nomad_query.json 250 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
{
    "autocomplete": {},
    "context": [
        {
            "name": "archive",
            "selected": true,
            "title": "Query all uploaded archives"
        },
        {
            "name": "calculation",
            "title": "Query all calculations"
        },
        {
            "name": "section",
            "title": "Query all data sections"
        },
        {
            "name": "single_configuration_calculation",
            "title": "Query all data with single configuration calculation sections"
        },
        {
            "name": "section_system",
            "title": "Query all data with system sections"
        }
    ],
    "fields": {
        "*value": [],
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        "^negation": [
            {
                "class": "^negation",
                "name": "not",
                "title": "Invert current query (logical negation)",
                "value": "not"
            }
        ],
        "^quantifiers": [
            {
                "class": "^quantifiers",
                "name": "any",
                "title": "Select calculations that matches at least one of the values as given in the query expression",
                "value": "any"
            },
            {
                "class": "^quantifiers",
                "name": "all",
                "title": "Select calculations that matches all values as given in the query expression",
                "value": "all"
            },
            {
                "class": "^quantifiers",
                "name": "alltarget",
                "title": "Select calculations that matches at least all of the values as given in the query expressions",
                "value": "alltarget"
            }
        ],
56 57 58 59
        "metadata": [
            {
                "class": "metadata",
                "dtype": "i",
60
                "mode": "",
61
                "name": "atom_atom_number",
62
                "title": "(deprecated) Atomic number Z of the atom.",
63 64 65
                "type": "value",
                "value": "atom_atom_number"
            },
66 67 68 69 70 71 72 73 74
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "atom_charge",
                "title": "Charge of the atom type.",
                "type": "value",
                "value": "atom_charge"
            },
75 76 77
            {
                "class": "metadata",
                "dtype": "f",
78
                "mode": "",
79
                "name": "atom_concentrations",
80
                "title": "Concentration of the atom species in a variable composition, by default it should be considered an array of ones. Summing these should give the number_of_sites",
81 82 83 84 85 86
                "type": "value",
                "value": "atom_concentrations"
            },
            {
                "class": "metadata",
                "dtype": "f",
87
                "mode": "",
88 89 90 91 92 93 94 95
                "name": "atom_forces",
                "title": "Forces acting on the atoms, calculated as minus gradient of energy_total, **including** constraints, if present. The derivatives with respect to displacements of nuclei are evaluated in Cartesian coordinates. In addition, these forces are obtained by filtering out the unitary transformations (center-of-mass translations and rigid rotations for non-periodic systems, see atom_forces_free_raw for the unfiltered counterpart). Forces due to constraints such as fixed atoms, distances, angles, dihedrals, etc. are included (see atom_forces_raw for the unfiltered counterpart).",
                "type": "value",
                "value": "atom_forces"
            },
            {
                "class": "metadata",
                "dtype": "f",
96
                "mode": "",
97 98 99 100 101 102 103 104
                "name": "atom_forces_free",
                "title": "Forces acting on the atoms, calculated as minus gradient of energy_free, **including** constraints, if present. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. The (electronic) energy_free contains the information on the change in (fractional) occupation of the electronic eigenstates, which are accounted for in the derivatives, yielding a truly energy-conserved quantity. In addition, these forces are obtained by filtering out the unitary transformations (center-of-mass translations and rigid rotations for non-periodic systems, see atom_forces_free_raw for the unfiltered counterpart). Forces due to constraints such as fixed atoms, distances, angles, dihedrals, etc. are included (see atom_forces_free_raw for the unfiltered counterpart).",
                "type": "value",
                "value": "atom_forces_free"
            },
            {
                "class": "metadata",
                "dtype": "f",
105
                "mode": "",
106 107 108 109 110 111 112 113
                "name": "atom_forces_free_raw",
                "title": "Forces acting on the atoms, calculated as minus gradient of energy_free, **without** constraints. The derivatives with respect to displacements of nuclei are evaluated in Cartesian coordinates. The (electronic) energy_free contains the change in (fractional) occupation of the electronic eigenstates, which are accounted for in the derivatives, yielding a truly energy-conserved quantity. These forces may contain unitary transformations (center-of-mass translations and rigid rotations for non-periodic systems) that are normally filtered separately (see atom_forces_free for the filtered counterpart). Forces due to constraints such as fixed atoms, distances, angles, dihedrals, etc. are also considered separately (see atom_forces_free for the filtered counterpart).",
                "type": "value",
                "value": "atom_forces_free_raw"
            },
            {
                "class": "metadata",
                "dtype": "f",
114
                "mode": "",
115 116 117 118 119 120 121 122
                "name": "atom_forces_raw",
                "title": "Forces acting on the atoms, calculated as minus gradient of energy_total, **without** constraints. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. These forces may contain unitary transformations (center-of-mass translations and rigid rotations for non-periodic systems) that are normally filtered separately (see atom_forces for the filtered counterpart). Forces due to constraints such as fixed atoms, distances, angles, dihedrals, etc. are also considered separately (see atom_forces for the filtered counterpart).",
                "type": "value",
                "value": "atom_forces_raw"
            },
            {
                "class": "metadata",
                "dtype": "f",
123
                "mode": "",
124 125 126 127 128 129 130 131 132 133 134
                "name": "atom_forces_t0",
                "title": "Forces acting on the atoms, calculated as minus gradient of energy_total_t0, **including** constraints, if present. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. In addition, these forces are obtained by filtering out the unitary transformations (center-of-mass translations and rigid rotations for non-periodic systems, see atom_forces_free_T0_raw for the unfiltered counterpart). Forces due to constraints such as fixed atoms, distances, angles, dihedrals, etc. are also included (see atom_forces_free_T0_raw for the unfiltered counterpart).",
                "type": "value",
                "value": "atom_forces_t0"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "atom_forces_t0_raw",
                "title": "Forces acting on the atoms, calculated as minus gradient of energy_total_t0, **without** constraints. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. These forces may contain unitary transformations (center-of-mass translations and rigid rotations for non-periodic systems) that are normally filtered separately (see atom_forces_t0 for the filtered counterpart). Forces due to constraints such as fixed atoms, distances, angles, dihedrals, etc. are also considered separately (see atom_forces_t0 for the filtered counterpart).",
135
                "type": "value",
136
                "value": "atom_forces_t0_raw"
137 138 139 140
            },
            {
                "class": "metadata",
                "dtype": "f",
141
                "mode": "",
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                "name": "atom_in_molecule_charge",
                "title": "(deprecated) Charge of each atom in the molecule.",
                "type": "value",
                "value": "atom_in_molecule_charge"
            },
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
                "name": "atom_in_molecule_name",
                "title": "(deprecated) Name (label) of each atom in the molecule.",
                "type": "string",
                "value": "atom_in_molecule_name"
            },
            {
                "class": "metadata",
                "dtype": "r",
                "mode": "",
                "name": "atom_in_molecule_to_atom_type_ref",
                "title": "(deprecated) Reference to the atom type of each atom in the molecule.",
162
                "type": "value",
163
                "value": "atom_in_molecule_to_atom_type_ref"
164 165 166 167
            },
            {
                "class": "metadata",
                "dtype": "C",
168
                "mode": "",
169 170 171 172 173
                "name": "atom_labels",
                "title": "Labels of the atoms. These strings identify the atom kind and conventionally start with the symbol of the atomic species, possibly followed by the atomic number. The same atomic species can be labeled with more than one atom_labels in order to distinguish, e.g., atoms of the same species assigned to different atom-centered basis sets or pseudo-potentials, or simply atoms in different locations in the structure (e.g., bulk and surface). These labels can also be used for *particles* that do not correspond to physical atoms (e.g., ghost atoms in some codes using atom-centered basis sets). This metadata defines a configuration and is therefore required.",
                "type": "string",
                "value": "atom_labels"
            },
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "atom_mass",
                "title": "Mass of the atom type.",
                "type": "value",
                "value": "atom_mass"
            },
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
                "name": "atom_name",
                "title": "Name (label) of the atom type.",
                "type": "string",
                "value": "atom_name"
            },
            {
                "class": "metadata",
                "dtype": "i",
                "mode": "",
                "name": "atom_number",
                "title": "Atomic number Z of the atom.",
                "type": "value",
                "value": "atom_number"
            },
201 202 203
            {
                "class": "metadata",
                "dtype": "f",
204
                "mode": "",
205 206 207 208 209
                "name": "atom_positions",
                "title": "Positions of all the atoms, in Cartesian coordinates. This metadata defines a configuration and is therefore required. For alloys where concentrations of species are given for each site in the unit cell, it stores the position of the sites.",
                "type": "value",
                "value": "atom_positions"
            },
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "atom_positions_primitive",
                "title": "Atom positions in the primitive cell in reduced units.",
                "type": "value",
                "value": "atom_positions_primitive"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "atom_positions_std",
                "title": "Standardized atom positions in reduced units.",
                "type": "value",
                "value": "atom_positions_std"
            },
228 229 230
            {
                "class": "metadata",
                "dtype": "f",
231
                "mode": "",
232 233 234 235 236 237 238 239
                "name": "atom_projected_dos_energies",
                "title": "Array containing the set of discrete energy values for the atom-projected density (electronic-energy) of states (DOS).",
                "type": "value",
                "value": "atom_projected_dos_energies"
            },
            {
                "class": "metadata",
                "dtype": "i",
240
                "mode": "",
241 242 243 244 245 246 247 248
                "name": "atom_projected_dos_lm",
                "title": "Tuples of $l$ and $m$ values for which atom_projected_dos_values_lm are given. For the quantum number $l$ the conventional meaning of azimuthal quantum number is always adopted. For the integer number $m$, besides the conventional use as magnetic quantum number ($l+1$ integer values from $-l$ to $l$), a set of different conventions is accepted (see the [m_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind). The adopted convention is specified by atom_projected_dos_m_kind.",
                "type": "value",
                "value": "atom_projected_dos_lm"
            },
            {
                "class": "metadata",
                "dtype": "C",
249
                "mode": "",
250 251 252 253 254 255 256 257
                "name": "atom_projected_dos_m_kind",
                "title": "String describing what the integer numbers of $m$ in atom_projected_dos_lm mean. The allowed values are listed in the [m_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind).",
                "type": "string",
                "value": "atom_projected_dos_m_kind"
            },
            {
                "class": "metadata",
                "dtype": "f",
258
                "mode": "",
259 260 261 262 263 264 265 266
                "name": "atom_projected_dos_values_lm",
                "title": "Values correspond to the number of states for a given energy (the set of discrete energy values is given in atom_projected_dos_energies) divided into contributions from each $l,m$ channel for the atom-projected density (electronic-energy) of states. Here, there are as many atom-projected DOS as the number_of_atoms, the list of labels of the atoms and their meanings are in atom_labels.",
                "type": "value",
                "value": "atom_projected_dos_values_lm"
            },
            {
                "class": "metadata",
                "dtype": "f",
267
                "mode": "",
268 269 270 271 272
                "name": "atom_projected_dos_values_total",
                "title": "Values correspond to the number of states for a given energy (the set of discrete energy values is given in atom_projected_dos_energies) divided into contributions summed up over all $l$ channels for the atom-projected density (electronic-energy) of states (DOS). Here, there are as many atom-projected DOS as the number_of_atoms, the list of labels of the atoms and their meanings are in atom_labels.",
                "type": "value",
                "value": "atom_projected_dos_values_total"
            },
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
            {
                "class": "metadata",
                "dtype": "i",
                "mode": "",
                "name": "atom_to_molecule",
                "title": "(deprecated) Table mapping atom to molecules: the first column is the index of the molecule and the second column the index of the atom, signifying that the atom in the second column belongs to the molecule in the first column in the same row.",
                "type": "value",
                "value": "atom_to_molecule"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "atom_type_charge",
                "title": "(deprecated) Charge of the atom type.",
                "type": "value",
                "value": "atom_type_charge"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "atom_type_mass",
                "title": "(deprecated) Mass of the atom type.",
                "type": "value",
                "value": "atom_type_mass"
            },
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
                "name": "atom_type_name",
                "title": "(deprecated) Name (label) of the atom type.",
                "type": "string",
                "value": "atom_type_name"
            },
309 310 311
            {
                "class": "metadata",
                "dtype": "f",
312
                "mode": "",
313 314 315 316 317 318 319 320
                "name": "atom_velocities",
                "title": "Velocities of the nuclei, defined as the change in Cartesian coordinates of the nuclei with respect to time.",
                "type": "value",
                "value": "atom_velocities"
            },
            {
                "class": "metadata",
                "dtype": "C",
321
                "mode": "",
322 323 324 325 326 327 328 329
                "name": "atomic_multipole_kind",
                "title": "String describing the method used to obtain the electrostatic multipoles (including the electric charge, dipole, etc.) for each atom. Such multipoles require a charge-density partitioning scheme, specified by the value of this metadata. Allowed values are listed in the [atomic_multipole_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/atomic-multipole-kind).",
                "type": "string",
                "value": "atomic_multipole_kind"
            },
            {
                "class": "metadata",
                "dtype": "i",
330
                "mode": "",
331 332 333 334 335 336 337 338
                "name": "atomic_multipole_lm",
                "title": "Tuples of $l$ and $m$ values for which the atomic multipoles (including the electric charge, dipole, etc.) are given. The method used to obtain the multipoles is specified by atomic_multipole_kind. The meaning of the integer number $l$ is monopole/charge for $l=0$, dipole for $l=1$, quadrupole for $l=2$, etc. The meaning of the integer numbers $m$ is specified by atomic_multipole_m_kind.",
                "type": "value",
                "value": "atomic_multipole_lm"
            },
            {
                "class": "metadata",
                "dtype": "C",
339
                "mode": "",
340 341 342 343 344 345 346 347
                "name": "atomic_multipole_m_kind",
                "title": "String describing the definition for each integer number $m$ in atomic_multipole_lm. Allowed values are listed in the [m_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind).",
                "type": "string",
                "value": "atomic_multipole_m_kind"
            },
            {
                "class": "metadata",
                "dtype": "f",
348
                "mode": "",
349 350 351 352 353
                "name": "atomic_multipole_values",
                "title": "Value of the multipoles (including the monopole/charge for $l$ = 0, the dipole for $l$ = 1, etc.) for each atom, calculated as described in atomic_multipole_kind.",
                "type": "value",
                "value": "atomic_multipole_values"
            },
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            {
                "class": "metadata",
                "dtype": "i",
                "mode": "",
                "name": "atomic_numbers_primitive",
                "title": "Atomic numbers in the primitive cell.",
                "type": "value",
                "value": "atomic_numbers_primitive"
            },
            {
                "class": "metadata",
                "dtype": "i",
                "mode": "",
                "name": "atomic_numbers_std",
                "title": "Atomic numbers of the atoms in the standardized cell.",
                "type": "value",
                "value": "atomic_numbers_std"
            },
372 373 374
            {
                "class": "metadata",
                "dtype": "f",
375
                "mode": "",
376 377 378 379 380 381 382 383
                "name": "band_energies",
                "title": "$k$-dependent or $q$-dependent  energies of the electronic or vibrational band segment (electronic/vibrational band structure). This is a third-order tensor, with one dimension used for the spin channels (1 in case of a vibrational band structure), one for the $k$ or $q$ points for each segment, and one for the eigenvalue sequence.",
                "type": "value",
                "value": "band_energies"
            },
            {
                "class": "metadata",
                "dtype": "f",
384
                "mode": "",
385 386 387 388 389 390 391 392
                "name": "band_energies_normalized",
                "title": "$k$-dependent energies of the electronic band segment (electronic band structure) with respect to the top of the valence band. This is a third-order tensor, with one dimension used for the spin channels, one for the $k$ points for each segment, and one for the eigenvalue sequence.",
                "type": "value",
                "value": "band_energies_normalized"
            },
            {
                "class": "metadata",
                "dtype": "f",
393
                "mode": "",
394 395 396 397 398 399 400 401
                "name": "band_k_points",
                "title": "Fractional coordinates of the $k$ or $q$ points (in the basis of the reciprocal-lattice vectors) for which the electronic energy are given.",
                "type": "value",
                "value": "band_k_points"
            },
            {
                "class": "metadata",
                "dtype": "f",
402
                "mode": "",
403 404 405 406 407 408 409 410
                "name": "band_k_points_normalized",
                "title": "Fractional coordinates of the $k$ points (in the basis of the reciprocal-lattice vectors) for which the normalized electronic energies are given.",
                "type": "value",
                "value": "band_k_points_normalized"
            },
            {
                "class": "metadata",
                "dtype": "f",
411
                "mode": "",
412 413 414 415 416 417 418 419
                "name": "band_occupations",
                "title": "Occupation of the $k$-points along the electronic band. The size of the dimensions of this third-order tensor are the same as for the tensor in band_energies.",
                "type": "value",
                "value": "band_occupations"
            },
            {
                "class": "metadata",
                "dtype": "f",
420
                "mode": "",
421 422 423 424 425 426 427 428
                "name": "band_occupations_normalized",
                "title": "Occupation of the $k$-points along the normalized electronic band. The size of the dimensions of this third-order tensor are the same as for the tensor in band_energies.",
                "type": "value",
                "value": "band_occupations_normalized"
            },
            {
                "class": "metadata",
                "dtype": "C",
429
                "mode": "",
430 431 432 433 434 435 436 437
                "name": "band_segm_labels",
                "title": "Start and end labels of the points in the segment (one-dimensional pathways) sampled in the $k$-space or $q$-space, using the conventional symbols, e.g., Gamma, K, L. The coordinates (fractional, in the reciprocal space) of the start and end points for each segment are given in band_segm_start_end",
                "type": "string",
                "value": "band_segm_labels"
            },
            {
                "class": "metadata",
                "dtype": "C",
438
                "mode": "",
439 440 441 442 443 444 445 446
                "name": "band_segm_labels_normalized",
                "title": "Start and end labels of the points in the segment (one-dimensional pathways) sampled in the $k$-space, using the conventional symbols, e.g., Gamma, K, L. The coordinates (fractional, in the reciprocal space) of the start and end points for each segment are given in band_segm_start_end_normalized",
                "type": "string",
                "value": "band_segm_labels_normalized"
            },
            {
                "class": "metadata",
                "dtype": "f",
447
                "mode": "",
448 449 450 451 452 453 454 455
                "name": "band_segm_start_end",
                "title": "Fractional coordinates of the start and end point (in the basis of the reciprocal lattice vectors) of the segment sampled in the $k$ space. The conventional symbols (e.g., Gamma, K, L) of the same points are given in band_segm_labels",
                "type": "value",
                "value": "band_segm_start_end"
            },
            {
                "class": "metadata",
                "dtype": "f",
456
                "mode": "",
457 458 459 460 461 462 463 464
                "name": "band_segm_start_end_normalized",
                "title": "Fractional coordinates of the start and end point (in the basis of the reciprocal lattice vectors) of the segment sampled in the $k$ space. The conventional symbols (e.g., Gamma, K, L) of the same points are given in band_segm_labels",
                "type": "value",
                "value": "band_segm_start_end_normalized"
            },
            {
                "class": "metadata",
                "dtype": "C",
465
                "mode": "",
466 467 468 469 470 471 472 473
                "name": "band_structure_kind",
                "title": "String to specify the kind of band structure (either electronic or vibrational).",
                "type": "string",
                "value": "band_structure_kind"
            },
            {
                "class": "metadata",
                "dtype": "C",
474
                "mode": "",
475
                "name": "basis_set",
476
                "title": "Unique string identifying the basis set used for the final wavefunctions calculated with xc_method. It might identify a class of basis sets, often matches one of the strings given in any of basis_set_name.",
477 478 479 480 481 482
                "type": "string",
                "value": "basis_set"
            },
            {
                "class": "metadata",
                "dtype": "i",
483
                "mode": "",
484 485 486 487 488 489 490 491
                "name": "basis_set_atom_centered_ls",
                "title": "Azimuthal quantum number ($l$) values (of the angular part given by the spherical harmonic $Y_{lm}$) of the atom-centered basis function defined in the current section_basis_set_atom_centered.",
                "type": "value",
                "value": "basis_set_atom_centered_ls"
            },
            {
                "class": "metadata",
                "dtype": "f",
492
                "mode": "",
493 494 495 496 497 498 499 500
                "name": "basis_set_atom_centered_radial_functions",
                "title": "Values of the radial function of the different basis function kinds. The values are numerically tabulated on a default 0.01-nm equally spaced grid from 0 to 4 nm. The 5 tabulated values are $r$, $f(r)$, $f'(r)$, $f(r) \\cdot r$, $\\frac{d}{dr}(f(r) \\cdot r)$.",
                "type": "value",
                "value": "basis_set_atom_centered_radial_functions"
            },
            {
                "class": "metadata",
                "dtype": "C",
501
                "mode": "",
502 503 504 505 506 507 508 509
                "name": "basis_set_atom_centered_short_name",
                "title": "Code-specific, but explicative, base name for the basis set (not unique). Details are explained in the [basis_set_atom_centered_short_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-atom-centered-short-name), this name should not contain the *atom kind* (to simplify the use of a single name for multiple elements).",
                "type": "string",
                "value": "basis_set_atom_centered_short_name"
            },
            {
                "class": "metadata",
                "dtype": "C",
510
                "mode": "",
511 512 513 514 515 516 517 518
                "name": "basis_set_atom_centered_unique_name",
                "title": "Code-specific, but explicative, base name for the basis set (not unique). This string starts with basis_set_atom_centered_short_name. If the basis set defined in this section_basis_set_atom_centered is not identical to the default definition (stored in a database) of the basis set with the same name stored in a database, then the string is extended by 10 identifiable characters as explained in the [basis_set_atom_centered_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-atom-centered-unique-name). The reason for this procedure is that often atom-centered basis sets are obtained by fine tuning basis sets provided by the code developers or other sources. Each basis sets, which has normally a standard name, often reported in publications, has also several parameters that can be tuned. This metadata tries to keep track of the original basis set and its modifications. This string here defined should not contain the *atom kind* for which this basis set is intended for, in order to simplify the use of a single name for multiple *atom kinds* (see atom_labels for the actual meaning of *atom kind*).",
                "type": "string",
                "value": "basis_set_atom_centered_unique_name"
            },
            {
                "class": "metadata",
                "dtype": "i",
519
                "mode": "",
520 521 522 523 524 525 526 527
                "name": "basis_set_atom_number",
                "title": "Atomic number (i.e., number of protons) of the atom for which this basis set is constructed (0 means unspecified or a pseudo atom).",
                "type": "value",
                "value": "basis_set_atom_number"
            },
            {
                "class": "metadata",
                "dtype": "C",
528
                "mode": "",
529 530 531 532 533 534 535 536
                "name": "basis_set_cell_dependent_kind",
                "title": "A string defining the type of the cell-dependent basis set (i.e., non atom centered such as plane-waves). Allowed values are listed in the [basis_set_cell_dependent_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-cell-dependent-kind).",
                "type": "string",
                "value": "basis_set_cell_dependent_kind"
            },
            {
                "class": "metadata",
                "dtype": "C",
537
                "mode": "",
538 539 540 541 542 543 544 545
                "name": "basis_set_cell_dependent_name",
                "title": "A label identifying the cell-dependent basis set (i.e., non atom centered such as plane-waves). Allowed values are listed in the [basis_set_cell_dependent_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-cell-dependent-name).",
                "type": "string",
                "value": "basis_set_cell_dependent_name"
            },
            {
                "class": "metadata",
                "dtype": "C",
546
                "mode": "",
547 548 549 550 551 552 553 554
                "name": "basis_set_kind",
                "title": "String describing the use of the basis set, i.e, if it used for expanding a wave-function or an electron density. Allowed values are listed in the [basis_set_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-kind).",
                "type": "string",
                "value": "basis_set_kind"
            },
            {
                "class": "metadata",
                "dtype": "C",
555
                "mode": "",
556 557 558 559 560 561 562 563
                "name": "basis_set_name",
                "title": "String identifying the basis set in an unique way. The rules for building this string are specified in the [basis_set_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-name).",
                "type": "string",
                "value": "basis_set_name"
            },
            {
                "class": "metadata",
                "dtype": "f",
564
                "mode": "",
565 566 567 568 569
                "name": "basis_set_planewave_cutoff",
                "title": "Spherical cutoff  in reciprocal space for a plane-wave basis set. It is the energy of the highest plan-ewave ($\\frac{\\hbar^2|k+G|^2}{2m_e}$) included in the basis set. Note that normally this basis set is used for the wavefunctions, and the density would have 4 times the cutoff, but this actually depends on the use of the basis set by the method.",
                "type": "value",
                "value": "basis_set_planewave_cutoff"
            },
570 571 572 573 574 575 576 577 578
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
                "name": "bravais_lattice",
                "title": "Identifier for the Bravais lattice in Pearson notation. The first lowercase letter identifies the crystal family and can be one of the following: a (triclinic), b (monoclinic), o (orthorhombic), t (tetragonal), h (hexagonal) or c (cubic). The second uppercase letter identifies the centring and can be one of the following: P (primitive), S (face centred), I (body centred), R (rhombohedral centring) or F (all faces centred).",
                "type": "string",
                "value": "bravais_lattice"
            },
579 580 581
            {
                "class": "metadata",
                "dtype": "",
582
                "mode": "",
583 584 585 586 587
                "name": "calculation_context",
                "title": "Contains information relating to a calculation.",
                "type": "section",
                "value": "calculation_context"
            },
588 589 590 591 592 593 594 595 596
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
                "name": "calculation_file_uri",
                "title": "Contains the nomad uri of a raw the data file connected to the current run. There should be an value for the main_file_uri and all ancillary files.",
                "type": "string",
                "value": "calculation_file_uri"
            },
597 598 599
            {
                "class": "metadata",
                "dtype": "C",
600
                "mode": "",
601
                "name": "calculation_gid",
602
                "title": "Unique identifier of a calculation.",
603 604 605 606 607 608
                "type": "string",
                "value": "calculation_gid"
            },
            {
                "class": "metadata",
                "dtype": "C",
609
                "mode": "",
610 611 612 613 614 615 616 617
                "name": "calculation_method",
                "title": "String that uniquely represents the method used to calculate energy_total, If the present calculation_method_current is a perturbative method Y that uses method X as starting point, this string is automatically created as X@Y, where X is taken from calculation_method_current and Y from method_to_method_ref. In order to activate this, method_to_method_kind must have the value starting_point (see the [method_to_method_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/method-to-method-kind)).",
                "type": "string",
                "value": "calculation_method"
            },
            {
                "class": "metadata",
                "dtype": "C",
618
                "mode": "",
619
                "name": "calculation_method_current",
620
                "title": "String that represents the method used to calculate the energy_current. If the method is perturbative, this string does not describe the starting point method, the latter being referenced to by section_method_to_method_refs. For self-consistent field (SCF) ab initio calculations, for example, this is composed by concatenating xc_method_current and basis_set. See [calculation_method_current wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/calculation-method-current) for the details.",
621 622 623 624 625 626
                "type": "string",
                "value": "calculation_method_current"
            },
            {
                "class": "metadata",
                "dtype": "C",
627
                "mode": "",
628 629 630 631 632
                "name": "calculation_method_kind",
                "title": "Kind of method in calculation_method_current.\n\nAccepted values are:\n\n- absolute\n- perturbative.",
                "type": "string",
                "value": "calculation_method_kind"
            },
633 634 635 636 637 638 639 640 641
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
                "name": "calculation_pid",
                "title": "Repository pid of this calculation",
                "type": "string",
                "value": "calculation_pid"
            },
642 643 644
            {
                "class": "metadata",
                "dtype": "C",
645
                "mode": "",
646 647 648 649 650 651 652 653
                "name": "calculation_to_calculation_external_url",
                "title": "URL used to reference an externally stored calculation. The kind of relationship between the present and the referenced section_single_configuration_calculation is specified by calculation_to_calculation_kind.",
                "type": "string",
                "value": "calculation_to_calculation_external_url"
            },
            {
                "class": "metadata",
                "dtype": "C",
654
                "mode": "",
655 656 657 658 659 660 661 662
                "name": "calculation_to_calculation_kind",
                "title": "String defining the relationship between the referenced section_single_configuration_calculation and the present section_single_configuration_calculation. Valid values are described in the [calculation_to_calculation_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/calculation-to-calculation-kind). Often calculations are connected, for instance, one calculation is a perturbation performed using a self-consistent field (SCF) calculation as starting point, or a simulated system is partitioned in regions with different but connected Hamiltonians (e.g., QM/MM, or a region treated via Kohn-Sham DFT embedded into a region treated via orbital-free DFT). Hence, the need of keeping track of these connected calculations. The referenced calculation is identified via calculation_to_calculation_ref (typically used for a calculation in the same section_run) or calculation_to_calculation_external_url.",
                "type": "string",
                "value": "calculation_to_calculation_kind"
            },
            {
                "class": "metadata",
                "dtype": "r",
663
                "mode": "",
664 665 666 667 668 669 670 671
                "name": "calculation_to_calculation_ref",
                "title": "Reference to another calculation. If both this and calculation_to_calculation_external_url are given, then calculation_to_calculation_ref is a local copy of the URL given in calculation_to_calculation_external_url. The kind of relationship between the present and the referenced section_single_configuration_calculation is specified by calculation_to_calculation_kind.",
                "type": "value",
                "value": "calculation_to_calculation_ref"
            },
            {
                "class": "metadata",
                "dtype": "C",
672
                "mode": "",
673 674 675 676 677 678 679 680
                "name": "calculation_to_folder_external_url",
                "title": "URL used to reference a folder containing external calculations. The kind of relationship between the present and the referenced section_single_configuration_calculation is specified by calculation_to_folder_kind.",
                "type": "string",
                "value": "calculation_to_folder_external_url"
            },
            {
                "class": "metadata",
                "dtype": "C",
681
                "mode": "",
682 683 684 685 686
                "name": "calculation_to_folder_kind",
                "title": "String defining the relationship between the referenced section_single_configuration_calculation and a folder containing calculations.",
                "type": "string",
                "value": "calculation_to_folder_kind"
            },
687 688
            {
                "class": "metadata",
689
                "dtype": "C",
690
                "mode": "",
691 692 693 694 695 696 697 698 699 700 701
                "name": "choice",
                "title": "String that specifies the centering, origin and basis vector settings of the 3D space group that defines the symmetry group of the simulated physical system (see section_system). Values are as defined by spglib.",
                "type": "string",
                "value": "choice"
            },
            {
                "class": "metadata",
                "dtype": "b",
                "mode": "",
                "name": "configuration_periodic_dimensions",
                "title": "Array labeling which of the lattice vectors use periodic boundary conditions. Note for the parser developers: This value is not expected to be given for each section_single_configuration_calculation. It is assumed to be valid from the section_single_configuration_calculation where it is defined for all subsequent section_single_configuration_calculation in section_run, until redefined.",
702
                "type": "value",
703
                "value": "configuration_periodic_dimensions"
704 705 706 707 708
            },
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
709 710
                "name": "configuration_raw_gid",
                "title": "Checksum of the configuration_core, i.e. the geometry of the system. The values are not normalized in any way so equivalent configurations might have different values",
711
                "type": "string",
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
                "value": "configuration_raw_gid"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "conserved_quantity",
                "title": "The values of a quantity that should be conserved,  along a sequence of frames (i.e., a trajectory). A frame is one section_single_configuration_calculation), for example the total energy in the NVE ensemble. If not all frames have a value the indices of the frames that have a value are stored in frame_sequence_conserved_quantity_frames.",
                "type": "value",
                "value": "conserved_quantity"
            },
            {
                "class": "metadata",
                "dtype": "i",
                "mode": "",
                "name": "constraint_atoms",
                "title": "List of the indexes involved in this constraint. The fist atom has index 1, the last number_of_topology_atoms.",
                "type": "value",
                "value": "constraint_atoms"
731 732 733 734 735
            },
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
736 737
                "name": "constraint_kind",
                "title": "Short and unique name for this constraint type. Valid names are described in the [constraint\\_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/constraint-kind).",
738
                "type": "string",
739
                "value": "constraint_kind"
740
            },
741 742
            {
                "class": "metadata",
743
                "dtype": "D",
744
                "mode": "",
745 746
                "name": "constraint_parameters",
                "title": "Explicit constraint parameters for this kind of constraint (depending on the constraint type, some might be given implicitly through other means).",
747
                "type": "value",
748 749 750 751 752 753 754 755 756 757
                "value": "constraint_parameters"
            },
            {
                "class": "metadata",
                "dtype": "r",
                "mode": "",
                "name": "constraint_to_topology_group_ref",
                "title": "Reference to the topological group of atoms which is used to define contraint on it.",
                "type": "value",
                "value": "constraint_to_topology_group_ref"
758 759 760 761
            },
            {
                "class": "metadata",
                "dtype": "C",
762
                "mode": "",
763 764
                "name": "dft_plus_u_functional",
                "title": "Type of DFT+U functional (such as DFT/DFT+U double-counting compensation). Valid names are described in the [dft\\_plus\\_u\\_functional wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/dft-plus-u-functional).",
765
                "type": "string",
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
                "value": "dft_plus_u_functional"
            },
            {
                "class": "metadata",
                "dtype": "i",
                "mode": "",
                "name": "dft_plus_u_orbital_atom",
                "title": "DFT+U-orbital setting: atom index (references index of atom_labels/atom_positions)",
                "type": "value",
                "value": "dft_plus_u_orbital_atom"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "dft_plus_u_orbital_j",
                "title": "DFT+U-orbital setting: value J (exchange interaction)",
                "type": "value",
                "value": "dft_plus_u_orbital_j"
785
            },
786 787 788 789
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
790 791
                "name": "dft_plus_u_orbital_label",
                "title": "DFT+U-orbital setting: orbital label (normally (n,l)), notation: '3d', '4f', ...",
792
                "type": "string",
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
                "value": "dft_plus_u_orbital_label"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "dft_plus_u_orbital_u",
                "title": "DFT+U-orbital setting: value U (on-site Coulomb interaction)",
                "type": "value",
                "value": "dft_plus_u_orbital_u"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "dft_plus_u_orbital_u_effective",
                "title": "DFT+U-orbital setting: value U_{effective} (U-J), if implementation uses it",
                "type": "value",
                "value": "dft_plus_u_orbital_u_effective"
            },
            {
                "class": "metadata",
                "dtype": "C",
                "mode": "",
                "name": "dft_plus_u_projection_type",
                "title": "DFT+U: Type of orbitals used for projection in order to calculate occupation numbers. Valid names are described in the [dft\\_plus\\_u\\_projection\\_type wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/dft-plus-u-projection-type).",
                "type": "string",
                "value": "dft_plus_u_projection_type"
821
            },
822 823 824
            {
                "class": "metadata",
                "dtype": "f",
825
                "mode": "",
826 827 828 829 830 831 832 833
                "name": "dos_energies",
                "title": "Array containing the set of discrete energy values for the density (electronic-energy or vibrational energy) of states (DOS). This is the total DOS, see atom_projected_dos_energies and species_projected_dos_energies for partial density of states.",
                "type": "value",
                "value": "dos_energies"
            },
            {
                "class": "metadata",
                "dtype": "f",
834
                "mode": "",
835 836 837 838 839 840 841 842
                "name": "dos_energies_normalized",
                "title": "Array containing the set of discrete energy values with respect to the top of the valence band for the density (electronic-energy) of states (DOS). This is the total DOS, see atom_projected_dos_energies and species_projected_dos_energies for partial density of states.",
                "type": "value",
                "value": "dos_energies_normalized"
            },
            {
                "class": "metadata",
                "dtype": "f",
843
                "mode": "",
844 845 846 847 848 849 850 851
                "name": "dos_fermi_energy",
                "title": "Stores the Fermi energy of the density of states.",
                "type": "value",
                "value": "dos_fermi_energy"
            },
            {
                "class": "metadata",
                "dtype": "f",
852
                "mode": "",
853 854 855 856 857 858 859 860
                "name": "dos_integrated_values",
                "title": "Integrated density of states (starting at $-\\infty$), pseudo potential calculations should start with the number of core electrons if they cover only the active electrons",
                "type": "value",
                "value": "dos_integrated_values"
            },
            {
                "class": "metadata",
                "dtype": "C",
861
                "mode": "",
862 863 864 865 866 867 868 869
                "name": "dos_kind",
                "title": "String to specify the kind of density of states (either electronic or vibrational).",
                "type": "string",
                "value": "dos_kind"
            },
            {
                "class": "metadata",
                "dtype": "i",
870
                "mode": "",
871 872 873 874 875 876 877 878
                "name": "dos_lm",
                "title": "Tuples of $l$ and $m$ values for which dos_values_lm are given. For the quantum number $l$ the conventional meaning of azimuthal quantum number is always adopted. For the integer number $m$, besides the conventional use as magnetic quantum number ($l+1$ integer values from $-l$ to $l$), a set of different conventions is accepted (see the [m_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind). The actual adopted convention is specified by dos_m_kind.",
                "type": "value",
                "value": "dos_lm"
            },
            {
                "class": "metadata",
                "dtype": "C",
879
                "mode": "",
880 881 882 883 884 885 886 887
                "name": "dos_m_kind",
                "title": "String describing what the integer numbers of $m$ in dos_lm mean. The allowed values are listed in the [m_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind).",
                "type": "string",
                "value": "dos_m_kind"
            },
            {
                "class": "metadata",
                "dtype": "f",
888
                "mode": "",
889
                "name": "dos_values",
890
                "title": "Values (number of states for a given energy, the set of discrete energy values is given in dos_energies) of density (electronic-energy or vibrational-energy) of states. This refers to the simulation cell, i.e. integrating over all energies will give the number of electrons in the simulation cell.",
891 892 893 894 895 896
                "type": "value",
                "value": "dos_values"
            },
            {
                "class": "metadata",
                "dtype": "f",
897
                "mode": "",
898 899 900 901 902
                "name": "dos_values_lm",
                "title": "Array containing the density (electronic-energy) of states values projected on the various spherical harmonics (integrated on all atoms), see atom_projected_dos_values_lm for atom values.",
                "type": "value",
                "value": "dos_values_lm"
            },
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "dos_values_per_atoms",
                "title": "Values (number of states for a given energy divided by the numer of atoms, the set of discrete energy values is given in dos_energies) of density (electronic-energy or vibrational-energy) of states.",
                "type": "value",
                "value": "dos_values_per_atoms"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "dos_values_per_unit_volume",
                "title": "Values (number of states for a given energy divided by volume, the set of discrete energy values is given in dos_energies) of density (electronic-energy or vibrational-energy) of states.",
                "type": "value",
                "value": "dos_values_per_unit_volume"
            },
921 922 923
            {
                "class": "metadata",
                "dtype": "C",
924
                "mode": "",
925 926 927 928 929 930 931 932
                "name": "eigenvalues_kind",
                "title": "A short string describing the kind of eigenvalues, as defined in the [eigenvalues_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/eigenvalues-kind).",
                "type": "string",
                "value": "eigenvalues_kind"
            },
            {
                "class": "metadata",
                "dtype": "f",
933
                "mode": "",
934 935 936 937 938 939 940 941
                "name": "eigenvalues_kpoints",
                "title": "Coordinates of the $k$ points (in the basis of the reciprocal lattice vectors) used for the evaluation of the eigenvalues tabulated in eigenvalues_values.",
                "type": "value",
                "value": "eigenvalues_kpoints"
            },
            {
                "class": "metadata",
                "dtype": "f",
942
                "mode": "",
943 944 945 946 947 948 949 950
                "name": "eigenvalues_kpoints_multiplicity",
                "title": "Multiplicity of the $k$ point (i.e., how many distinct points per cell this expands to after applying all symmetries). This defaults to 1. If expansion is preformed then each point will have weight eigenvalues_kpoints_weights/eigenvalues_kpoints_multiplicity.",
                "type": "value",
                "value": "eigenvalues_kpoints_multiplicity"
            },
            {
                "class": "metadata",
                "dtype": "f",
951
                "mode": "",
952 953 954 955 956 957 958 959
                "name": "eigenvalues_kpoints_weights",
                "title": "Weights of the $k$ points (in the basis of the reciprocal lattice vectors) used for the evaluation of the eigenvalues tabulated in eigenvalues_values, should account for symmetry too.",
                "type": "value",
                "value": "eigenvalues_kpoints_weights"
            },
            {
                "class": "metadata",
                "dtype": "f",
960
                "mode": "",
961 962 963 964 965 966 967 968
                "name": "eigenvalues_occupation",
                "title": "Occupation of the eigenstates. The corresponding eigenvalues (energy) are given in eigenvalues_values. The coordinates in the reciprocal space are defined in eigenvalues_kpoints.",
                "type": "value",
                "value": "eigenvalues_occupation"
            },
            {
                "class": "metadata",
                "dtype": "f",
969
                "mode": "",
970 971 972 973 974 975 976 977
                "name": "eigenvalues_values",
                "title": "Values of the (electronic-energy) eigenvalues. The coordinates of the corresponding eigenstates in the reciprocal space are defined in eigenvalues_kpoints and their occupations are given in eigenvalues_occupation.",
                "type": "value",
                "value": "eigenvalues_values"
            },
            {
                "class": "metadata",
                "dtype": "f",
978
                "mode": "",
979
                "name": "electronic_kinetic_energy",
980
                "title": "Self-consistent electronic kinetic energy as defined in xc_method.",
981 982 983 984 985 986
                "type": "value",
                "value": "electronic_kinetic_energy"
            },
            {
                "class": "metadata",
                "dtype": "f",
987
                "mode": "",
988
                "name": "electronic_kinetic_energy_scf_iteration",
989
                "title": "Electronic kinetic energy as defined in xc_method during the self-consistent field (SCF) iterations.",
990 991 992 993 994 995
                "type": "value",
                "value": "electronic_kinetic_energy_scf_iteration"
            },
            {
                "class": "metadata",
                "dtype": "b",
996
                "mode": "",
997 998 999 1000 1001 1002 1003 1004
                "name": "embedded_system",
                "title": "Is the system embedded into a host geometry?.",
                "type": "value",
                "value": "embedded_system"
            },
            {
                "class": "metadata",
                "dtype": "f",
1005
                "mode": "",
1006 1007
                "name": "energy_c",
                "title": "Correlation (C) energy calculated with the method described in xc_functional.",
1008
                "type": "value",
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
                "value": "energy_c"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "energy_c_mgga",
                "title": "Component of the correlation (C) energy at the GGA (or MetaGGA) level using the self-consistent density of the target XC functional (full unscaled value, i.e., not scaled due to exact-exchange mixing).",
                "type": "value",
                "value": "energy_c_mgga"
1019 1020 1021 1022
            },
            {
                "class": "metadata",
                "dtype": "f",
1023
                "mode": "",
1024 1025 1026 1027 1028 1029 1030 1031
                "name": "energy_change_scf_iteration",
                "title": "Stores the change of total energy with respect to the previous self-consistent field (SCF) iteration.",
                "type": "value",
                "value": "energy_change_scf_iteration"
            },
            {
                "class": "metadata",
                "dtype": "C",
1032
                "mode": "",
1033 1034 1035 1036 1037 1038 1039 1040
                "name": "energy_code_independent_kind",
                "title": "Type of the code-independent total energy (obtained by subtracting a reference energy calculated with the same code), created to be comparable among different codes and numerical settings. Details can be found on the [energy_code_independent wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/energy-code-independent).",
                "type": "string",
                "value": "energy_code_independent_kind"
            },
            {
                "class": "metadata",
                "dtype": "f",
1041
                "mode": "",
1042 1043 1044 1045 1046 1047 1048 1049
                "name": "energy_code_independent_value",
                "title": "Value of the code-independent total energy (obtained by subtracting a reference energy calculated with the same code). This value is created to be comparable among different codes and numerical settings. Details can be found on the [energy_code_independent wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/energy-code-independent).",
                "type": "value",
                "value": "energy_code_independent_value"
            },
            {
                "class": "metadata",
                "dtype": "f",
1050
                "mode": "",
1051
                "name": "energy_correction_entropy",
1052
                "title": "Entropy correction to the potential energy to compensate for the change in occupation so that forces at finite T do not need to keep the change of occupation in account. Defined consistently with xc_method.",
1053 1054 1055 1056 1057 1058
                "type": "value",
                "value": "energy_correction_entropy"
            },
            {
                "class": "metadata",
                "dtype": "f",
1059
                "mode": "",
1060
                "name": "energy_correction_entropy_scf_iteration",
1061
                "title": "Entropy correction to the potential energy to compensate for the change in occupation so that forces at finite T do not need to keep the change of occupation in account. The array lists the values of the entropy correction for each self-consistent field (SCF) iteration. Defined consistently with xc_method.",
1062 1063 1064 1065 1066 1067
                "type": "value",
                "value": "energy_correction_entropy_scf_iteration"
            },
            {
                "class": "metadata",
                "dtype": "f",
1068
                "mode": "",
1069
                "name": "energy_correction_hartree",
1070
                "title": "Correction to the density-density electrostatic energy in the sum of eigenvalues (that uses the mixed density on one side), and the fully consistent density-density electrostatic energy. Defined consistently with xc_method.",
1071 1072 1073 1074 1075 1076
                "type": "value",
                "value": "energy_correction_hartree"
            },
            {
                "class": "metadata",
                "dtype": "f",
1077
                "mode": "",
1078
                "name": "energy_correction_hartree_scf_iteration",
1079
                "title": "Correction to the density-density electrostatic energy in the sum of eigenvalues (that uses the mixed density on one side), and the fully consistent density-density electrostatic energy during the self-consistent field (SCF) iterations. Defined consistently with xc_method.",
1080 1081 1082 1083 1084 1085
                "type": "value",
                "value": "energy_correction_hartree_scf_iteration"
            },
            {
                "class": "metadata",
                "dtype": "f",
1086
                "mode": "",
1087 1088 1089 1090 1091 1092 1093 1094
                "name": "energy_current",
                "title": "Value of the energy calculated with calculation_method_current. energy_current is equal to energy_total for non-perturbative methods. For perturbative methods, energy_current is equal to the correction: energy_total minus energy_total of the calculation_to_calculation_ref with calculation_to_calculation_kind = starting_point (see the [method_to_method_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/method-to-method-kind)). See also [energy_current wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/energy-current).",
                "type": "value",
                "value": "energy_current"
            },
            {
                "class": "metadata",
                "dtype": "f",
1095
                "mode": "",
1096 1097 1098 1099 1100 1101 1102 1103
                "name": "energy_electrostatic",
                "title": "Total electrostatic energy (nuclei + electrons), defined consistently with calculation_method.",
                "type": "value",
                "value": "energy_electrostatic"
            },
            {
                "class": "metadata",
                "dtype": "f",
1104
                "mode": "",
1105 1106 1107 1108 1109 1110 1111 1112
                "name": "energy_electrostatic_scf_iteration",
                "title": "Total electrostatic energy (nuclei + electrons) during each self-consistent field (SCF) iteration.",
                "type": "value",
                "value": "energy_electrostatic_scf_iteration"
            },
            {
                "class": "metadata",
                "dtype": "f",
1113
                "mode": "",
1114
                "name": "energy_free",
1115
                "title": "Free energy (nuclei + electrons) (whose minimum gives the smeared occupation density calculated with smearing_kind) calculated with the method described in xc_method.",
1116 1117 1118 1119 1120 1121
                "type": "value",
                "value": "energy_free"
            },
            {
                "class": "metadata",
                "dtype": "f",
1122
                "mode": "",
1123
                "name": "energy_free_per_atom",
1124
                "title": "Free energy per atom (whose minimum gives the smeared occupation density calculated with smearing_kind) calculated with xc_method.",
1125 1126 1127 1128 1129 1130
                "type": "value",
                "value": "energy_free_per_atom"
            },
            {
                "class": "metadata",
                "dtype": "f",
1131
                "mode": "",
1132
                "name": "energy_free_per_atom_scf_iteration",
1133
                "title": "Free energy per atom (whose minimum gives the smeared occupation density calculated with smearing_kind) calculated with xc_method during the self-consistent field (SCF) iterations.",
1134 1135 1136 1137 1138 1139
                "type": "value",
                "value": "energy_free_per_atom_scf_iteration"
            },
            {
                "class": "metadata",
                "dtype": "f",
1140
                "mode": "",
1141
                "name": "energy_free_scf_iteration",
1142
                "title": "Free energy (whose minimum gives the smeared occupation density calculated with smearing_kind) calculated with the method described in xc_method during the self-consistent field (SCF) iterations.",
1143 1144 1145 1146 1147 1148
                "type": "value",
                "value": "energy_free_scf_iteration"
            },
            {
                "class": "metadata",
                "dtype": "f",
1149
                "mode": "",
1150
                "name": "energy_hartree_error",
1151
                "title": "Error in the Hartree (electrostatic) potential energy. Defined consistently with xc_method.",
1152 1153 1154 1155 1156 1157
                "type": "value",
                "value": "energy_hartree_error"
            },
            {
                "class": "metadata",
                "dtype": "f",
1158
                "mode": "",
1159
                "name": "energy_hartree_error_scf_iteration",
1160
                "title": "Error in the Hartree (electrostatic) potential energy during each self-consistent field (SCF) iteration. Defined consistently with xc_method.",
1161 1162 1163 1164 1165 1166
                "type": "value",
                "value": "energy_hartree_error_scf_iteration"
            },
            {
                "class": "metadata",
                "dtype": "f",
1167
                "mode": "",
1168 1169
                "name": "energy_hartree_fock_x",
                "title": "Converged exact-exchange (Hartree-Fock) energy. Defined consistently with xc_method.",
1170
                "type": "value",
1171
                "value": "energy_hartree_fock_x"
1172 1173 1174 1175
            },
            {
                "class": "metadata",
                "dtype": "f",
1176
                "mode": "",
1177 1178
                "name": "energy_hartree_fock_x_scaled",
                "title": "Scaled exact-exchange energy that depends on the mixing parameter of the functional. For example in hybrid functionals, the exchange energy is given as a linear combination of exact-energy and exchange energy of an approximate DFT functional; the exact exchange energy multiplied by the mixing coefficient of the hybrid functional would be stored in this metadata. Defined consistently with xc_method.",
1179
                "type": "value",
1180
                "value": "energy_hartree_fock_x_scaled"
1181 1182 1183 1184
            },
            {
                "class": "metadata",
                "dtype": "f",
1185
                "mode": "",
1186 1187 1188 1189 1190
                "name": "energy_method_current",
                "title": "Value of the energy calculated with the method calculation_method_current. Depending on calculation_method_kind it might be a total energy or only a correction.",
                "type": "value",
                "value": "energy_method_current"
            },
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "energy_reference_fermi",
                "title": "Fermi energy (separates occupied from unoccupied single-particle states in metals)",
                "type": "value",
                "value": "energy_reference_fermi"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "energy_reference_fermi_iteration",
                "title": "Fermi energy (separates occupied from unoccupied single-particle states in metals) during the self-consistent field (SCF) iterations.",
                "type": "value",
                "value": "energy_reference_fermi_iteration"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "energy_reference_highest_occupied",
                "title": "Highest occupied single-particle state energy (in insulators or HOMO energy in finite systems)",
                "type": "value",
                "value": "energy_reference_highest_occupied"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "energy_reference_highest_occupied_iteration",
                "title": "Highest occupied single-particle state energy (in insulators or HOMO energy in finite systems) during the self-consistent field (SCF) iterations.",
                "type": "value",
                "value": "energy_reference_highest_occupied_iteration"
            },
            {
                "class": "metadata",
                "dtype": "f",
                "mode": "",
                "name": "energy_reference_lowest_unoccupied",
                "title": "Lowest unoccupied single-particle state energy (in insulators or LUMO energy in finite systems)"