From 022ffa2b2021872aa8c2efe1ff83f89fb24e3f64 Mon Sep 17 00:00:00 2001
From: Benjamin Regler <regler@fhi-berlin.mpg.de>
Date: Wed, 12 Dec 2018 12:46:29 +0100
Subject: [PATCH] :bookmark: Update NOMAD Periodic Table Analytics Tutorial
 v1.2.1

---
 periodic-table/periodic-table.bkr | 72 +++++++++++++++++++------------
 1 file changed, 45 insertions(+), 27 deletions(-)

diff --git a/periodic-table/periodic-table.bkr b/periodic-table/periodic-table.bkr
index f132045..7bac2c2 100644
--- a/periodic-table/periodic-table.bkr
+++ b/periodic-table/periodic-table.bkr
@@ -6,7 +6,7 @@
             "plugin": "HTML",
             "view": {
                 "cm": {
-                    "mode": "htmlmixed"
+                    "mode": "smartHTMLMode"
                 }
             }
         },
@@ -47,7 +47,7 @@
                     " *             Benjamin Regler - Apache 2.0 License",
                     " * @license    http://www.apache.org/licenses/LICENSE-2.0",
                     " * @author     Benjamin Regler",
-                    " * @version    1.3.0",
+                    " * @version    1.4.0",
                     " *",
                     " * Licensed under the Apache License, Version 2.0 (the \"License\");",
                     " * you may not use this file except in compliance with the License.",
@@ -61,7 +61,7 @@
                     " * See the License for the specific language governing permissions and",
                     " * limitations under the License.",
                     " */",
-                    "p{margin-bottom:1.3em}h1,h2,h3,h4{margin:1.414em 0 .5em;font-weight:inherit;line-height:1.2}h1{margin-top:0;font-size:3.998em}h2{font-size:2.827em}h3{font-size:1.999em}h4{font-size:1.414em}.font_small,small{font-size:.707em}.notebook-container{font-size:16px}.notebook-container .bkr{font-size:100%;font-weight:400;line-height:1.45;color:#333}.nomad--header{background:hsl(72,41.2%,50%,.7);margin:-52px -20px .5em;padding:2em 3em 1em;overflow:hidden}.nomad--header sup{padding:0 .2em 0 .3em}.nomad--header h2{color:#20335d;font-weight:700;font-size:2.5em;margin:-.4em 0 .2em -.25em;text-align:center}.nomad--header h2 img{display:block;height:2.5em;margin:0 auto;vertical-align:middle}.nomad--header h2 img:last-child{display:none}.nomad--header h3{color:#20335d;font-weight:700;margin-top:0;text-indent:-1em;padding-left:1em}.nomad--header h3:before{content:\"\\2014\";padding-right:.25em}.nomad--header a,.nomad--header a:focus,.nomad--header a:hover{color:inherit;font-style:italic}.nomad--header .nomad--description{margin:-1em 0 0}.nomad--header .nomad--affiliation{display:block;padding:1.25em 0 1em}.nomad--last-updated{color:#596273;display:inline-block;float:right;margin-top:0;margin-right:-1em;position:relative;z-index:1}.nomad--last-updated:before{bottom:-75%;color:#20335d;content:attr(data-version);font-size:4em;font-weight:700;opacity:.2;position:absolute;right:0;z-index:-1}.nomad--navigation{margin:auto -20px -1em;text-align:right;z-index:1}.nomad--navigation a{background:#f5f5f5;display:block;margin-top:.25em}@media only screen and (min-width:60em){.nomad--header h2{font-size:2.827em;margin-right:1em;margin-top:0}.nomad--header h2 img{display:inline-block;height:1.5em;margin:0 .4em 0 0;vertical-align:middle}.nomad--header h2 img:last-child{display:inline-block!important;margin:0 0 0 .4em}.nomad--navigation{height:0;position:relative}.nomad--navigation a{display:inline-block}}.modal-dialog{max-width:1000px;width:80%}.modal-header h1{font-size:2em;line-height:1.2}.modal-dialog h2{font-size:1.414em}.modal-dialog h2:first-child{margin-top:0}.modal-dialog h3{font-size:1.2em}.modal-dialog dt{font-size:larger;margin-top:1.414em}.modal-dialog img{width:100%}.modal-dialog .authors{text-transform:uppercase}.new-cell .active,.new-cell .btn,.new-cell .btn>*,.new-cell .dropdown{color:#fff}.markup p:first-child:before{content:none;display:block;float:none;height:auto;width:auto}",
+                    "p{margin-bottom:1.3em}h1,h2,h3,h4{margin:1.414em 0 .5em;font-weight:inherit;line-height:1.2}h1{margin-top:0;font-size:3.998em}h2{font-size:2.827em}h3{font-size:1.999em}h4{font-size:1.414em}.font_small,small{font-size:.707em}.notebook-container{font-size:16px}.notebook-container .bkr{font-size:100%;font-weight:400;line-height:1.45;color:#333}.nomad--header{background:#c5d293;margin:-52px 0 .5em;padding:2em 3em 1em;overflow:hidden}.nomad--header sup{padding:0 .2em 0 .3em}.nomad--header h2{color:#20335d;font-weight:700;font-size:2.5em;margin:-.4em 0 .2em -.25em;text-align:center}.nomad--header h2 img{display:block;height:2.5em;margin:0 auto;vertical-align:middle}.nomad--header h2 .nomad--header-title,.nomad--header h2 img:last-child{display:none}.nomad--header h3{color:#20335d;font-weight:700;margin-top:0}.nomad--header a,.nomad--header a:focus,.nomad--header a:hover{color:inherit;font-style:italic}.nomad--header .nomad--description{margin:-1em 0 0}.nomad--header .nomad--affiliation{display:block;padding:1.25em 0 1em}.nomad--last-updated{color:#596273;display:inline-block;float:right;margin-top:0;margin-right:-1em;position:relative;z-index:1}.nomad--last-updated:before{bottom:-75%;color:#20335d;content:attr(data-version);font-size:4em;font-weight:700;opacity:.2;position:absolute;right:0;z-index:-1;width:200%;text-align:right}.nomad--navigation{text-align:right;z-index:1}.nomad--navigation a{background:#f5f5f5;display:block;margin-top:.25em}@media only screen and (min-width:60em){.nomad--header h2{font-size:2.827em;margin-right:1em;margin-top:0}.nomad--header h2 img{display:inline-block;height:1.5em;margin:0 .4em 0 0;vertical-align:middle}.nomad--header h2 img:last-child{display:inline-block!important;margin:0 0 0 .4em}.nomad--header h2 .nomad--header-title,.nomad--navigation a{display:inline-block}.nomad--header h3{text-indent:-1em;padding-left:1em}.nomad--header h3:before{content:\"\\2014\";padding-right:.25em}.nomad--navigation{height:0;margin-right:0;position:relative}}.modal-dialog{max-width:1000px;width:80%}.modal-header h1{font-size:2em;line-height:1.2}.modal-dialog h2{font-size:1.414em}.modal-dialog h2:first-child{margin-top:0}.modal-dialog h3{font-size:1.2em}.modal-dialog dt{font-size:larger;margin-top:1.414em}.modal-dialog img{display:block;width:100%;text-align:center;margin:0 auto;max-width:35em}.modal-dialog img.large{max-width:inherit}.modal-dialog .authors{text-transform:uppercase}.new-cell .active,.new-cell .btn,.new-cell .btn>*,.new-cell .dropdown{color:#fff}.markup p:first-child:before{content:none;display:block;float:none;height:auto;width:auto}",
                     "/*!",
                     " * Chosen, a Select Box Enhancer for jQuery and Prototype",
                     " * by Patrick Filler for Harvest, http://getharvest.com",
@@ -116,14 +116,15 @@
                 "result": {
                     "type": "BeakerDisplay",
                     "innertype": "Html",
-                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<style type=\"text/css\">\n/*!\n * Nomad Beaker Notebook Template\n *\n * @copyright  Copyright 2017 Fritz Haber Institute of the Max Planck Society,\n *             Benjamin Regler - Apache 2.0 License\n * @license    http://www.apache.org/licenses/LICENSE-2.0\n * @author     Benjamin Regler\n * @version    1.3.0\n *\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n *     http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n */\np{margin-bottom:1.3em}h1,h2,h3,h4{margin:1.414em 0 .5em;font-weight:inherit;line-height:1.2}h1{margin-top:0;font-size:3.998em}h2{font-size:2.827em}h3{font-size:1.999em}h4{font-size:1.414em}.font_small,small{font-size:.707em}.notebook-container{font-size:16px}.notebook-container .bkr{font-size:100%;font-weight:400;line-height:1.45;color:#333}.nomad--header{background:hsl(72,41.2%,50%,.7);margin:-52px -20px .5em;padding:2em 3em 1em;overflow:hidden}.nomad--header sup{padding:0 .2em 0 .3em}.nomad--header h2{color:#20335d;font-weight:700;font-size:2.5em;margin:-.4em 0 .2em -.25em;text-align:center}.nomad--header h2 img{display:block;height:2.5em;margin:0 auto;vertical-align:middle}.nomad--header h2 img:last-child{display:none}.nomad--header h3{color:#20335d;font-weight:700;margin-top:0;text-indent:-1em;padding-left:1em}.nomad--header h3:before{content:\"\\2014\";padding-right:.25em}.nomad--header a,.nomad--header a:focus,.nomad--header a:hover{color:inherit;font-style:italic}.nomad--header .nomad--description{margin:-1em 0 0}.nomad--header .nomad--affiliation{display:block;padding:1.25em 0 1em}.nomad--last-updated{color:#596273;display:inline-block;float:right;margin-top:0;margin-right:-1em;position:relative;z-index:1}.nomad--last-updated:before{bottom:-75%;color:#20335d;content:attr(data-version);font-size:4em;font-weight:700;opacity:.2;position:absolute;right:0;z-index:-1}.nomad--navigation{margin:auto -20px -1em;text-align:right;z-index:1}.nomad--navigation a{background:#f5f5f5;display:block;margin-top:.25em}@media only screen and (min-width:60em){.nomad--header h2{font-size:2.827em;margin-right:1em;margin-top:0}.nomad--header h2 img{display:inline-block;height:1.5em;margin:0 .4em 0 0;vertical-align:middle}.nomad--header h2 img:last-child{display:inline-block!important;margin:0 0 0 .4em}.nomad--navigation{height:0;position:relative}.nomad--navigation a{display:inline-block}}.modal-dialog{max-width:1000px;width:80%}.modal-header h1{font-size:2em;line-height:1.2}.modal-dialog h2{font-size:1.414em}.modal-dialog h2:first-child{margin-top:0}.modal-dialog h3{font-size:1.2em}.modal-dialog dt{font-size:larger;margin-top:1.414em}.modal-dialog img{width:100%}.modal-dialog .authors{text-transform:uppercase}.new-cell .active,.new-cell .btn,.new-cell .btn>*,.new-cell .dropdown{color:#fff}.markup p:first-child:before{content:none;display:block;float:none;height:auto;width:auto}\n/*!\n * Chosen, a Select Box Enhancer for jQuery and Prototype\n * by Patrick Filler for Harvest, http://getharvest.com\n *\n * Version 1.7.0\n * Full source at https://github.com/harvesthq/chosen\n * Copyright (c) 2011-2017 Harvest http://getharvest.com\n *\n * MIT License, https://github.com/harvesthq/chosen/blob/master/LICENSE.md\n * This file is generated by `grunt build`, do not edit it by hand.\n */\n.chosen-container{position:relative;display:inline-block;vertical-align:middle;font-size:13px;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.chosen-container *{box-sizing:border-box}.chosen-container .chosen-drop{position:absolute;top:100%;z-index:1010;width:100%;border:1px solid #aaa;border-top:0;background:#fff;box-shadow:0 4px 5px rgba(0,0,0,.15);clip:rect(0,0,0,0)}.chosen-container.chosen-with-drop .chosen-drop{clip:auto}.chosen-container a{cursor:pointer}.chosen-container .search-choice .group-name,.chosen-container .chosen-single .group-name{margin-right:4px;overflow:hidden;white-space:nowrap;text-overflow:ellipsis;font-weight:400;color:#999}.chosen-container .search-choice .group-name:after,.chosen-container .chosen-single .group-name:after{content:\":\";padding-left:2px;vertical-align:top}.chosen-container-single .chosen-single{position:relative;display:block;overflow:hidden;padding:0 0 0 8px;height:25px;border:1px solid #aaa;border-radius:5px;background-color:#fff;background:linear-gradient(#fff 20%,#f6f6f6 50%,#eee 52%,#f4f4f4 100%);background-clip:padding-box;box-shadow:0 0 3px #fff inset,0 1px 1px rgba(0,0,0,.1);color:#444;text-decoration:none;white-space:nowrap;line-height:24px}.chosen-container-single .chosen-default{color:#999}.chosen-container-single .chosen-single span{display:block;overflow:hidden;margin-right:26px;text-overflow:ellipsis;white-space:nowrap}.chosen-container-single .chosen-single-with-deselect span{margin-right:38px}.chosen-container-single .chosen-single abbr{position:absolute;top:6px;right:26px;display:block;width:12px;height:12px;background:url(\"\") -42px 1px no-repeat;font-size:1px}.chosen-container-single .chosen-single abbr:hover{background-position:-42px -10px}.chosen-container-single.chosen-disabled .chosen-single abbr:hover{background-position:-42px -10px}.chosen-container-single .chosen-single div{position:absolute;top:0;right:0;display:block;width:18px;height:100%}.chosen-container-single .chosen-single div b{display:block;width:100%;height:100%;background:url(\"\") no-repeat 0 2px}.chosen-container-single .chosen-search{position:relative;z-index:1010;margin:0;padding:3px 4px;white-space:nowrap}.chosen-container-single .chosen-search input[type=text]{margin:1px 0;padding:4px 20px 4px 5px;width:100%;height:auto;outline:0;border:1px solid #aaa;background:url(\"\") no-repeat 100% -20px;font-size:1em;font-family:sans-serif;line-height:normal;border-radius:0}.chosen-container-single .chosen-drop{margin-top:-1px;border-radius:0 0 4px 4px;background-clip:padding-box}.chosen-container-single.chosen-container-single-nosearch .chosen-search{position:absolute;clip:rect(0,0,0,0)}.chosen-container .chosen-results{color:#444;position:relative;overflow-x:hidden;overflow-y:auto;margin:0 4px 4px 0;padding:0 0 0 4px;max-height:240px;-webkit-overflow-scrolling:touch}.chosen-container .chosen-results li{display:none;margin:0;padding:5px 6px;list-style:none;line-height:15px;word-wrap:break-word;-webkit-touch-callout:none}.chosen-container .chosen-results li.active-result{display:list-item;cursor:pointer}.chosen-container .chosen-results li.disabled-result{display:list-item;color:#ccc;cursor:default}.chosen-container .chosen-results li.highlighted{background-color:#3875d7;background-image:linear-gradient(#3875d7 20%,#2a62bc 90%);color:#fff}.chosen-container .chosen-results li.no-results{color:#777;display:list-item;background:#f4f4f4}.chosen-container .chosen-results li.group-result{display:list-item;font-weight:700;cursor:default}.chosen-container .chosen-results li.group-option{padding-left:15px}.chosen-container .chosen-results li em{font-style:normal;text-decoration:underline}.chosen-container-multi .chosen-choices{position:relative;overflow:hidden;margin:0;padding:0 5px;width:100%;height:auto;border:1px solid #aaa;background-color:#fff;background-image:linear-gradient(#eee 1%,#fff 15%);cursor:text}.chosen-container-multi .chosen-choices li{float:left;list-style:none}.chosen-container-multi .chosen-choices li.search-field{margin:0;padding:0;white-space:nowrap}.chosen-container-multi .chosen-choices li.search-field input[type=text]{margin:1px 0;padding:0;height:25px;outline:0;border:0!important;background:transparent!important;box-shadow:none;color:#999;font-size:100%;font-family:sans-serif;line-height:normal;border-radius:0;width:25px}.chosen-container-multi .chosen-choices li.search-choice{position:relative;margin:3px 5px 3px 0;padding:3px 20px 3px 5px;border:1px solid #aaa;max-width:100%;border-radius:3px;background-color:#eee;background-image:linear-gradient(#f4f4f4 20%,#f0f0f0 50%,#e8e8e8 52%,#eee 100%);background-size:100% 19px;background-repeat:repeat-x;background-clip:padding-box;box-shadow:0 0 2px #fff inset,0 1px 0 rgba(0,0,0,.05);color:#333;line-height:13px;cursor:default}.chosen-container-multi .chosen-choices li.search-choice span{word-wrap:break-word}.chosen-container-multi .chosen-choices li.search-choice .search-choice-close{position:absolute;top:4px;right:3px;display:block;width:12px;height:12px;background:url(\"\") -42px 1px no-repeat;font-size:1px}.chosen-container-multi .chosen-choices li.search-choice .search-choice-close:hover{background-position:-42px -10px}.chosen-container-multi .chosen-choices li.search-choice-disabled{padding-right:5px;border:1px solid #ccc;background-color:#e4e4e4;background-image:linear-gradient(#f4f4f4 20%,#f0f0f0 50%,#e8e8e8 52%,#eee 100%);color:#666}.chosen-container-multi .chosen-choices li.search-choice-focus{background:#d4d4d4}.chosen-container-multi .chosen-choices li.search-choice-focus .search-choice-close{background-position:-42px -10px}.chosen-container-multi .chosen-results{margin:0;padding:0}.chosen-container-multi .chosen-drop .result-selected{display:list-item;color:#ccc;cursor:default}.chosen-container-active .chosen-single{border:1px solid #5897fb;box-shadow:0 0 5px rgba(0,0,0,.3)}.chosen-container-active.chosen-with-drop .chosen-single{border:1px solid #aaa;border-bottom-right-radius:0;border-bottom-left-radius:0;background-image:linear-gradient(#eee 20%,#fff 80%);box-shadow:0 1px 0 #fff inset}.chosen-container-active.chosen-with-drop .chosen-single div{border-left:0;background:transparent}.chosen-container-active.chosen-with-drop .chosen-single div b{background-position:-18px 2px}.chosen-container-active .chosen-choices{border:1px solid #5897fb;box-shadow:0 0 5px rgba(0,0,0,.3)}.chosen-container-active .chosen-choices li.search-field input[type=text]{color:#222!important}.chosen-disabled{opacity:.5!important;cursor:default}.chosen-disabled .chosen-single{cursor:default}.chosen-disabled .chosen-choices .search-choice .search-choice-close{cursor:default}.chosen-rtl{text-align:right}.chosen-rtl .chosen-single{overflow:visible;padding:0 8px 0 0}.chosen-rtl .chosen-single span{margin-right:0;margin-left:26px;direction:rtl}.chosen-rtl .chosen-single-with-deselect span{margin-left:38px}.chosen-rtl .chosen-single div{right:auto;left:3px}.chosen-rtl .chosen-single abbr{right:auto;left:26px}.chosen-rtl .chosen-choices li{float:right}.chosen-rtl .chosen-choices li.search-field input[type=text]{direction:rtl}.chosen-rtl .chosen-choices li.search-choice{margin:3px 5px 3px 0;padding:3px 5px 3px 19px}.chosen-rtl .chosen-choices li.search-choice .search-choice-close{right:auto;left:4px}.chosen-rtl.chosen-container-single .chosen-results{margin:0 0 4px 4px;padding:0 4px 0 0}.chosen-rtl .chosen-results li.group-option{padding-right:15px;padding-left:0}.chosen-rtl.chosen-container-active.chosen-with-drop .chosen-single div{border-right:0}.chosen-rtl .chosen-search input[type=text]{padding:4px 5px 4px 20px;background:url(\"\") no-repeat -30px -20px;direction:rtl}.chosen-rtl.chosen-container-single .chosen-single div b{background-position:6px 2px}.chosen-rtl.chosen-container-single.chosen-with-drop .chosen-single div b{background-position:-12px 2px}@media only screen and (-webkit-min-device-pixel-ratio:1.5),only screen and (min-resolution:144dpi),only screen and (min-resolution:1.5dppx){.chosen-rtl .chosen-search input[type=text],.chosen-container-single .chosen-single abbr,.chosen-container-single .chosen-single div b,.chosen-container-single .chosen-search input[type=text],.chosen-container-multi .chosen-choices .search-choice .search-choice-close,.chosen-container .chosen-results-scroll-down span,.chosen-container .chosen-results-scroll-up span{background-image:url(\"\")!important;background-size:52px 37px!important;background-repeat:no-repeat!important}}\n\n/*!\n * Periodic Table\n *\n * @copyright Copyright 2017 Benjamin Regler - MIT License\n * @license   https://opensource.org/licenses/MIT\n * @author    Benjamin Regler\n * @version   1.0.0\n */\n.periodic-table{margin-bottom:2em}.periodic-table--header{text-align:center}.periodic-table--title{margin:0}.periodic-table--description{margin:0 0 2em}.periodic-table--credits{font-size:x-small;text-align:right}.periodic-table--colormap{margin-bottom:1em}.periodic-table--colormap-canvas{background-color:#5bc0de;cursor:crosshair;height:1em;width:50%}.periodic-table--colormap-value{display:inline-block;vertical-align:bottom;padding:0 .2em;position:relative;min-width:2em}.periodic-table--colormap-value::before{font-size:smaller;font-weight:700;position:absolute;top:100%}.periodic-table--colormap-value.min{text-align:right}.periodic-table--colormap-value.min::before{content:\"Min\";right:0}.periodic-table--colormap-value.max::before{content:\"Max\"}#periodic-table--colormap-1__hover{background-color:#fff;border:1px dotted #000;display:none;font-size:small;padding:.2em;position:absolute;z-index:10000}#periodic-table--colormap-1__hover span{width:1em;height:1em;display:inline-block;margin-right:.2em;vertical-align:text-top}.periodic-table--footer{margin-top:2em}.periodic-table--credits a{color:inherit;text-decoration:none;opacity:.8}.periodic-table--footer,.periodic-table--row{margin-bottom:.2em}.periodic-table--row .periodic-table--row{margin:0 -.2em}.periodic-table--footer:after,.periodic-table--row:after{content:\"\";clear:both;display:table}@media only screen{.periodic-table--colormap,.periodic-table--column,.periodic-table--credits{float:left;width:100%;box-sizing:border-box}}.periodic-table--table{font-family:Arial;text-align:center;width:100%;word-wrap:break-word}.periodic-table--row.periodic-table--empty{height:3em}.periodic-table--column{padding:0 .2em;min-height:.01px;width:5.2%}.periodic-table--column:first-child{width:6.4%}.periodic-table--column.wide{width:10.4%}.periodic-table--column.extra-wide{width:15.6%}.periodic-table--column.header{color:grey;font-size:x-small;font-variant:small-caps}.periodic-table--label{font-size:xx-small;font-weight:700}.periodic-table--label i{opacity:.5;font-size:smaller}.periodic-table--period{display:block;margin-top:.5em}.periodic-table-cell{position:relative;width:100%;height:100%;box-shadow:0 0 4px rgba(255,255,255,.5);cursor:default;-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.periodic-table-cell:before{display:inline-block;content:\"\";width:100%;padding-top:125%}.wide .periodic-table-cell:before{padding-top:47.5%}.periodic-table-cell .periodic-table--element,.periodic-table-cell .periodic-table--element-placeholder{position:absolute;top:0;left:0;right:0;bottom:1px}.periodic-table--element,.periodic-table--element-placeholder{border:1px solid rgba(0,0,0,.05);color:#000;font-size:smaller;line-height:1em;overflow:hidden;text-align:center}.periodic-table--element:hover{opacity:.7}.periodic-table--element.disabled:hover{opacity:1}.periodic-table--element span,.periodic-table--element-placeholder span{display:block;opacity:.5;text-shadow:0 0 4px rgba(255,255,255,.5);width:100%}.periodic-table--element.light-color{color:#FFF}.periodic-table--element.disabled{cursor:not-allowed;background-color:#fff!important;color:#d3d3d3!important}.periodic-table--atomic-number{font-size:xx-small;text-align:right}.periodic-table--atomic-symbol{font-size:xx-small;font-weight:700;opacity:1!important}.periodic-table--element-placeholder.light-color span,.periodic-table--element.light-color span{opacity:.7}.light-color .periodic-table--atomic-symbol{opacity:1!important}.periodic-table--element .periodic-table--atomic-name,.periodic-table--element .periodic-table--atomic-number,.periodic-table--element .periodic-table--atomic-value{display:none}.periodic-table--atomic-name,.periodic-table--atomic-value{padding-top:.4em}.periodic-table--element-placeholder{border:3px dashed #f0b2b2;color:#000;display:none;margin:1px}.periodic-table--element-placeholder .periodic-table--atomic-name{display:none;font-weight:700}.periodic-table--atomic-range{font-size:xx-small;margin-top:.5em}.periodic-table-classification{font-size:x-small;font-weight:700;display:block;text-align:left}.periodic-table--colormap,.periodic-table--credits{width:50%}@media only screen and (min-width:35em){.periodic-table--atomic-symbol{font-size:x-small;margin-top:.5em}}@media only screen and (min-width:40em){.periodic-table--atomic-symbol{margin-top:.5em}.periodic-table-classification{font-size:inherit;margin-top:2em}.periodic-table--atomic-number,.periodic-table--atomic-range{font-size:x-small}.periodic-table--atomic-symbol{font-size:medium}.periodic-table--element-placeholder{display:block}.periodic-table--period{margin-top:1.5em}.periodic-table--element .periodic-table--atomic-value{display:block;font-size:xx-small}}@media only screen and (min-width:60em){.periodic-table--column:first-child{width:6.4%}.periodic-table--column{width:5.2%}.periodic-table--column.wide{width:10.4%}.periodic-table--column.extra-wide{width:15.6%}.periodic-table--atomic-range,.periodic-table--column.header,.periodic-table--element .periodic-table--atomic-value,.periodic-table--label,.periodic-table-classification{font-size:small}.periodic-table--atomic-symbol{font-size:1.5em;margin-top:.3em}.periodic-table--element,.periodic-table--element-placeholder{padding:5px}.periodic-table--element .periodic-table--atomic-number{display:block}}@media only screen and (min-width:80em){.periodic-table-classification{font-size:medium}.periodic-table--atomic-number{font-size:inherit}.periodic-table--element .periodic-table--atomic-name{display:inherit}.periodic-table--element-placeholder .periodic-table--atomic-name{display:block}.periodic-table--atomic-symbol{margin-top:0}.periodic-table--period{margin-top:2em}}@media only screen and (min-width:100em){.periodic-table--table{font-size:larger}.periodic-table--element-placeholder .periodic-table--atomic-name{margin-top:1em}}\n/*!\n * Atomic Data\n *\n * @copyright  Copyright 2017 Fritz Haber Institute of the Max Planck Society,\n *             Benjamin Regler - Apache 2.0 License\n * @license    http://www.apache.org/licenses/LICENSE-2.0\n * @author     Benjamin Regler\n * @version    1.1.0\n *\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n * \n *     http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n */\n.atomic-data--block{display:inline-block;margin-top:1em}.atomic-data label{display:block;font-size:medium;font-weight:700}.atomic-data--select,.chosen-container{width:100%!important}.atomic-data--select:disabled{color:#d3d3d3}.atomic-data--show-button,.atomic-data--reset-button{display:inline-block;margin-top:1.6em;width:100%}.atomic-data--properties button{padding-left:2em;padding-right:2em;width: auto}.periodic-table--atomic-value{display:none!important}#atomic-data--tooltip{background:rgba(255,255,255,.95);border:1px solid #a9a9a9;border-radius:4px;display:none;font-size:small;min-width:300px;padding:1.5em;position:absolute;width:500px;word-wrap:break-word}#atomic-data--tooltip h5{font-size:2em;padding:0;margin:0}.atomic-data--value{float:right;font-size:x-large}.atomic-data--value:before{content:\"= \"}#atomic-data--tooltip dl{margin-top:2em;margin-bottom:0}#atomic-data--tooltip dt{font-weight:700;display:inline-block;vertical-align:top;width:40%}#atomic-data--tooltip dt:after{content:\": \"}#atomic-data--tooltip dd{padding:0;margin:0;display:inline-block;width:60%}\n</style>"
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<style type=\"text/css\">\n/*!\n * Nomad Beaker Notebook Template\n *\n * @copyright  Copyright 2017 Fritz Haber Institute of the Max Planck Society,\n *             Benjamin Regler - Apache 2.0 License\n * @license    http://www.apache.org/licenses/LICENSE-2.0\n * @author     Benjamin Regler\n * @version    1.4.0\n *\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n *     http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n */\np{margin-bottom:1.3em}h1,h2,h3,h4{margin:1.414em 0 .5em;font-weight:inherit;line-height:1.2}h1{margin-top:0;font-size:3.998em}h2{font-size:2.827em}h3{font-size:1.999em}h4{font-size:1.414em}.font_small,small{font-size:.707em}.notebook-container{font-size:16px}.notebook-container .bkr{font-size:100%;font-weight:400;line-height:1.45;color:#333}.nomad--header{background:#c5d293;margin:-52px 0 .5em;padding:2em 3em 1em;overflow:hidden}.nomad--header sup{padding:0 .2em 0 .3em}.nomad--header h2{color:#20335d;font-weight:700;font-size:2.5em;margin:-.4em 0 .2em -.25em;text-align:center}.nomad--header h2 img{display:block;height:2.5em;margin:0 auto;vertical-align:middle}.nomad--header h2 .nomad--header-title,.nomad--header h2 img:last-child{display:none}.nomad--header h3{color:#20335d;font-weight:700;margin-top:0}.nomad--header a,.nomad--header a:focus,.nomad--header a:hover{color:inherit;font-style:italic}.nomad--header .nomad--description{margin:-1em 0 0}.nomad--header .nomad--affiliation{display:block;padding:1.25em 0 1em}.nomad--last-updated{color:#596273;display:inline-block;float:right;margin-top:0;margin-right:-1em;position:relative;z-index:1}.nomad--last-updated:before{bottom:-75%;color:#20335d;content:attr(data-version);font-size:4em;font-weight:700;opacity:.2;position:absolute;right:0;z-index:-1;width:200%;text-align:right}.nomad--navigation{text-align:right;z-index:1}.nomad--navigation a{background:#f5f5f5;display:block;margin-top:.25em}@media only screen and (min-width:60em){.nomad--header h2{font-size:2.827em;margin-right:1em;margin-top:0}.nomad--header h2 img{display:inline-block;height:1.5em;margin:0 .4em 0 0;vertical-align:middle}.nomad--header h2 img:last-child{display:inline-block!important;margin:0 0 0 .4em}.nomad--header h2 .nomad--header-title,.nomad--navigation a{display:inline-block}.nomad--header h3{text-indent:-1em;padding-left:1em}.nomad--header h3:before{content:\"\\2014\";padding-right:.25em}.nomad--navigation{height:0;margin-right:0;position:relative}}.modal-dialog{max-width:1000px;width:80%}.modal-header h1{font-size:2em;line-height:1.2}.modal-dialog h2{font-size:1.414em}.modal-dialog h2:first-child{margin-top:0}.modal-dialog h3{font-size:1.2em}.modal-dialog dt{font-size:larger;margin-top:1.414em}.modal-dialog img{display:block;width:100%;text-align:center;margin:0 auto;max-width:35em}.modal-dialog img.large{max-width:inherit}.modal-dialog .authors{text-transform:uppercase}.new-cell .active,.new-cell .btn,.new-cell .btn>*,.new-cell .dropdown{color:#fff}.markup p:first-child:before{content:none;display:block;float:none;height:auto;width:auto}\n/*!\n * Chosen, a Select Box Enhancer for jQuery and Prototype\n * by Patrick Filler for Harvest, http://getharvest.com\n *\n * Version 1.7.0\n * Full source at https://github.com/harvesthq/chosen\n * Copyright (c) 2011-2017 Harvest http://getharvest.com\n *\n * MIT License, https://github.com/harvesthq/chosen/blob/master/LICENSE.md\n * This file is generated by `grunt build`, do not edit it by hand.\n */\n.chosen-container{position:relative;display:inline-block;vertical-align:middle;font-size:13px;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.chosen-container *{box-sizing:border-box}.chosen-container .chosen-drop{position:absolute;top:100%;z-index:1010;width:100%;border:1px solid #aaa;border-top:0;background:#fff;box-shadow:0 4px 5px rgba(0,0,0,.15);clip:rect(0,0,0,0)}.chosen-container.chosen-with-drop .chosen-drop{clip:auto}.chosen-container a{cursor:pointer}.chosen-container .search-choice .group-name,.chosen-container .chosen-single .group-name{margin-right:4px;overflow:hidden;white-space:nowrap;text-overflow:ellipsis;font-weight:400;color:#999}.chosen-container .search-choice .group-name:after,.chosen-container .chosen-single .group-name:after{content:\":\";padding-left:2px;vertical-align:top}.chosen-container-single .chosen-single{position:relative;display:block;overflow:hidden;padding:0 0 0 8px;height:25px;border:1px solid #aaa;border-radius:5px;background-color:#fff;background:linear-gradient(#fff 20%,#f6f6f6 50%,#eee 52%,#f4f4f4 100%);background-clip:padding-box;box-shadow:0 0 3px #fff inset,0 1px 1px rgba(0,0,0,.1);color:#444;text-decoration:none;white-space:nowrap;line-height:24px}.chosen-container-single .chosen-default{color:#999}.chosen-container-single .chosen-single span{display:block;overflow:hidden;margin-right:26px;text-overflow:ellipsis;white-space:nowrap}.chosen-container-single .chosen-single-with-deselect span{margin-right:38px}.chosen-container-single .chosen-single abbr{position:absolute;top:6px;right:26px;display:block;width:12px;height:12px;background:url(\"\") -42px 1px no-repeat;font-size:1px}.chosen-container-single .chosen-single abbr:hover{background-position:-42px -10px}.chosen-container-single.chosen-disabled .chosen-single abbr:hover{background-position:-42px -10px}.chosen-container-single .chosen-single div{position:absolute;top:0;right:0;display:block;width:18px;height:100%}.chosen-container-single .chosen-single div b{display:block;width:100%;height:100%;background:url(\"\") no-repeat 0 2px}.chosen-container-single .chosen-search{position:relative;z-index:1010;margin:0;padding:3px 4px;white-space:nowrap}.chosen-container-single .chosen-search input[type=text]{margin:1px 0;padding:4px 20px 4px 5px;width:100%;height:auto;outline:0;border:1px solid #aaa;background:url(\"\") no-repeat 100% -20px;font-size:1em;font-family:sans-serif;line-height:normal;border-radius:0}.chosen-container-single .chosen-drop{margin-top:-1px;border-radius:0 0 4px 4px;background-clip:padding-box}.chosen-container-single.chosen-container-single-nosearch .chosen-search{position:absolute;clip:rect(0,0,0,0)}.chosen-container .chosen-results{color:#444;position:relative;overflow-x:hidden;overflow-y:auto;margin:0 4px 4px 0;padding:0 0 0 4px;max-height:240px;-webkit-overflow-scrolling:touch}.chosen-container .chosen-results li{display:none;margin:0;padding:5px 6px;list-style:none;line-height:15px;word-wrap:break-word;-webkit-touch-callout:none}.chosen-container .chosen-results li.active-result{display:list-item;cursor:pointer}.chosen-container .chosen-results li.disabled-result{display:list-item;color:#ccc;cursor:default}.chosen-container .chosen-results li.highlighted{background-color:#3875d7;background-image:linear-gradient(#3875d7 20%,#2a62bc 90%);color:#fff}.chosen-container .chosen-results li.no-results{color:#777;display:list-item;background:#f4f4f4}.chosen-container .chosen-results li.group-result{display:list-item;font-weight:700;cursor:default}.chosen-container .chosen-results li.group-option{padding-left:15px}.chosen-container .chosen-results li em{font-style:normal;text-decoration:underline}.chosen-container-multi .chosen-choices{position:relative;overflow:hidden;margin:0;padding:0 5px;width:100%;height:auto;border:1px solid #aaa;background-color:#fff;background-image:linear-gradient(#eee 1%,#fff 15%);cursor:text}.chosen-container-multi .chosen-choices li{float:left;list-style:none}.chosen-container-multi .chosen-choices li.search-field{margin:0;padding:0;white-space:nowrap}.chosen-container-multi .chosen-choices li.search-field input[type=text]{margin:1px 0;padding:0;height:25px;outline:0;border:0!important;background:transparent!important;box-shadow:none;color:#999;font-size:100%;font-family:sans-serif;line-height:normal;border-radius:0;width:25px}.chosen-container-multi .chosen-choices li.search-choice{position:relative;margin:3px 5px 3px 0;padding:3px 20px 3px 5px;border:1px solid #aaa;max-width:100%;border-radius:3px;background-color:#eee;background-image:linear-gradient(#f4f4f4 20%,#f0f0f0 50%,#e8e8e8 52%,#eee 100%);background-size:100% 19px;background-repeat:repeat-x;background-clip:padding-box;box-shadow:0 0 2px #fff inset,0 1px 0 rgba(0,0,0,.05);color:#333;line-height:13px;cursor:default}.chosen-container-multi .chosen-choices li.search-choice span{word-wrap:break-word}.chosen-container-multi .chosen-choices li.search-choice .search-choice-close{position:absolute;top:4px;right:3px;display:block;width:12px;height:12px;background:url(\"\") -42px 1px no-repeat;font-size:1px}.chosen-container-multi .chosen-choices li.search-choice .search-choice-close:hover{background-position:-42px -10px}.chosen-container-multi .chosen-choices li.search-choice-disabled{padding-right:5px;border:1px solid #ccc;background-color:#e4e4e4;background-image:linear-gradient(#f4f4f4 20%,#f0f0f0 50%,#e8e8e8 52%,#eee 100%);color:#666}.chosen-container-multi .chosen-choices li.search-choice-focus{background:#d4d4d4}.chosen-container-multi .chosen-choices li.search-choice-focus .search-choice-close{background-position:-42px -10px}.chosen-container-multi .chosen-results{margin:0;padding:0}.chosen-container-multi .chosen-drop .result-selected{display:list-item;color:#ccc;cursor:default}.chosen-container-active .chosen-single{border:1px solid #5897fb;box-shadow:0 0 5px rgba(0,0,0,.3)}.chosen-container-active.chosen-with-drop .chosen-single{border:1px solid #aaa;border-bottom-right-radius:0;border-bottom-left-radius:0;background-image:linear-gradient(#eee 20%,#fff 80%);box-shadow:0 1px 0 #fff inset}.chosen-container-active.chosen-with-drop .chosen-single div{border-left:0;background:transparent}.chosen-container-active.chosen-with-drop .chosen-single div b{background-position:-18px 2px}.chosen-container-active .chosen-choices{border:1px solid #5897fb;box-shadow:0 0 5px rgba(0,0,0,.3)}.chosen-container-active .chosen-choices li.search-field input[type=text]{color:#222!important}.chosen-disabled{opacity:.5!important;cursor:default}.chosen-disabled .chosen-single{cursor:default}.chosen-disabled .chosen-choices .search-choice .search-choice-close{cursor:default}.chosen-rtl{text-align:right}.chosen-rtl .chosen-single{overflow:visible;padding:0 8px 0 0}.chosen-rtl .chosen-single span{margin-right:0;margin-left:26px;direction:rtl}.chosen-rtl .chosen-single-with-deselect span{margin-left:38px}.chosen-rtl .chosen-single div{right:auto;left:3px}.chosen-rtl .chosen-single abbr{right:auto;left:26px}.chosen-rtl .chosen-choices li{float:right}.chosen-rtl .chosen-choices li.search-field input[type=text]{direction:rtl}.chosen-rtl .chosen-choices li.search-choice{margin:3px 5px 3px 0;padding:3px 5px 3px 19px}.chosen-rtl .chosen-choices li.search-choice .search-choice-close{right:auto;left:4px}.chosen-rtl.chosen-container-single .chosen-results{margin:0 0 4px 4px;padding:0 4px 0 0}.chosen-rtl .chosen-results li.group-option{padding-right:15px;padding-left:0}.chosen-rtl.chosen-container-active.chosen-with-drop .chosen-single div{border-right:0}.chosen-rtl .chosen-search input[type=text]{padding:4px 5px 4px 20px;background:url(\"\") no-repeat -30px -20px;direction:rtl}.chosen-rtl.chosen-container-single .chosen-single div b{background-position:6px 2px}.chosen-rtl.chosen-container-single.chosen-with-drop .chosen-single div b{background-position:-12px 2px}@media only screen and (-webkit-min-device-pixel-ratio:1.5),only screen and (min-resolution:144dpi),only screen and (min-resolution:1.5dppx){.chosen-rtl .chosen-search input[type=text],.chosen-container-single .chosen-single abbr,.chosen-container-single .chosen-single div b,.chosen-container-single .chosen-search input[type=text],.chosen-container-multi .chosen-choices .search-choice .search-choice-close,.chosen-container .chosen-results-scroll-down span,.chosen-container .chosen-results-scroll-up span{background-image:url(\"\")!important;background-size:52px 37px!important;background-repeat:no-repeat!important}}\n\n/*!\n * Periodic Table\n *\n * @copyright Copyright 2017 Benjamin Regler - MIT License\n * @license   https://opensource.org/licenses/MIT\n * @author    Benjamin Regler\n * @version   1.0.0\n */\n.periodic-table{margin-bottom:2em}.periodic-table--header{text-align:center}.periodic-table--title{margin:0}.periodic-table--description{margin:0 0 2em}.periodic-table--credits{font-size:x-small;text-align:right}.periodic-table--colormap{margin-bottom:1em}.periodic-table--colormap-canvas{background-color:#5bc0de;cursor:crosshair;height:1em;width:50%}.periodic-table--colormap-value{display:inline-block;vertical-align:bottom;padding:0 .2em;position:relative;min-width:2em}.periodic-table--colormap-value::before{font-size:smaller;font-weight:700;position:absolute;top:100%}.periodic-table--colormap-value.min{text-align:right}.periodic-table--colormap-value.min::before{content:\"Min\";right:0}.periodic-table--colormap-value.max::before{content:\"Max\"}#periodic-table--colormap-1__hover{background-color:#fff;border:1px dotted #000;display:none;font-size:small;padding:.2em;position:absolute;z-index:10000}#periodic-table--colormap-1__hover span{width:1em;height:1em;display:inline-block;margin-right:.2em;vertical-align:text-top}.periodic-table--footer{margin-top:2em}.periodic-table--credits a{color:inherit;text-decoration:none;opacity:.8}.periodic-table--footer,.periodic-table--row{margin-bottom:.2em}.periodic-table--row .periodic-table--row{margin:0 -.2em}.periodic-table--footer:after,.periodic-table--row:after{content:\"\";clear:both;display:table}@media only screen{.periodic-table--colormap,.periodic-table--column,.periodic-table--credits{float:left;width:100%;box-sizing:border-box}}.periodic-table--table{font-family:Arial;text-align:center;width:100%;word-wrap:break-word}.periodic-table--row.periodic-table--empty{height:3em}.periodic-table--column{padding:0 .2em;min-height:.01px;width:5.2%}.periodic-table--column:first-child{width:6.4%}.periodic-table--column.wide{width:10.4%}.periodic-table--column.extra-wide{width:15.6%}.periodic-table--column.header{color:grey;font-size:x-small;font-variant:small-caps}.periodic-table--label{font-size:xx-small;font-weight:700}.periodic-table--label i{opacity:.5;font-size:smaller}.periodic-table--period{display:block;margin-top:.5em}.periodic-table-cell{position:relative;width:100%;height:100%;box-shadow:0 0 4px rgba(255,255,255,.5);cursor:default;-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.periodic-table-cell:before{display:inline-block;content:\"\";width:100%;padding-top:125%}.wide .periodic-table-cell:before{padding-top:47.5%}.periodic-table-cell .periodic-table--element,.periodic-table-cell .periodic-table--element-placeholder{position:absolute;top:0;left:0;right:0;bottom:1px}.periodic-table--element,.periodic-table--element-placeholder{border:1px solid rgba(0,0,0,.05);color:#000;font-size:smaller;line-height:1em;overflow:hidden;text-align:center}.periodic-table--element:hover{opacity:.7}.periodic-table--element.disabled:hover{opacity:1}.periodic-table--element span,.periodic-table--element-placeholder span{display:block;opacity:.5;text-shadow:0 0 4px rgba(255,255,255,.5);width:100%}.periodic-table--element.light-color{color:#FFF}.periodic-table--element.disabled{cursor:not-allowed;background-color:#fff!important;color:#d3d3d3!important}.periodic-table--atomic-number{font-size:xx-small;text-align:right}.periodic-table--atomic-symbol{font-size:xx-small;font-weight:700;opacity:1!important}.periodic-table--element-placeholder.light-color span,.periodic-table--element.light-color span{opacity:.7}.light-color .periodic-table--atomic-symbol{opacity:1!important}.periodic-table--element .periodic-table--atomic-name,.periodic-table--element .periodic-table--atomic-number,.periodic-table--element .periodic-table--atomic-value{display:none}.periodic-table--atomic-name,.periodic-table--atomic-value{padding-top:.4em}.periodic-table--element-placeholder{border:3px dashed #f0b2b2;color:#000;display:none;margin:1px}.periodic-table--element-placeholder .periodic-table--atomic-name{display:none;font-weight:700}.periodic-table--atomic-range{font-size:xx-small;margin-top:.5em}.periodic-table-classification{font-size:x-small;font-weight:700;display:block;text-align:left}.periodic-table--colormap,.periodic-table--credits{width:50%}@media only screen and (min-width:35em){.periodic-table--atomic-symbol{font-size:x-small;margin-top:.5em}}@media only screen and (min-width:40em){.periodic-table--atomic-symbol{margin-top:.5em}.periodic-table-classification{font-size:inherit;margin-top:2em}.periodic-table--atomic-number,.periodic-table--atomic-range{font-size:x-small}.periodic-table--atomic-symbol{font-size:medium}.periodic-table--element-placeholder{display:block}.periodic-table--period{margin-top:1.5em}.periodic-table--element .periodic-table--atomic-value{display:block;font-size:xx-small}}@media only screen and (min-width:60em){.periodic-table--column:first-child{width:6.4%}.periodic-table--column{width:5.2%}.periodic-table--column.wide{width:10.4%}.periodic-table--column.extra-wide{width:15.6%}.periodic-table--atomic-range,.periodic-table--column.header,.periodic-table--element .periodic-table--atomic-value,.periodic-table--label,.periodic-table-classification{font-size:small}.periodic-table--atomic-symbol{font-size:1.5em;margin-top:.3em}.periodic-table--element,.periodic-table--element-placeholder{padding:5px}.periodic-table--element .periodic-table--atomic-number{display:block}}@media only screen and (min-width:80em){.periodic-table-classification{font-size:medium}.periodic-table--atomic-number{font-size:inherit}.periodic-table--element .periodic-table--atomic-name{display:inherit}.periodic-table--element-placeholder .periodic-table--atomic-name{display:block}.periodic-table--atomic-symbol{margin-top:0}.periodic-table--period{margin-top:2em}}@media only screen and (min-width:100em){.periodic-table--table{font-size:larger}.periodic-table--element-placeholder .periodic-table--atomic-name{margin-top:1em}}\n/*!\n * Atomic Data\n *\n * @copyright  Copyright 2017 Fritz Haber Institute of the Max Planck Society,\n *             Benjamin Regler - Apache 2.0 License\n * @license    http://www.apache.org/licenses/LICENSE-2.0\n * @author     Benjamin Regler\n * @version    1.1.0\n *\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n * \n *     http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n */\n.atomic-data--block{display:inline-block;margin-top:1em}.atomic-data label{display:block;font-size:medium;font-weight:700}.atomic-data--select,.chosen-container{width:100%!important}.atomic-data--select:disabled{color:#d3d3d3}.atomic-data--show-button,.atomic-data--reset-button{display:inline-block;margin-top:1.6em;width:100%}.atomic-data--properties button{padding-left:2em;padding-right:2em;width: auto}.periodic-table--atomic-value{display:none!important}#atomic-data--tooltip{background:rgba(255,255,255,.95);border:1px solid #a9a9a9;border-radius:4px;display:none;font-size:small;min-width:300px;padding:1.5em;position:absolute;width:500px;word-wrap:break-word}#atomic-data--tooltip h5{font-size:2em;padding:0;margin:0}.atomic-data--value{float:right;font-size:x-large}.atomic-data--value:before{content:\"= \"}#atomic-data--tooltip dl{margin-top:2em;margin-bottom:0}#atomic-data--tooltip dt{font-weight:700;display:inline-block;vertical-align:top;width:40%}#atomic-data--tooltip dt:after{content:\": \"}#atomic-data--tooltip dd{padding:0;margin:0;display:inline-block;width:60%}\n</style>"
                 },
                 "selectedType": "BeakerDisplay",
                 "elapsedTime": 0,
                 "height": 50
             },
             "evaluatorReader": true,
-            "lineCount": 68
+            "lineCount": 68,
+            "isError": false
         },
         {
             "id": "load_javascript",
@@ -172,7 +173,7 @@
                     "        <span class=\"nomad--affiliation\">",
                     "          <sup>1</sup>Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany<br />",
                     "        </span>",
-                    "        <span class=\"nomad--last-updated\" data-version=\"v1.2.0\">[Last updated: June 6, 2017]</span>",
+                    "        <span class=\"nomad--last-updated\" data-version=\"v1.2.1\">[Last updated: December 12, 2018]</span>",
                     "    </p>",
                     "</div>",
                     "",
@@ -189,14 +190,15 @@
                 "result": {
                     "type": "BeakerDisplay",
                     "innertype": "Html",
-                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<div class=\"nomad--header\">\n    <h2><img src=\"\">NOMAD Analytics Toolkit<img src=\"https://www.nomad-coe.eu/uploads/nomad/images/icons/icon_bigdata_100x100.png\"></h2>\n    <h3>A Periodic Table Of Elements for Atomic Data Collections</h3>\n  \n    <p class=\"nomad--description\">\n        created by:\n        <a href=\"mailto:regler@fhi-berlin.mpg.de\">Benjamin Regler</a><sup>1</sup>, Luca Ghiringhelli<sup>1</sup>,\n        and <em>Matthias Scheffler<sup>1</sup></em>.<br>\n      \n        <span class=\"nomad--affiliation\">\n          <sup>1</sup>Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany<br>\n        </span>\n        <span class=\"nomad--last-updated\" data-version=\"v1.2.0\">[Last updated: June 6, 2017]</span>\n    </p>\n</div>\n\n<div class=\"nomad--navigation\">\n  <a href=\"https://analytics-toolkit.nomad-coe.eu/home/\" class=\"btn\">Back to Analytics Home</a> \n  <a href=\"https://www.nomad-coe.eu/\" class=\"btn\">Back to NOMAD CoE Home</a>\n  <a target=\"_blank\" href=\"https://nomad-forum.rz-berlin.mpg.de\" class=\"btn\" style=\"background: #dcdcdc;\">Send us your Feedback</a>\n</div>"
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<div class=\"nomad--header\">\n    <h2><img src=\"\">NOMAD Analytics Toolkit<img src=\"https://www.nomad-coe.eu/uploads/nomad/images/icons/icon_bigdata_100x100.png\"></h2>\n    <h3>A Periodic Table Of Elements for Atomic Data Collections</h3>\n  \n    <p class=\"nomad--description\">\n        created by:\n        <a href=\"mailto:regler@fhi-berlin.mpg.de\">Benjamin Regler</a><sup>1</sup>, Luca Ghiringhelli<sup>1</sup>,\n        and <em>Matthias Scheffler<sup>1</sup></em>.<br>\n      \n        <span class=\"nomad--affiliation\">\n          <sup>1</sup>Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany<br>\n        </span>\n        <span class=\"nomad--last-updated\" data-version=\"v1.2.1\">[Last updated: December 12, 2018]</span>\n    </p>\n</div>\n\n<div class=\"nomad--navigation\">\n  <a href=\"https://analytics-toolkit.nomad-coe.eu/home/\" class=\"btn\">Back to Analytics Home</a> \n  <a href=\"https://www.nomad-coe.eu/\" class=\"btn\">Back to NOMAD CoE Home</a>\n  <a target=\"_blank\" href=\"https://nomad-forum.rz-berlin.mpg.de\" class=\"btn\" style=\"background: #dcdcdc;\">Send us your Feedback</a>\n</div>"
                 },
                 "selectedType": "BeakerDisplay",
                 "elapsedTime": 0,
-                "height": 245
+                "height": 261
             },
             "evaluatorReader": true,
-            "lineCount": 21
+            "lineCount": 21,
+            "isError": false
         },
         {
             "id": "markdownxSre89",
@@ -233,6 +235,8 @@
                     "        <p>This notebook provides a selected and curated list of atomic data collections to be visualized in the periodic table of elements.</p>",
                     "",
                     "        <p>Atomic data collections are data sets of atomic properties. They are enhanced by metadata attributes from where the data come from, how they were generated or measured, and what settings have been used. Atomic properties are the radius, the atomic mass, but also the ionization potential, the expectation values of the orbitals, and many other properties that describe the elements.</p>",
+                    "        ",
+                    "        <p><strong>Tutorials:</strong><br/ >For details, please read a short guide about the <a href=\"https://www.nomad-coe.eu/index.php?page=atomic-data-collection-parser\">atomic-data collection parser</a> and the tutorial about <a href=\"https://www.nomad-coe.eu/index.php?page=atomic-data-collection\">atomic-data collections</a>.",
                     "",
                     "        <h2>Visualization</h2>",
                     "",
@@ -352,14 +356,15 @@
                 "result": {
                     "type": "BeakerDisplay",
                     "innertype": "Html",
-                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<button type=\"button\" class=\"btn btn-info\" data-toggle=\"modal\" data-target=\"#modal-instructions\" style=\"font-size:larger;\">Read usage instructions</button>\n<div class=\"modal fade\" id=\"modal-instructions\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"modal-instructions\">\n  <div class=\"modal-dialog\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h1 class=\"modal-title\" id=\"modal-instructions-label\">Usage instructions</h1>\n        <hr>\n      </div>\n      <div class=\"modal-body modal-instructions-body\">\n        <h2>Introduction</h2>\n\n        <p>This notebook provides a selected and curated list of atomic data collections to be visualized in the periodic table of elements.</p>\n\n        <p>Atomic data collections are data sets of atomic properties. They are enhanced by metadata attributes from where the data come from, how they were generated or measured, and what settings have been used. Atomic properties are the radius, the atomic mass, but also the ionization potential, the expectation values of the orbitals, and many other properties that describe the elements.</p>\n\n        <h2>Visualization</h2>\n\n        <h3>Atomic data collections:</h3>\n\n        <p>Multiple atomic data collections can be selected for the visualization. Their are shown and sorted according to their atomic data collection name. Additional information will be shown once the mouse cursor hovers over the name. You can select multiple atomic data collections, where the order specifies the priority of the collections, i.e., when two or more collections have the same atomic properties. In this case collections that are selected first have higher priority than collections that are selected last and overwrite those values if present.</p>\n\n        <img src=\"\">\n\n        <h3>Filters:</h3>\n\n        <p>There exist several filters to select only a specific subset of atomic data collections. Filters are only available once an atomic collection is selected and filters that are not available are disabled. You can add as many filters as selection criteria as you want.</p>\n\n        <img src=\"\">\n        \n        <p>Please note that the order is important here as well. For example, consider the atomic data collection has experimental and theoretical data and if you select <code>Theory, Experiment</code>, then all data are shown, but theoretical values overwrite experimental values when present.</p>\n\n        <h3>Atomic properties:</h3>\n\n        <p>Once an atomic data collection has been set and an optional selection filter criteria has been applied, it is possible to visualize the atomic properties in the periodic table of elements. The elements will be colored by the value of the selected atomic property. A colormap shows the range of the atomic property value (including the minimum and maximum value). For an empty value, all available atomic properties in the table will be displayed. Elements that are shown in gray are not in the set of atomic collections or have been filtered out by the selection criteria. For all other elements, additional information is provided when the mouse cursor hovers over the element.</p>\n      \n        <p>The visualization resets, when the set of atomic data collections or the selection criteria changes and updates when an atomic property is selected again.</p>\n\n        <img src=\"\">\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\" style=\"font-size:larger;\">Close</button>\n      </div>\n    </div>\n  </div>\n</div>\n\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#modal-credits\" style=\"font-size:larger;\">Credits</button>\n<div class=\"modal fade\" id=\"modal-credits\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"modal-credits\">\n  <div class=\"modal-dialog\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h1 class=\"modal-title\" id=\"modal-credits-label\">Credits</h1>\n        <hr>\n      </div>\n      <div class=\"modal-body modal-credits-body\">\n        <h2>Atomic Data:</h2>\n\n        <p>This notebook is based on the NOMAD Atomic Data Parser and Interface written by <a href=\"mailto:regler@fhi-berlin.mpg.de\">Benjamin Regler</a>.</p>\n        <ul>\n          <li><span class=\"authors\">Regler, B.</span>: <em>NOMAD Atomic Data Parser and Interface</em>. Fritz Haber Institute of the Max Planck Society, Germany (2017).</li>\n        </ul>\n\n        <h2>Atomic Data Collections:</h2>\n        <dl>\n          <dt>Experimental and theoretically derived values for isotropic static polarizability</dt>\n          <dd>\n            <p>This collection includes experimental and theoretically derived values for isotropic static polarizability as complied by <a href=\"http://ctcp.massey.ac.nz/?group=schwerd\">Prof. Peter Schwerdtfeger</a>.</p>\n            <ul>\n              <li><span class=\"authors\">Schwerdtfeger, P.</span>: <em>Table of experimental and calculated static dipole polarizabilities for the electronic ground states of the neutral elements (in atomic units)</em>. Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (2014). [<a href=\"http://ctcp.massey.ac.nz/Tablepol2014.pdf\">link</a>]</li>\n            </ul>\n            <p>Not all published values are compiled, only the most accurate ones. There is some confusion about the experimental data listed in the <a href=\"https://www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-97th-Edition/Haynes/p/book/9781498754286\">CRC Handbook of Chemistry and Physics</a> taken from Miller and Bederson. Some of the data are not experimental values as indicated, but from LDA calculations of Doolen, which are listed here as well.</p>\n            <p>A more recent review by Mitroy, Safronova and Clark is highly recommended:</p>\n            <ul>\n              <li><span class=\"authors\">Mitroy, J.; Safronova, M. S. &amp; Clark, C. W</span>: <em>Theory and applications of atomic and ionic polarizabilities</em>. Journal of Physics B: Atomic, Molecular and Optical Physics <strong>43</strong>, 202001 (2010). DOI: <a href=\"https://dx.doi.org/10.1088/0953-4075/43/20/202001\">10.1088/0953-4075/43/20/202001</a>.</li>\n            </ul>\n          </dd>\n\n          <dt>Experimental electron affinities for neutral atoms</dt>\n          <dd>\n            <p>The values for experimental electron affinity for neutral atoms are taken from</p>\n            <ul>\n              <li><span class=\"authors\">Lide, D. R.</span>: <em>CRC Handbook of Chemistry and Physics 86th ed.</em>. CRC Press, 2616 pp. (2005). [<a href=\"https://www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-97th-Edition/Haynes/p/book/9781498754286\">link</a>]</li>\n            </ul>\n          </dd>\n\n          <dt>Extended binaries, dimers and atoms</dt>\n          <dd>\n            <p>This collection provides data for extended binaries, dimers, and atoms. It contains atom property information for rock-salt and zincblende crystal lattice structures, octet (I/II/III)-(V/VI/VII) binary materials, other eight-electron binaries using possible valences of d-metals and f-elements, and octet binaries from John and Bloch's paper:</p>\n            <ul>\n              <li><span class=\"authors\">John, J. &amp; Bloch, A. N.</span>: <em>Quantum-Defect Electronegativity Scale for Nontransition Elements</em>. Physical Review Letters, American Physical Society, <strong>33</strong>, 1095-1098 (1974). DOI: <a href=\"https://dx.doi.org/10.1103/PhysRevLett.33.1095\">10.1103/PhysRevLett.33.1095</a>.</li>\n            </ul>\n            <p>The atomic properties in this collection are obtained from:</p>\n            <ul>\n              <li><span class=\"authors\">Ghiringhelli, L. M.; Vybiral, J.; Levchenko, S. V.; Draxl, C. &amp; Scheffler</span>: <em>M. Big Data of Materials Science: Critical Role of the Descriptor</em>. Physical Review Letters, American Physical Society <strong>114</strong>, 105503 (2015). DOI: <a href=\"https://dx.doi.org/10.1103/PhysRevLett.114.105503\">10.1103/PhysRevLett.114.105503</a>.</li>\n            </ul>\n          </dd>\n        \n          <dt>Isotropic static polarizabilities and homo-atomic van der Waals coefficients for neutral free atoms</dt>\n          <dd>\n            <p>The majority of values such as isotropic static polarizability (in bohr<sup>3</sup>) and the homo-atomic van der Waals coefficient (in hartree · bohr<sup>6</sup>) for neutral free atoms are taken from:</p>\n            <ul>\n              <li><span class=\"authors\">Chu, X. &amp; Dalgarno, A.</span>: <em>Linear response time-dependent density functional theory for van der Waals coefficients</em>. The Journal of Chemical Physics <strong>121</strong>, 9, 4083 (2004). DOI: <a href=\"https://dx.doi.org/10.1063/1.1779576\">10.1063/1.1779576</a>.</li>\n              \n              <li><span class=\"authors\">Mitroy, J.; Safronova, M. S. &amp; Clark, C. W</span>: <em>Theory and applications of atomic and ionic polarizabilities</em>. Journal of Physics B: Atomic, Molecular and Optical Physics <strong>43</strong>, 202001 (2010). DOI: <a href=\"https://dx.doi.org/10.1088/0953-4075/43/20/202001\">10.1088/0953-4075/43/20/202001</a>.</li>\n            </ul>\n            <p>The rest of the elements are calculated using linear response coupled cluster single double theory with accurate basis. The van der Waals radii for the respective elements are defined as discussed in:</p>\n            <ul>\n              <li><span class=\"authors\">Tkatchenko, A. &amp; Scheffler</span>: <em>Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data</em>. Physical Review Letters <strong>102</strong>, 073005 (2009). DOI: <a href=\"https://dx.doi.org/10.1103/PhysRevLett.102.073005\">10.1103/PhysRevLett.102.073005</a>.</li>\n            </ul>\n            <p>For lanthanides and actinides, the C<sub>6</sub> coefficients are constructed to satisfy the valence electronic sum rule using the one-term formula which is equivalent to the two-point zeroth-order Padé approximant. Here, static polarizabilities are taken from:</p>\n            <ul>\n              <li><span class=\"authors\">Dzuba, V. A.; Kozlov, A.; Flambaum; V. V.</span>: <em>Scalar Static Polarizabilities of Lanthanides and Actinides</em>. Physical Review A <strong>89</strong>, 042507 (2014). DOI: <a href=\"https://dx.doi.org/10.1103/PhysRevA.89.042507\">10.1103/PhysRevA.89.042507</a>.</li>\n            </ul>\n          </dd>\n        </dl>\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\" style=\"font-size:larger;\">Close</button>\n      </div>\n    </div>\n  </div>\n</div>\n\n<p></p>"
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<button type=\"button\" class=\"btn btn-info\" data-toggle=\"modal\" data-target=\"#modal-instructions\" style=\"font-size:larger;\">Read usage instructions</button>\n<div class=\"modal fade\" id=\"modal-instructions\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"modal-instructions\" style=\"display: none;\">\n  <div class=\"modal-dialog\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h1 class=\"modal-title\" id=\"modal-instructions-label\">Usage instructions</h1>\n        <hr>\n      </div>\n      <div class=\"modal-body modal-instructions-body\">\n        <h2>Introduction</h2>\n\n        <p>This notebook provides a selected and curated list of atomic data collections to be visualized in the periodic table of elements.</p>\n\n        <p>Atomic data collections are data sets of atomic properties. They are enhanced by metadata attributes from where the data come from, how they were generated or measured, and what settings have been used. Atomic properties are the radius, the atomic mass, but also the ionization potential, the expectation values of the orbitals, and many other properties that describe the elements.</p>\n        \n        <p><strong>Tutorials:</strong><br>For details, please read a short guide about the <a href=\"https://www.nomad-coe.eu/index.php?page=atomic-data-collection-parser\">atomic-data collection parser</a> and the tutorial about <a href=\"https://www.nomad-coe.eu/index.php?page=atomic-data-collection\">atomic-data collections</a>.\n\n        </p><h2>Visualization</h2>\n\n        <h3>Atomic data collections:</h3>\n\n        <p>Multiple atomic data collections can be selected for the visualization. Their are shown and sorted according to their atomic data collection name. Additional information will be shown once the mouse cursor hovers over the name. You can select multiple atomic data collections, where the order specifies the priority of the collections, i.e., when two or more collections have the same atomic properties. In this case collections that are selected first have higher priority than collections that are selected last and overwrite those values if present.</p>\n\n        <img src=\"\">\n\n        <h3>Filters:</h3>\n\n        <p>There exist several filters to select only a specific subset of atomic data collections. Filters are only available once an atomic collection is selected and filters that are not available are disabled. You can add as many filters as selection criteria as you want.</p>\n\n        <img src=\"\">\n        \n        <p>Please note that the order is important here as well. For example, consider the atomic data collection has experimental and theoretical data and if you select <code>Theory, Experiment</code>, then all data are shown, but theoretical values overwrite experimental values when present.</p>\n\n        <h3>Atomic properties:</h3>\n\n        <p>Once an atomic data collection has been set and an optional selection filter criteria has been applied, it is possible to visualize the atomic properties in the periodic table of elements. The elements will be colored by the value of the selected atomic property. A colormap shows the range of the atomic property value (including the minimum and maximum value). For an empty value, all available atomic properties in the table will be displayed. Elements that are shown in gray are not in the set of atomic collections or have been filtered out by the selection criteria. For all other elements, additional information is provided when the mouse cursor hovers over the element.</p>\n      \n        <p>The visualization resets, when the set of atomic data collections or the selection criteria changes and updates when an atomic property is selected again.</p>\n\n        <img src=\"\">\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\" style=\"font-size:larger;\">Close</button>\n      </div>\n    </div>\n  </div>\n</div>\n\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#modal-credits\" style=\"font-size:larger;\">Credits</button>\n<div class=\"modal fade\" id=\"modal-credits\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"modal-credits\">\n  <div class=\"modal-dialog\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h1 class=\"modal-title\" id=\"modal-credits-label\">Credits</h1>\n        <hr>\n      </div>\n      <div class=\"modal-body modal-credits-body\">\n        <h2>Atomic Data:</h2>\n\n        <p>This notebook is based on the NOMAD Atomic Data Parser and Interface written by <a href=\"mailto:regler@fhi-berlin.mpg.de\">Benjamin Regler</a>.</p>\n        <ul>\n          <li><span class=\"authors\">Regler, B.</span>: <em>NOMAD Atomic Data Parser and Interface</em>. Fritz Haber Institute of the Max Planck Society, Germany (2017).</li>\n        </ul>\n\n        <h2>Atomic Data Collections:</h2>\n        <dl>\n          <dt>Experimental and theoretically derived values for isotropic static polarizability</dt>\n          <dd>\n            <p>This collection includes experimental and theoretically derived values for isotropic static polarizability as complied by <a href=\"http://ctcp.massey.ac.nz/?group=schwerd\">Prof. Peter Schwerdtfeger</a>.</p>\n            <ul>\n              <li><span class=\"authors\">Schwerdtfeger, P.</span>: <em>Table of experimental and calculated static dipole polarizabilities for the electronic ground states of the neutral elements (in atomic units)</em>. Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (2014). [<a href=\"http://ctcp.massey.ac.nz/Tablepol2014.pdf\">link</a>]</li>\n            </ul>\n            <p>Not all published values are compiled, only the most accurate ones. There is some confusion about the experimental data listed in the <a href=\"https://www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-97th-Edition/Haynes/p/book/9781498754286\">CRC Handbook of Chemistry and Physics</a> taken from Miller and Bederson. Some of the data are not experimental values as indicated, but from LDA calculations of Doolen, which are listed here as well.</p>\n            <p>A more recent review by Mitroy, Safronova and Clark is highly recommended:</p>\n            <ul>\n              <li><span class=\"authors\">Mitroy, J.; Safronova, M. S. &amp; Clark, C. W</span>: <em>Theory and applications of atomic and ionic polarizabilities</em>. Journal of Physics B: Atomic, Molecular and Optical Physics <strong>43</strong>, 202001 (2010). DOI: <a href=\"https://dx.doi.org/10.1088/0953-4075/43/20/202001\">10.1088/0953-4075/43/20/202001</a>.</li>\n            </ul>\n          </dd>\n\n          <dt>Experimental electron affinities for neutral atoms</dt>\n          <dd>\n            <p>The values for experimental electron affinity for neutral atoms are taken from</p>\n            <ul>\n              <li><span class=\"authors\">Lide, D. R.</span>: <em>CRC Handbook of Chemistry and Physics 86th ed.</em>. CRC Press, 2616 pp. (2005). [<a href=\"https://www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-97th-Edition/Haynes/p/book/9781498754286\">link</a>]</li>\n            </ul>\n          </dd>\n\n          <dt>Extended binaries, dimers and atoms</dt>\n          <dd>\n            <p>This collection provides data for extended binaries, dimers, and atoms. It contains atom property information for rock-salt and zincblende crystal lattice structures, octet (I/II/III)-(V/VI/VII) binary materials, other eight-electron binaries using possible valences of d-metals and f-elements, and octet binaries from John and Bloch's paper:</p>\n            <ul>\n              <li><span class=\"authors\">John, J. &amp; Bloch, A. N.</span>: <em>Quantum-Defect Electronegativity Scale for Nontransition Elements</em>. Physical Review Letters, American Physical Society, <strong>33</strong>, 1095-1098 (1974). DOI: <a href=\"https://dx.doi.org/10.1103/PhysRevLett.33.1095\">10.1103/PhysRevLett.33.1095</a>.</li>\n            </ul>\n            <p>The atomic properties in this collection are obtained from:</p>\n            <ul>\n              <li><span class=\"authors\">Ghiringhelli, L. M.; Vybiral, J.; Levchenko, S. V.; Draxl, C. &amp; Scheffler</span>: <em>M. Big Data of Materials Science: Critical Role of the Descriptor</em>. Physical Review Letters, American Physical Society <strong>114</strong>, 105503 (2015). DOI: <a href=\"https://dx.doi.org/10.1103/PhysRevLett.114.105503\">10.1103/PhysRevLett.114.105503</a>.</li>\n            </ul>\n          </dd>\n        \n          <dt>Isotropic static polarizabilities and homo-atomic van der Waals coefficients for neutral free atoms</dt>\n          <dd>\n            <p>The majority of values such as isotropic static polarizability (in bohr<sup>3</sup>) and the homo-atomic van der Waals coefficient (in hartree · bohr<sup>6</sup>) for neutral free atoms are taken from:</p>\n            <ul>\n              <li><span class=\"authors\">Chu, X. &amp; Dalgarno, A.</span>: <em>Linear response time-dependent density functional theory for van der Waals coefficients</em>. The Journal of Chemical Physics <strong>121</strong>, 9, 4083 (2004). DOI: <a href=\"https://dx.doi.org/10.1063/1.1779576\">10.1063/1.1779576</a>.</li>\n              \n              <li><span class=\"authors\">Mitroy, J.; Safronova, M. S. &amp; Clark, C. W</span>: <em>Theory and applications of atomic and ionic polarizabilities</em>. Journal of Physics B: Atomic, Molecular and Optical Physics <strong>43</strong>, 202001 (2010). DOI: <a href=\"https://dx.doi.org/10.1088/0953-4075/43/20/202001\">10.1088/0953-4075/43/20/202001</a>.</li>\n            </ul>\n            <p>The rest of the elements are calculated using linear response coupled cluster single double theory with accurate basis. The van der Waals radii for the respective elements are defined as discussed in:</p>\n            <ul>\n              <li><span class=\"authors\">Tkatchenko, A. &amp; Scheffler</span>: <em>Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data</em>. Physical Review Letters <strong>102</strong>, 073005 (2009). DOI: <a href=\"https://dx.doi.org/10.1103/PhysRevLett.102.073005\">10.1103/PhysRevLett.102.073005</a>.</li>\n            </ul>\n            <p>For lanthanides and actinides, the C<sub>6</sub> coefficients are constructed to satisfy the valence electronic sum rule using the one-term formula which is equivalent to the two-point zeroth-order Padé approximant. Here, static polarizabilities are taken from:</p>\n            <ul>\n              <li><span class=\"authors\">Dzuba, V. A.; Kozlov, A.; Flambaum; V. V.</span>: <em>Scalar Static Polarizabilities of Lanthanides and Actinides</em>. Physical Review A <strong>89</strong>, 042507 (2014). DOI: <a href=\"https://dx.doi.org/10.1103/PhysRevA.89.042507\">10.1103/PhysRevA.89.042507</a>.</li>\n            </ul>\n          </dd>\n        </dl>\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\" style=\"font-size:larger;\">Close</button>\n      </div>\n    </div>\n  </div>\n</div>\n\n<p></p>"
                 },
                 "selectedType": "BeakerDisplay",
                 "elapsedTime": 0,
-                "height": 100
+                "height": 101
             },
             "evaluatorReader": true,
-            "lineCount": 126
+            "lineCount": 128,
+            "isError": false
         },
         {
             "id": "markdownaIbvLV",
@@ -508,15 +513,18 @@
                 "hidden": true
             },
             "output": {
-                "hidden": true,
                 "state": {},
                 "pluginName": "JavaScript",
                 "selectedType": "Text",
-                "height": 50
+                "height": 50,
+                "elapsedTime": 679,
+                "hidden": true,
+                "result": true
             },
             "evaluatorReader": true,
             "lineCount": 52,
-            "initialization": true
+            "initialization": true,
+            "isError": false
         },
         {
             "id": "atomic_data",
@@ -728,11 +736,14 @@
                 "hidden": true,
                 "state": {},
                 "pluginName": "IPython",
-                "shellId": "EB435EF4649140DD856E55E6ABFE0F78"
+                "shellId": "C050774B4A654479960B8088C1D0AE80",
+                "selectedType": "Hidden",
+                "elapsedTime": 251
             },
             "evaluatorReader": true,
             "lineCount": 197,
-            "initialization": true
+            "initialization": true,
+            "isError": false
         },
         {
             "id": "init_notebook",
@@ -769,8 +780,8 @@
                     "            },",
                     "        },",
                     "        paths = {",
-                    "            \"collections\": \"/data/shared/tutorials/periodic-table/data\",",
-                    "            \"periodic_table\": \"/data/shared/tutorials/periodic-table\"",
+                    "            \"collections\": \"~/test/periodic-table/data\",",
+                    "            \"periodic_table\": \"~/test/periodic-table\"",
                     "        };",
                     "",
                     "    /**",
@@ -826,11 +837,14 @@
             "output": {
                 "hidden": true,
                 "state": {},
-                "pluginName": "JavaScript"
+                "pluginName": "JavaScript",
+                "selectedType": "BeakerDisplay",
+                "elapsedTime": 94
             },
             "evaluatorReader": true,
             "lineCount": 80,
-            "initialization": true
+            "initialization": true,
+            "isError": false
         },
         {
             "id": "fetch_data",
@@ -846,13 +860,15 @@
             "output": {
                 "state": {},
                 "pluginName": "IPython",
-                "shellId": "EB435EF4649140DD856E55E6ABFE0F78",
-                "selectedType": "Hidden",
-                "height": 91
+                "shellId": "C050774B4A654479960B8088C1D0AE80",
+                "selectedType": "BeakerDisplay",
+                "height": 91,
+                "elapsedTime": 195
             },
             "evaluatorReader": true,
             "lineCount": 2,
-            "tags": "connector"
+            "tags": "connector",
+            "isError": false
         },
         {
             "id": "process_data",
@@ -872,11 +888,13 @@
                 "state": {},
                 "pluginName": "JavaScript",
                 "selectedType": "BeakerDisplay",
-                "height": 89
+                "height": 89,
+                "elapsedTime": 250
             },
             "evaluatorReader": true,
             "lineCount": 5,
-            "tags": "connector"
+            "tags": "connector",
+            "isError": false
         }
     ],
     "namespace": {
-- 
GitLab