmHge8f\nkHom/OmAnaG2YCqPh9wbC/jXWLjv9Prny/CBP91Oui0df8BPwdQCDlUfIi01rV4hUBMDoC2FQG4u\nTJjQuTOhlEoUWgh0ITVRGRvWep1Oq3+9YF8e2CuwJmhBYVke9x0/IeKDteEA84YbCjlp6SxKM718\n2gtcB6wN2TZneLliv5eAB8gDXz/4ubeKs/t3t+b4uN14etpYPJbGm4fY7Xx4zYccqj5Uu8Onp8wT\n9RgATqc+/JUKRwuBLiZSrbcmwlak2nXDrZYLC+GWOR5GpGzC74PLFgxm6tI8/jTCy6+mQJoPvCkw\nfQU8vTcV+1AbVWN8dQO/6Q7cqYesQsDlwu2obrThG8CtZ97Bcc7j6h2riQGQtyoPe6odr9+rMQCU\n6iA6JpAkPGUesh8YRIWpq2E7JI3t876maFsReavzSCOFagI8eGYBb+fAPfZZ7O5lLeTqXZ7C8hFw\nw/kBqza/H1gN4oXfXPwgv+v/30324b/0y+VMy7qmXiHgEDvb5+2K3BLRGABKtYhOEU1S4WZpRuIs\nh4IXDA4vdK+EdB88+LIfvttH3t9mUeGroNRXRoWvgrnrZnHST2ZyzI1eJsyEITfB4jEB/mtKwBrI\nfQ/4X+AYMHNAJu9tMnqXxwO/+OPFPLLKhsMLWZXg8ELBC03v7+/s5mTUwFFaACjVgbQlkADCLf5q\n9Rb5walDy48sre3O8aXCeTKUv6R+Vq+vvnsVVKWCN7Sz0ECaB6rXAD7gQqCf9VFNrR8IW3MvKYFf\nn1nC38om4s0sxR0cT+gtWdjeKGpyYZhSqnntaQloIRDnwj3sJ0xowypYjwfP0MFk/6Kqfr98gyma\ntccIOR4A3geKqbfqt0ZWehZFM4oYNTD8w9zjgZFDPGytzCaTBlNLd+nSXaXaS7uDuqhIi782bWrD\nKlinE/eNV5DmbyIN1BUKNX9O+4EngH8Bc4CxNPqraW7mjtMJty5yMocCynFQShblOJhDAZ4IewQp\npTqHFgJxLNKWB9C2VbCuWb+ivKXzwQLU6/tnDtAPMqth6idg86YilT1IE0eLZu6MGAFreuSSzXYm\nUEQ221nlyNXtG5SKMZ0iGsciLf4aPjzyeoAm9e2H2GxYnfpBNTX+0B644MwffMBs6m3oWZ4GRUdB\nivi58b2DuDc+yoRrrcGIpramdrmslckHcbIveEKHbt+gVMxpSyCO1Sz+cjis7R8cjrqHfWs2Uavh\nPuDGkWKPnMBgRYf4X+BoYDbYelsfpfqo7SoqS7e2fv7D6XD6kdfx9SZPxI3rWvK7KKViRweGE8C+\nLZ7WBUQJqZJ7cNbWzqnYQvZjxzdasAXUr/1fCPSlyT1+aqT74JVBazn3xrNbNFDd2YFslEoGundQ\nV1ZYSL+8PPq1dC5oYSGe6+ewaWAK/moff/nmHr7yj+NLv4tFcw9xycep/N/IkNFhQ/iZPy0sh+0+\neLu85dG+dPsGpeKLtgTiWWsjong8FE4ayKwpXryp1qE0P9y/Jo2Re4SbXefy7sTn68/8Ca399ws5\nV8Oaf4SWQKo3jTcv+ZqJpzo1cItSMaItgS6iUVdJMwF1Q7dVANhU8gyzJ3vrLfKqtsGN51fTrQrK\n0oMFQDPz/muk+qGbF7ypcPlGG/87MtVqINiqwGsHsXHt4AJOHe5s20C1UirmtCUQJ8KuAJ4QuSVQ\nuCe4309qGuXV5UiKIAaq/NVha+y1wvT9p3uhyk6jmv//vAKnfW2t7u1W7mBw5kb29zqEzXTnsisO\nccs1Lo4bUvek1/5+pWIj5iuGRWQSsIi6QPP3h0nzEDAZKAOuMMZsjnCupCsEmuz1KbL6+N19U3F9\n58e59HE8F0wge1F2vQ3bmhWu9i/wh7Vw4rcw6XIwIa0BCcD2hWlklWdgx8scCniWXObPh5tu0oe8\nUvEkpt1BIpICLAXGA7uBEhFZZYzZGpJmMnCkMeZoETkZeBTrMaRouten6ATIu0lIA6oRCn4CRx1w\nW5Pum1PTj99g3n+3HuALwOI1cNUHUI6Dp56vYPbUYHoDK1bBjeVPsp0jcONiH07mz4ff/S7Kv7xS\nKqba3RIQkTHAncaYycH38wET2hoQkUeBN4wxzwbfbwFyjDF7w5xPWwJYLYGNWz2MfDK70RbNr57/\nZ057/vymu32gce3/ZJi/AS7eWhcQ5hCZzOc+/od5lGZ6azd3yypPYxBf1y3s0oFepeJWrPcOGgjs\nDHn/dfBYU2l2hUmTtGoWUmX08dDt6BIy+ngoKIBDqVYgmFD2VDtffFGCo2FDoGG5uR9kJXV7/pwC\njgDc9A6M2l23hXMKhmeZzkxW0q3cwXG7u9Gt3MEs/lRbAGRk6ECvUl1VXM4Oys/Pr32dk5NDTk5O\nzPLSaU4oRG7KA9IQquEnBbh6TQgbZnH0CWfDB3eFP09I7f8nR8K/z4M0E5yxswr6ldeVF9WkMYcC\n9uHkWXJ5jQn88nw3f3zVRWmaE4cX/vu/4eqrtQBQKp4UFxdTXFwclXNFqzso3xgzKfi+Jd1BW4Fx\n2h1k8ZR5Gg301uzRX/RVUaMwi8OyJvDrGedTdPq7pPmhOhV8Ar4fqDfzJ6MnbHzU2uahpvunnAyu\ntK3kUGov3vcPZ584yciwZiQtXmw98HWWj1KJJdbrBEqAo0QkG/gGmA40XNK6GrgOeDZYaBwIVwAk\nI48H1mx2Y/dD6Fwfe8Da6yf3hFwmHDGhdj1A0bYihq/MJv0UK/XNG+Dn78OVP4KXvqHevH+phiXp\ns3hg95/xYqccL9dlFHDFqmn07l23eVvDB76u6lUqeURziuhi6qaI3iciV2O1CB4LplkKTMKaIjrb\nGPNBhHMlTUugZm3AYT228O3P6+/p4/DC9qs+xTnECsLu8cCmzzxMLc6m0l9XXKR/Cyc9Cl9nwvZZ\n1NvxEwO9lq7H9t0xuHDjxkWZw6kDvEp1MbFuCWCM+TswtMGx5Q3eXx+Na3UVoQFjnBWHuH2Vgxum\nVmD3Wyt0C9Zm4Jx6CIZYhcWcOeA7ZTm+0yvqrfqtfgOO7wUl1wANYg+ke8Gkl7EPJ5Xdnfj9OsCr\nlKovLgeGuwqPx4oCZj/gYVgvN72Hu2qfwKFrA9y4yP0YLthG7RTNfkasXUA9MGsWeLO2wCl3NZr3\nb58Fl66DZwJQ3TADKXDSoQP856NWUBft41dKNaSFQAcpLLQe3pd4Cykgj2rS8Nmrsa20dgENDRiz\nDyv04uPleRxTbseOl1n2AiYXOUnN8uA9/QE4bSHgt6J9FVPb93+LfzyDK96k2tZgzqixFoMNvb4X\nOVd35m+ulEokundQB/B4YMgQGFa5gWLOJB1v7WehwdVrxgTsdqtA6OP38COvu3aFrn1EId7zZoD4\n4Xsa7/jpTcf22mJSJs0l1VtJhc3qAiLFKgCu+MDGwU93tywGgVIqYcV876Bo6gqFQEkJvDP6Bq5n\nKVB/YW8pWWx5qIgjp4/C6awLGLPX4eKiq5yUlgYTZnrgpgGQEoi43/+17wiPnWTHb6/rCEr3wQeP\nwJHf2Xj/+ic4dUkLQo4ppRKaFgJxZuNTWxhx+fFhd3WoJJ1LbKv5yDacwiuLOLXA2jrUVFczy1fA\nk17rod3jP/7MwfN+1uR+/+l+q4yoCBkQ7pGSyePd7yNn0nRtASiVJLQQiDNvXLqEnL/+srYQ8GRa\nA77ZtQu2HAiGVAKkhwzn+tIcnCQb6ZX6A7sy7+CL8nVN7vcPNAr2UrPIzNlNCwClkkXMp4iq+tKl\nbpC28ATImwo2vxXg5e4iGLejwpoBVF7/52wphr8GhpFX6aebNwBXUX/efwQ2P2Q6euAN+CiYWqAF\ngFKqxbQQ6AC9nNZt3dIXZl8IVTYguBDs5nMgwwsi1l4+uR9bxwPAI5WV5APzgVP7w+l9rJ6gJgmk\nBuAvP72H4eOmawGglGoVLQQ6QP/LJlD4Fsy6EHypDT4UqAz24edNhQm7MzhYbSOvrIwqEVanBbD1\nge5VYAuE+fkw0v3Qe8hQLQCUUq0Wja2kVQOBYf247GLw2Whyz3+bPYM/XJPHyTYb5/3Xf3HdT1MY\nPw8mzoSR18CVG62uHgyNt4oO4c2w4zpieJR/C6VUMtCWQAdYtXVV88Xrfih7sZo3DnuX9e+8Q59B\nfcjuvpgKQ+0eQgUj4V/L4KPD4K/HwQvHW1NAq2xWmeDwWQVAwSUrtRWglGoTLQQ6wNbvtoY9nkIK\ngUAA2wc2fK/7yP1FLivvW0lqaiolu0pIS3NQUVU3WyglJZ2D6VVM2wLTtoDn73XbSpCWhvulJ3EN\nO1MLAKVUm2l3UAe46NiLwh6/e9jdjH5tNMd9cxxvr3+b//vD/5GaanX6u3q5GgWQCaSn0P+s/1fb\nG9SvHEZ57DiNA+eyPzHq1GlaACil2kXXCXSQc548h3Xb1llvgjt+9vhnD+689U7mzp1b+/APVfhx\nYaMAMrkn5MKWLfDee3DUUdauc7oTnFIqhC4Wi0OeMg+DHhhE9XfVtat+0y9JZ+c9O5usvXvKPLUB\nZLSWr5RqCV0sFoe27d+GvC/wGrWrftMd6bgPuJt8uDu7OfXhr5TqNFoIdJCSnSVU7ayCOdTu+eP1\ne3H1ctVLpzV/pVQsaSHQATxlHn79xq+tTd9CPHjOg/Ue9IUfFZK3Oo+01DSq/dV1YwBKKdVJ2jU7\nSER6i8g6EflMRNaKSM8I6dwi8qGIbBKR99pzzUTgPuAmLbV+rMfuad0ZcfiI2veeMg95q/Oo8FVQ\nWlVKha+CvFV5eMo8nZ1dpVQSa+8U0flAkTFmKPA6sCBCugCQY4wZbowZ3c5rxr1w0z39AX+9rqBw\nBYU91Y77gLsTcqiUUpb2FgJTgZXB1ytp1AFSS6JwrYTh7OakYGoBDpuDrPQsHDZHo909wxUU4cYM\nlFKqI7VriqiI7DfG9In0PuT4NuAA4AceM8b8sYlzdokpotD8oG/EdQFKKdUKHbpOQEReBfqHHsJa\nwHob8KcGhcB3xpi+Yc5xuDHmGxFxAq8C1xtj1ke4XpcpBFpCZwcppdqrQ9cJGGMmNnHhvSLS3xiz\nV0QGAN9GOMc3we8eEfkbMBoIWwgA5Ofn177OyckhJyenuWwmLF0XoJRqreLiYoqLi6NyrvZ2B90P\n7DfG3C8itwC9jTHzG6TJBFKMMYdEpBuwDviNMWZdhHMmVUtAKaXaK2bbRohIH+DPwGBgOzDNGHNA\nRA4H/miMOU9EjgD+htWFZAOeMsbc18Q5tRBQSqlW0L2DlFIqibWnEEiaaZtKKaUa00JAKaWSmBYC\nSimVxLQQUEqpJKaFgFJKJTEtBJRSKolpIaCUUklMCwGllEpiWggopVQS00JAKaWSmBYCSimVxLQQ\nUEqpJKaFgFJKJTEtBJRSKolpIaCUUklMCwGllEpiWggopVQS00JAKaWSmBYCSimVxNpVCIjIpSLy\nsYj4RWREE+kmichWEfm3iNzSnmsqpZSKnva2BD4CLgLejJRARFKApcA5wI+BXBE5tp3Xjani4uJY\nZ6FFNJ/RpfmMLs1nfGhXIWCM+cwY8znQVJT70cDnxpjtxhgv8AwwtT3XjbVE+aPQfEaX5jO6NJ/x\noTPGBAYCO0Pefx08ppRSKsZszSUQkVeB/qGHAAPcaox5saMyppRSquOJMab9JxF5A5hnjPkgzGdj\ngHxjzKTg+/mAMcbcH+Fc7c+QUkolGWNMU93yETXbEmiFSBkoAY4SkWzgG2A6kBvpJG39RZRSSrVe\ne6eIXigiO4ExwEsi8krw+OEi8hKAMcYPXA+sAz4BnjHGbGlftpVSSkVDVLqDlFJKJaaYrhhOlMVm\nItJbRNaJyGcislZEekZI5xaRD0Vkk4i814n5a/b+iMhDIvK5iGwWkWGdlbcGeWgynyIyTkQOiMgH\nwa/bYpDHAhHZKyL/aiJNPNzLJvMZJ/dykIi8LiKfiMhHIvLLCOliej9bks84uZ/pIvJu8PnyiYjc\nGyFd6+6nMSZmX8BQ4GjgdWBEhDQpwBdANmAHNgPHdnI+7wd+HXx9C3BfhHTbgN6dnLdm7w8wGXg5\n+Ppk4J0Y/Fu3JJ/jgNWdnbcGeTgNGAb8K8LnMb+XLcxnPNzLAcCw4OvuwGdx+rfZknzG/H4G85EZ\n/J4KvAOc2t77GdOWgEmcxWZTgZXB1yuBCyOkEzq/ddWS+zMVeALAGPMu0FNE+tO5WvrvGNOJAcaY\n9cD3TSSJh3vZknxC7O/lHmPM5uDrQ8AWGq8Rivn9bGE+Icb3E8AYUx58mY71rGn4N9Dq+5kIG8jF\nw2Kzw4wxe8H6gwEOi5DOAK+KSImI/LyT8taS+9Mwza4waTpaS/8dxwabsS+LyPGdk7VWiYd72VJx\ncy9FxIXVcnm3wUdxdT+byCfEwf0UkRQR2QTsAYqNMZ82SNLq+xnNKaJhJcpisybyGa7vL9Jo+qnG\nmG9ExIlVGGwJ1thUy2wEhhhjykVkMvACcEyM85So4uZeikh34DngV8GadlxqJp9xcT+NMQFguIhk\nAetEZJwxJuLebS3R4YWAMWZiO0+xCxgS8n5Q8FhUNZXP4ABcf2PMXhEZAHwb4RzfBL97RORvWF0g\nHV0ItOT+7AIGN5OmozWbz9D/eMaYV0RkmYj0Mcbs76Q8tkQ83Mtmxcu9FBEb1oP1SWPMqjBJ4uJ+\nNpfPeLmfIXn4QUReBk6i/gaerb6f8dQd1OxiMxFJw1pstrrzsgXB610RfD0LaPRHIiKZwZoEItIN\nOBv4uBPy1pL7sxqYGczbGOBATfdWJ2o2n6F9lyIyGmsKcyz+kwmR/x7j4V7WiJjPOLqXjwOfGmMW\nR/g8Xu5nk/mMh/spIv1qZiaKiAOYiDXBIlTr72eMR7ovxOq/qsBaTfxK8PjhwEsh6SZhjdh/DsyP\nQT77AEXBPKwDejXMJ3BE8B9kE9YW252Wz3D3B7gauCokzVKs2TkfEmEmVqzzCVyHVXBuAt4GTo5B\nHp8GdgNVwA5gdpzeyybzGSf38lTAH/L/4oPg30Bc3c+W5DNO7udPgnnbFLxX/xU83q77qYvFlFIq\nicVTd5BSSqlOpoWAUkolMS0ElFIqiWkhoJRSSUwLAaWUSmJaCCilVBLTQkAppZKYFgJKKZXE/j/2\nkjyICLXhBwAAAABJRU5ErkJggg==\n\"></div>"
+                },
+                "selectedType": "Results",
+                "pluginName": "IPython",
+                "shellId": "9F533114F51B41D4A9DB4EF14E0B36FC",
+                "elapsedTime": 465205,
+                "height": 5799
+            },
+            "evaluatorReader": true,
+            "lineCount": 36
+        }
+    ],
+    "namespace": {
+        "selected_feature_list": [
+            "atomic_ionization_potential",
+            "atomic_electron_affinity",
+            "atomic_rs_max",
+            "atomic_rp_max"
+        ],
+        "allowed_operations": [
+            "+",
+            "|-|",
+            "/",
+            "^2",
+            "exp"
+        ],
+        "max_dim": "2",
+        "structures_diff": null,
+        "n_comb": null,
+        "n_sis": null,
+        "units": "eV_angstrom",
+        "viewer_result": "7719891784df6878"
+    }
+}
-- 
GitLab