perovskite_prediction_double.bkr 3.7 MB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
{
    "beaker": "2",
    "evaluators": [
        {
            "name": "HTML",
            "plugin": "HTML",
            "view": {
                "cm": {
                    "mode": "htmlmixed"
                }
            }
        },
        {
            "name": "JavaScript",
            "plugin": "JavaScript",
            "view": {
                "cm": {
                    "mode": "javascript",
                    "background": "#FFE0F0"
                }
            },
            "languageVersion": "ES2015"
        },
        {
            "name": "Python3",
            "plugin": "Python3",
            "setup": "%matplotlib inline\nimport numpy\nimport matplotlib\nfrom matplotlib import pylab, mlab, pyplot\nnp = numpy\nplt = pyplot\nfrom IPython.display import display\nfrom IPython.core.pylabtools import figsize, getfigs\nfrom pylab import *\nfrom numpy import *\n",
            "view": {
                "cm": {
                    "mode": "python"
                }
            }
        }
    ],
    "cells": [
        {
            "id": "py-init",
            "type": "code",
            "evaluator": "Python3",
            "input": {
                "body": [
                    "import numpy as np",
                    "import os",
                    "import pandas as pd",
                    "import math",
                    "import re",
                    "from urllib.request import urlopen"
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "selectedType": "Hidden",
                "pluginName": "Python3",
55 56
                "shellId": "323B25B8FC19425D87DCCFD0DA19E4B8",
                "elapsedTime": 669,
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
                "height": 60
            },
            "evaluatorReader": true,
            "lineCount": 6,
            "tags": ""
        },
        {
            "id": "py-dic",
            "type": "code",
            "evaluator": "Python3",
            "input": {
                "body": [
                    "### make dictionary of Shannon ionic radii",
                    "# starting with table available at v.web.umkc.edu/vanhornj/Radii.xls with Sn2+ added from 10.1039/c5sc04845a",
                    "# and organic cations from 10.1039/C4SC02211D",
                    "if beaker.show_output == 1:",
                    "    import os",
                    "    import json",
                    "fjson = 'Shannon_radii_dict.json'",
                    "if not os.path.exists(fjson):",
                    "    df = pd.read_csv(\"https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-lab-base/raw/master/analysis-tools/perovsktie-predictor/Shannon_Effective_Ionic_Radii.csv\")",
                    "",
                    "    df = df.rename(columns = {'OX. State': 'ox',",
                    "                              'Coord. #': 'coord',",
                    "                              'Crystal Radius': 'rcryst',",
                    "                              'Ionic Radius': 'rion',",
                    "                              'Spin State' : 'spin'})",
                    "",
                    "    df['spin'] = [spin if spin in ['HS', 'LS'] else 'only_spin' for spin in df.spin.values]",
                    "",
                    "    def get_el(row):",
                    "        ION = row['ION']",
                    "        if ' ' in ION:",
                    "            return ION.split(' ')[0]",
                    "        elif '+' in ION:",
                    "            return ION.split('+')[0]",
                    "        elif '-' in ION:",
                    "            return ION.split('-')[0]",
                    "",
                    "    df['el'] = df.apply(lambda row: get_el(row), axis = 1)",
                    "",
                    "    # get allowed oxidation states for each ion",
                    "    el_to_ox = {}",
                    "    for el in df.el.values:",
                    "        el_to_ox[el] = list(set(df.ox.get((df['el'] == el)).tolist()))",
                    "",
                    "    # get ionic radii as function of oxidation state -> coordination number -> spin state",
                    "    Shannon_dict = {}",
                    "    for el in el_to_ox:",
                    "        # list of Shannon oxidation states for each element",
                    "        oxs = el_to_ox[el]",
                    "        ox_to_coord = {}",
                    "        for ox in oxs:",
                    "            # list of coordination numbers for each (element, oxidation state)",
                    "            coords = df.coord.get((df['el'] == el) & (df['ox'] == ox)).tolist()",
                    "            ox_to_coord[ox] = coords",
                    "            coord_to_spin = {}",
                    "            for coord in ox_to_coord[ox]:",
                    "                # list of spin states for each (element, oxidation state, coordination number)",
                    "                spin = df.spin.get((df['el'] == el) & (df['ox'] == ox) & (df['coord'] == coord)).tolist()",
                    "                coord_to_spin[coord] = spin",
                    "                spin_to_rad = {}",
                    "                for spin in coord_to_spin[coord]:",
                    "                    # list of radiis for each (element, oxidation state, coordination number)",
                    "                    rad = df.rion.get((df['el'] == el) & (df['ox'] == ox) & (df['coord'] == coord) & (df['spin'] == spin)).tolist()[0]",
                    "                    spin_to_rad[spin] = rad  ",
                    "                    coord_to_spin[coord] = spin_to_rad",
                    "                    ox_to_coord[ox] = coord_to_spin",
                    "        Shannon_dict[el] = ox_to_coord",
                    "",
                    "    # assign spin state for transition metals (assumes that if an ion can be high-spin, it will be)",
                    "    spin_els = ['Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu']",
                    "    starting_d = [4, 5, 6, 7, 8, 9]",
                    "    d_dict = dict(zip(spin_els, starting_d))",
                    "    for el in spin_els:",
                    "        for ox in Shannon_dict[el].keys():",
                    "            for coord in Shannon_dict[el][ox].keys():",
                    "                if len(Shannon_dict[el][ox][coord].keys()) > 1:",
                    "                    num_d = d_dict[el] + 2 - ox",
                    "                    if num_d in [4, 5, 6, 7]:",
                    "                        Shannon_dict[el][ox][coord]['only_spin'] = Shannon_dict[el][ox][coord]['HS']",
                    "                    else:",
                    "                        Shannon_dict[el][ox][coord]['only_spin'] = Shannon_dict[el][ox][coord]['LS']",
                    "                elif 'HS' in Shannon_dict[el][ox][coord].keys():",
                    "                    Shannon_dict[el][ox][coord]['only_spin'] = Shannon_dict[el][ox][coord]['HS']",
                    "                elif 'LS' in Shannon_dict[el][ox][coord].keys():",
                    "                    Shannon_dict[el][ox][coord]['only_spin'] = Shannon_dict[el][ox][coord]['LS']",
                    "    with open(fjson, 'w') as f:",
                    "        json.dump(Shannon_dict, f)",
                    "else:",
                    "    with open(fjson) as f:",
                    "        Shannon_dict = json.load(f)",
                    "        for k1 in Shannon_dict:",
                    "            k2s = list(Shannon_dict[k1].keys())",
                    "            for k2 in k2s:",
                    "                k3s = list(Shannon_dict[k1][k2].keys())",
                    "                Shannon_dict[k1][int(k2)] = Shannon_dict[k1][k2]",
                    "                del Shannon_dict[k1][k2]",
                    "                for k3 in k3s:",
                    "                    Shannon_dict[k1][int(k2)][int(k3)] = Shannon_dict[k1][int(k2)][k3]",
                    "                    del Shannon_dict[k1][int(k2)][k3]  ",
                    "                ",
                    ""
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "selectedType": "Hidden",
                "pluginName": "Python3",
167 168
                "shellId": "323B25B8FC19425D87DCCFD0DA19E4B8",
                "elapsedTime": 1159
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
            },
            "evaluatorReader": true,
            "lineCount": 91,
            "tags": ""
        },
        {
            "id": "py-predict",
            "type": "code",
            "evaluator": "Python3",
            "input": {
                "body": [
                    "if beaker.show_output == 0:",
                    "    print('calculating...\\n')",
                    "if beaker.show_output == 1:",
                    "    import pickle",
                    "    import numpy as np",
                    "    import pandas as pd",
                    "    import math",
                    "    import re",
                    "    from sklearn.calibration import CalibratedClassifierCV",
                    "    from itertools import combinations, product",
                    "    from math import gcd",
                    "    import os",
                    "",
                    "",
                    "class PredictABX3(object):",
                    "    \"\"\"",
                    "    for undoped ABX3s",
                    "        -predicts which cation is A or B",
                    "        -determines whether compound can be charge-balanced",
                    "        -assigns oxidation states for A and B",
                    "        -predicts radii",
                    "        -generates t and tau",
                    "        -classifies as perovskite/nonperovskite based on t and tau",
                    "        -generates tau-derived probability of stability in the perovskite structure",
                    "    \"\"\"",
                    "    ",
                    "    def __init__(self, initial_form):",
                    "        \"\"\"",
                    "        Args:",
                    "            initial_form (str) - CC'X3 to classify",
                    "        \"\"\"",
                    "        self.initial_form = initial_form",
                    "    ",
                    "    @property",
                    "    def els(self):",
                    "        \"\"\"",
                    "        list of elements in formula (str)",
                    "        \"\"\"",
                    "        return re.findall('[A-Z][a-z]?', self.initial_form)",
                    "    ",
                    "    @property",
                    "    def X(self):",
                    "        \"\"\"",
                    "        anion (str)",
                    "        \"\"\"",
                    "        el_num_pairs = [[el_num_pair[idx] for idx in range(len(el_num_pair)) if el_num_pair[idx] != ''][0]",
                    "                                  for el_num_pair in re.findall('([A-Z][a-z]\\d*)|([A-Z]\\d*)', self.initial_form)]",
                    "        return [el_num_pair.replace('3', '') for el_num_pair in el_num_pairs if '3' in el_num_pair][0]",
                    "    ",
                    "    @property",
                    "    def cations(self):",
                    "        \"\"\"",
                    "        list of cations (str)",
                    "        \"\"\"",
                    "        els = self.els",
                    "        return [el for el in els if el != self.X]",
                    "        ",
                    "    @property",
                    "    def X_ox_dict(self):",
                    "        \"\"\"",
                    "        returns {el (str): oxidation state (int)} for allowed anions",
                    "        \"\"\"",
                    "        return {'N' : -3,",
                    "                'O' : -2,",
                    "                'S' : -2,",
                    "                'Se' : -2,",
                    "                'F' : -1,",
                    "                'Cl' : -1,",
                    "                'Br' : -1,",
                    "                'I' : -1}",
                    "    ",
                    "    @property",
                    "    def plus_one(self):",
                    "        \"\"\"",
                    "        returns list of elements (str) likely to be 1+",
                    "        \"\"\"",
                    "        return ['H', 'Li', 'Na', 'K', 'Rb', 'Cs', 'Fr', 'Ag']",
                    "    ",
                    "    @property",
                    "    def plus_two(self):",
                    "        \"\"\"",
                    "        returns list of elements (str) likely to be 2+",
                    "        \"\"\"        ",
                    "        return ['Be', 'Mg', 'Ca', 'Sr', 'Ba', 'Ra']",
                    "    ",
                    "    @property",
                    "    def plus_three(self):",
                    "        \"\"\"",
                    "        returns list of elements (str) likely to be 3+",
                    "        \"\"\"        ",
                    "        return ['Sc', 'Y', 'La', 'Al', 'Ga', 'In',",
                    "                'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb',",
                    "                'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu']    ",
                    "            ",
                    "    @property",
                    "    def chi_dict(self):",
                    "        \"\"\"",
                    "        returns {el (str) : Pauling electronegativity (float)} for cations",
                    "        \"\"\"",
                    "        cations = self.cations",
                    "        chi_dict = {}",
                    "        df1 = pd.read_csv(\"https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-lab-base/raw/master/analysis-tools/perovsktie-predictor/electronegativities.csv\")",
                    "        tmp_cation = []",
                    "        tmp_cation.append(df1.columns.tolist()[0])",
                    "        tmp_cation.extend(df1[df1.columns.tolist()[0]])",
                    "        tmp_el = []",
                    "        tmp_el.append( df1.columns.tolist()[1] )",
                    "        tmp_el.extend( df1[df1.columns.tolist()[1]] )",
                    "        df2 = pd.DataFrame({\"cation\":tmp_cation, ",
                    "                     \"el\":tmp_el})",
                    "        # generate a dictionary of {cation : electronegativity} for help with assignment",
                    "        for cation in cations:",
                    "            idx = df2.index[df2['cation'] == cation].tolist()",
                    "            chi_dict[df2.loc[idx].cation.values[0]] = float(df2.loc[idx].el.values[0])",
                    "        return chi_dict",
                    "    ",
                    "    @property",
                    "    def allowed_ox(self):",
                    "        \"\"\"",
                    "        returns {el (str) : list of allowed oxidation states (int)} for each ion",
                    "        \"\"\"",
                    "        X = self.X",
                    "        cations = self.cations",
                    "        allowed_ox_dict = {}",
                    "        for cation in cations:",
                    "            # if cation is commonly 1+, make that the only allowed oxidation state",
                    "            if cation in self.plus_one:",
                    "                allowed_ox_dict[cation] = [1]",
                    "            # if cation is commonly 2+, make that the only allowed oxidation state",
                    "            elif cation in self.plus_two:",
                    "                allowed_ox_dict[cation] = [2]",
                    "            # otherwise, use the oxidation states that have corresponding Shannon radii                ",
                    "            else:",
                    "                allowed_ox_dict[cation] = [val for val in list(Shannon_dict[cation].keys()) if val > 0]",
                    "        allowed_ox_dict[X] = [self.X_ox_dict[X]]",
                    "        return allowed_ox_dict",
                    "    ",
                    "    @property",
                    "    def charge_bal_combos(self):",
                    "        \"\"\"",
                    "        returns list of oxidation state pairs (tuple of ints) which charge-balance X3",
                    "        \"\"\"",
                    "        cations = self.cations",
                    "        X = self.X",
                    "        allowed_ox = self.allowed_ox",
                    "        ox1s = allowed_ox[cations[0]]",
                    "        ox2s = allowed_ox[cations[1]]",
                    "        oxX = allowed_ox[X][0]",
                    "        bal_combos = []",
                    "        for ox1 in ox1s:",
                    "            for ox2 in ox2s:",
                    "                if ox1 + ox2 == -3*oxX:",
                    "                    bal_combos.append((ox1, ox2))",
                    "        if len(bal_combos) == 0:",
                    "            #print(self.initial_form)",
                    "            #print('No charge balanced combinations. . .')",
                    "            return np.nan",
                    "        else:",
                    "            return bal_combos ",
                    "    ",
                    "    @property",
                    "    def chosen_ox_states(self):",
                    "        \"\"\"",
                    "        returns {el (str) : assigned oxidation state (int)} for cations",
                    "        \"\"\"",
                    "        combos = self.charge_bal_combos",
                    "        if isinstance(combos, float):",
                    "            return np.nan",
                    "        chi_dict = self.chi_dict",
                    "        cations = self.cations",
                    "        X = self.X",
                    "        plus_three = self.plus_three",
                    "        # if only one charge-balanced combination exists, use it",
                    "        if len(combos) == 1:",
                    "            ox_states = dict(zip(cations, combos[0]))",
                    "        # if two combos exists and they are the reverse of one another",
                    "        elif (len(combos) == 2) and (combos[0] == combos[1][::-1]):",
                    "            # assign the minimum oxidation state to the more electronegative cation",
                    "            min_ox = np.min(combos[0])",
                    "            max_ox = np.max(combos[1])",
                    "            epos_el = [el for el in cations if chi_dict[el] == np.min(list(chi_dict.values()))][0]",
                    "            eneg_el = [el for el in cations if el != epos_el][0]",
                    "            ox_states = {epos_el : max_ox,",
                    "                         eneg_el : min_ox}",
                    "        else:",
                    "            # if one of the cations is probably 3+, let it be 3+",
                    "            if (cations[0] in plus_three) or (cations[1] in plus_three):",
                    "                if X == 'O':",
                    "                    if (3,3) in combos:",
                    "                        combo = (3,3)",
                    "                        ox_states = dict(zip(cations, list(combo)))",
                    "            # else compare electronegativities - if 0.9 < chi1/chi2 < 1.1, minimize the oxidation state diff",
                    "            elif np.min(list(chi_dict.values())) > 0.9 * np.max(list(chi_dict.values())):",
                    "                diffs = [abs(combo[0] - combo[1]) for combo in combos]",
                    "                mindex = [idx for idx in range(len(diffs)) if diffs[idx] == np.min(diffs)]",
                    "                if len(mindex) == 1:",
                    "                    mindex = mindex[0]",
                    "                    combo = combos[mindex]",
                    "                    ox_states = dict(zip(cations, combo))",
                    "                else:",
                    "                    min_ox = np.min([combos[idx] for idx in mindex])",
                    "                    max_ox = np.max([combos[idx] for idx in mindex])",
                    "                    epos_el = [el for el in cations if chi_dict[el] == np.min(list(chi_dict.values()))][0]",
                    "                    eneg_el = [el for el in cations if el != epos_el][0]",
                    "                    ox_states = {epos_el : max_ox,",
                    "                                 eneg_el : min_ox} ",
                    "            else:",
                    "                diffs = [abs(combo[0] - combo[1]) for combo in combos]",
                    "                maxdex = [idx for idx in range(len(diffs)) if diffs[idx] == np.max(diffs)]",
                    "                if len(maxdex) == 1:",
                    "                    maxdex = maxdex[0]",
                    "                    combo = combos[maxdex]",
                    "                    ox_states = dict(zip(cations, combo))",
                    "                else:",
                    "                    min_ox = np.min([combos[idx] for idx in maxdex])",
                    "                    max_ox = np.max([combos[idx] for idx in maxdex])",
                    "                    epos_el = [el for el in cations if chi_dict[el] == np.min(list(chi_dict.values()))][0]",
                    "                    eneg_el = [el for el in cations if el != epos_el][0]",
                    "                    ox_states = {epos_el : max_ox,",
                    "                                eneg_el : min_ox}",
                    "        return ox_states",
                    "    ",
                    "    @property",
                    "    def AB_radii_dict(self):",
                    "        \"\"\"",
                    "        returns {el (str) : {'A_rad' : radius if A (float),",
                    "                             'B_rad' : radius if B (float)}}",
                    "        \"\"\"",
                    "        ox_dict = self.chosen_ox_states",
                    "        if isinstance(ox_dict, float):",
                    "            return np.nan",
                    "        radii_dict = {}",
                    "        for el in ox_dict:",
                    "            tmp_dict = {}",
                    "            # get the oxidation state",
                    "            ox = ox_dict[el]",
                    "            coords = list(Shannon_dict[el][ox].keys())",
                    "            # get the B CN as the one available nearest 6",
                    "            B_coords = [abs(coord - 6) for coord in coords]",
                    "            mindex = [idx for idx in range(len(B_coords)) if B_coords[idx] == np.min(B_coords)][0]",
                    "            B_coord = coords[mindex]",
                    "            # get the A CN as the one available nearest 12",
                    "            A_coords = [abs(coord - 12) for coord in coords]",
                    "            mindex = [idx for idx in range(len(A_coords)) if A_coords[idx] == np.min(A_coords)][0]",
                    "            A_coord = coords[mindex]",
                    "            # produce the equivalent B-site and A-site radii",
                    "            B_rad = Shannon_dict[el][ox][B_coord]['only_spin']",
                    "            A_rad = Shannon_dict[el][ox][A_coord]['only_spin']",
                    "            tmp_dict['A_rad'] = A_rad",
                    "            tmp_dict['B_rad'] = B_rad",
                    "            radii_dict[el] = tmp_dict",
                    "        return radii_dict",
                    "",
                    "    @property",
                    "    def pred_A(self):",
                    "        \"\"\"",
                    "        returns predicted A (str)",
                    "        \"\"\"",
                    "        ox_dict = self.chosen_ox_states",
                    "        if isinstance(ox_dict, float):",
                    "            return np.nan        ",
                    "        radii_dict = self.AB_radii_dict",
                    "        el1 = list(radii_dict.keys())[0]",
                    "        el2 = list(radii_dict.keys())[1]",
                    "        if (radii_dict[el1]['A_rad'] > radii_dict[el2]['B_rad']) and (radii_dict[el1]['B_rad'] > radii_dict[el2]['A_rad']):",
                    "            return el1",
                    "        elif (radii_dict[el1]['A_rad'] < radii_dict[el2]['B_rad']) and (radii_dict[el1]['B_rad'] < radii_dict[el2]['A_rad']):",
                    "            return el2",
                    "        elif (radii_dict[el1]['A_rad'] > radii_dict[el2]['A_rad']) and (radii_dict[el1]['B_rad'] > radii_dict[el2]['B_rad']):",
                    "            return el1",
                    "        elif (radii_dict[el1]['A_rad'] < radii_dict[el2]['A_rad']) and (radii_dict[el1]['B_rad'] < radii_dict[el2]['B_rad']):",
                    "            return el2",
                    "        elif (radii_dict[el1]['B_rad'] > radii_dict[el2]['B_rad']):",
                    "            return el1",
                    "        elif (radii_dict[el1]['B_rad'] < radii_dict[el2]['B_rad']):",
                    "            return el2",
                    "        elif (radii_dict[el1]['A_rad'] > radii_dict[el2]['A_rad']):",
                    "            return el1",
                    "        elif (radii_dict[el1]['A_rad'] < radii_dict[el2]['A_rad']):",
                    "            return el2  ",
                    "        else:",
                    "            if ox_dict[el1] < ox_dict[el2]:",
                    "                return el1",
                    "            else:",
                    "                return el2",
                    "    ",
                    "    @property",
                    "    def pred_B(self):",
                    "        \"\"\"",
                    "        returns predicted B (str)",
                    "        \"\"\"",
                    "        cations = self.cations",
                    "        pred_A = self.pred_A",
                    "        if pred_A in cations:",
                    "            return [cation for cation in cations if cation != pred_A][0]",
                    "        else:",
                    "            return np.nan",
                    "    ",
                    "    @property",
                    "    def nA(self):",
                    "        \"\"\"",
                    "        returns oxidation state assigned to A (int)",
                    "        \"\"\"",
                    "        if isinstance(self.chosen_ox_states, float):",
                    "            return np.nan",
                    "        else:",
                    "            return self.chosen_ox_states[self.pred_A]",
                    "    ",
                    "    @property",
                    "    def nB(self):",
                    "        \"\"\"",
                    "        returns oxidation state assigned to B (int)",
                    "        \"\"\"",
                    "        if isinstance(self.chosen_ox_states, float):",
                    "            return np.nan",
                    "        else:        ",
                    "            return self.chosen_ox_states[self.pred_B]",
                    "        ",
                    "    @property",
                    "    def nX(self):",
                    "        \"\"\"",
                    "        returns oxidation state assigned to X (int)",
                    "        \"\"\"",
                    "        if isinstance(self.chosen_ox_states, float):",
                    "            return np.nan",
                    "        else:        ",
                    "            return self.X_ox_dict[self.X]",
                    "    ",
                    "    @property",
                    "    def rA(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for A (float)",
                    "        \"\"\"",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:        ",
                    "            return self.AB_radii_dict[self.pred_A]['A_rad']",
                    "    ",
                    "    @property",
                    "    def rB(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for B (float)",
                    "        \"\"\"",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:      ",
                    "            return self.AB_radii_dict[self.pred_B]['B_rad']",
                    "    ",
                    "    @property",
                    "    def rX(self):",
                    "        \"\"\"",
                    "        returns Shannon ionic radius for X (float)",
                    "        \"\"\"",
                    "        return Shannon_dict[self.X][self.X_ox_dict[self.X]][6]['only_spin']",
                    "    ",
                    "    @property",
                    "    def mu(self):",
                    "        \"\"\"",
                    "        returns the predicted octahedral factor (float)",
                    "        \"\"\"",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:          ",
                    "            return self.rB / self.rX",
                    "    ",
                    "    @property",
                    "    def t(self):",
                    "        \"\"\"",
                    "        returns the predicted Goldschmidt tolerance factor (float)",
                    "        \"\"\"",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:          ",
                    "            return (self.rA + self.rX) / (np.sqrt(2) * (self.rB + self.rX))",
                    "        ",
                    "    @property",
                    "    def tau(self):",
                    "        \"\"\"",
                    "        returns tau (float)",
                    "        \"\"\"",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:",
                    "            try:",
                    "                return ((1/self.mu) - (self.nA)**2 + (self.nA) * (self.rA/self.rB)/(np.log(self.rA/self.rB)))",
                    "            except:",
                    "                return np.nan",
                    "    ",
                    "    @property",
                    "    def tau_pred(self):",
                    "        \"\"\"",
                    "        returns prediction of 1 (perovskite) or -1 (nonperovskite) based on tau",
                    "        \"\"\"",
                    "        if math.isnan(self.tau):",
                    "            return np.nan",
                    "        else:",
                    "            return [1 if self.tau < 4.18 else -1][0]",
                    "        ",
                    "    @property",
                    "    def t_pred(self):",
                    "        \"\"\"",
                    "        returns prediction of 1 (perovskite) or -1 (nonperovskite) based on t",
                    "        \"\"\"        ",
                    "        if math.isnan(self.t):",
                    "            return np.nan",
                    "        else:",
                    "            return [1 if (self.t > 0.825) and (self.t < 1.059) else -1][0]  ",
                    "        ",
                    "    @property",
                    "    def calibrate_tau(self):",
                    "        path_to_save = \"https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-lab-base/raw/master/analysis-tools/perovsktie-predictor/\"",
                    "        f_clf = 'save_clf.p'",
                    "        if not os.path.exists(f_clf):",
                    "            print('creating classifier')",
                    "            np.random.seed(123)                  ",
                    "            df = pd.read_csv(os.path.join(path_to_save, 'TableS1.csv'))",
                    "            #df = pd.read_csv('TableS1.csv')",
                    "            #df = df.sample(n=20)",
                    "            #df['tau'] = [PredictABX3(ABX3).tau for ABX3 in df.ABX3.values]",
                    "            X, y = df['tau'].values.reshape(-1, 1), df['exp_label'].values",
                    "            clf = CalibratedClassifierCV(cv=3)",
                    "            clf.fit(X, y)",
                    "            pickle.dump( clf, open(f_clf, \"wb\" )  )",
                    "            print('classifier created')",
                    "            return clf",
                    "        else:",
                    "            return pickle.load(open(f_clf, \"rb\" ))        ",
                    "        ",
                    "        ",
                    "        ",
                    "#        import pickle",
                    "#        \"\"\"",
                    "#        returns a calibrated classifier to yield tau probabilities",
                    "#        \"\"\"",
                    "#        df = pd.read_csv(\"https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-lab-base/raw/master/analysis-tools/perovsktie-predictor/TableS1.csv\")",
                    "#        #df = pd.read_csv('TableS1.csv')",
                    "#        #df = df.sample(n=20)",
                    "#        df['tau'] = [PredictABX3(ABX3).tau for ABX3 in df.ABX3.values]",
                    "#        X, y = df['tau'].values.reshape(-1, 1), df['exp_label'].values",
                    "#        clf = CalibratedClassifierCV(cv=3)",
                    "#        clf.fit(X, y)",
                    "#        pickle.dump( clf, open( \"save.p\", \"wb\" )  )",
                    "#        return clf",
                    "    ",
                    "    @property",
                    "    def tau_prob(self, clf):",
                    "        \"\"\"",
                    "        Args:",
                    "            clf (sklearn object) - calibrated classifier based on tau",
                    "        Returns:",
                    "            probability of perovskite based on tau (float)",
                    "        \"\"\"",
                    "        X = [[self.tau]]",
                    "        return clf.predict_proba(X)[0][1]",
                    "    ",
                    "    ",
                    "    ",
                    "class PredictAABBXX6(object):",
                    "    \"\"\"",
                    "    classifies the following compounds:",
                    "        -ABX3 (defaults to PredictABX3(CC'X3))",
                    "        -A2BB'X6",
                    "        -AA'B2X6",
                    "        -A2B2(XX')6",
                    "        -AA'BB'X6",
                    "        -AA'B2(XX')6",
                    "        -A2BB'(XX')6",
                    "        -AA'BB'(XX')6",
                    "    \"\"\"",
                    "    ",
                    "    def __init__(self, A1, A2, B1, B2, X1, X2):",
                    "        \"\"\"",
                    "        Args:",
                    "            A1 (str) - element A",
                    "            A2 (str) - element A' if applicable, otherwise A",
                    "            B1 (str) - element B",
                    "            B2 (str) - element B' if applicable, otherwise B",
                    "            X1 (str) - element X",
                    "            X2 (str) - element X' if applicable, otherwise X           ",
                    "        \"\"\"",
                    "        self.A1 = A1",
                    "        self.A2 = A2",
                    "        self.B1 = B1",
                    "        self.B2 = B2",
                    "        self.X1 = X1",
                    "        self.X2 = X2",
                    "        ",
                    "    @property",
                    "    def is_single(self):",
                    "        if (self.A1 == self.A2) and (self.B1 == self.B2) and (self.X1 == self.X2):",
                    "            return 1",
                    "        else:",
                    "            return -1",
                    "        ",
                    "    @property",
                    "    def A(self):",
                    "        if self.is_single == 1:",
                    "            return PredictABX3(self.good_form).pred_A",
                    "        else:",
                    "            return np.nan",
                    "        ",
                    "    @property",
                    "    def B(self):",
                    "        if self.is_single == 1:",
                    "            return PredictABX3(self.good_form).pred_B",
                    "        else:",
                    "            return np.nan",
                    "        ",
                    "    @property",
                    "    def As(self):",
                    "        \"\"\"",
                    "        returns list of A cations (str)",
                    "        \"\"\"",
                    "        return list(set([self.A1, self.A2]))",
                    "    ",
                    "    @property",
                    "    def Bs(self):",
                    "        \"\"\"",
                    "        returns list of B cations (str)",
                    "        \"\"\"        ",
                    "        return list(set([self.B1, self.B2]))",
                    "    ",
                    "    @property",
                    "    def Xs(self):",
                    "        \"\"\"",
                    "        returns list of X anions (str)",
                    "        \"\"\"        ",
                    "        return list(set([self.X1, self.X2]))",
                    "    ",
                    "    @property",
                    "    def X(self):",
                    "        if self.is_single == 1:",
                    "            return self.Xs[0]",
                    "        else:",
                    "            return self.Xs",
                    "    ",
                    "    @property",
                    "    def els(self):",
                    "        \"\"\"",
                    "        returns list of elements (str) in As, Bs, Xs order",
                    "        \"\"\"        ",
                    "        return self.As + self.Bs + self.Xs",
                    "    ",
                    "    @property",
                    "    def formula(self):",
                    "        \"\"\"",
                    "        returns pretty chemical formula in AA'BB'X3X'3 format (str)",
                    "        \"\"\"",
                    "        if len(self.As) == 1:",
                    "            A_piece = ''.join([self.As[0], '2'])",
                    "        else:",
                    "            A_piece = ''.join(self.As)",
                    "        if len(self.Bs) == 1:",
                    "            B_piece = ''.join([self.Bs[0], '2'])",
                    "        else:",
                    "            B_piece = ''.join(self.Bs)",
                    "        if len(self.Xs) == 1:",
                    "            X_piece = ''.join([self.Xs[0], '6'])",
                    "        else:",
                    "            X_piece = ''.join([self.Xs[0], '3', self.Xs[1], '3'])",
                    "        return ''.join([A_piece, B_piece, X_piece])",
                    "    ",
                    "    @property",
                    "    def good_form(self):",
                    "        \"\"\"",
                    "        returns standard formula (str); alphabetized, \"1s\", etc.",
                    "        \"\"\"",
                    "        el_num_pairs = re.findall('([A-Z][a-z]\\d*)|([A-Z]\\d*)', self.formula)",
                    "        el_num_pairs = [[pair[idx] for idx in range(len(pair))if pair[idx] != ''][0] for pair in el_num_pairs]",
                    "        el_num_pairs = [pair+'1' if bool(re.search(re.compile('\\d'), pair)) == False else pair for pair in el_num_pairs]",
                    "        el_num_pairs = sorted(el_num_pairs)",
                    "        formula = ''.join(el_num_pairs)",
                    "        nums = list(map(int, re.findall('\\d+', formula)))",
                    "        if 1 not in nums:",
                    "            names = re.findall('[A-Z][a-z]?', formula)        ",
                    "            combos = list(combinations(nums, 2))",
                    "            factors = [gcd(combo[0], combo[1]) for combo in combos]",
                    "            gcf = np.min(factors)",
                    "            new_nums = [int(np.round(num/gcf)) for num in nums]        ",
                    "            el_num_pairs = []",
                    "            for idx in range(len(names)):",
                    "                el_num_pairs.append(''.join([names[idx], str(new_nums[idx])]))",
                    "            el_num_pairs = [str(pair) for pair in el_num_pairs]",
                    "            return ''.join(sorted(el_num_pairs))  ",
                    "        else:",
                    "            return formula",
                    "    ",
                    "    @property",
                    "    def atom_names(self):",
                    "        \"\"\"",
                    "        returns alphabetical list (str) of atomic symbols in composition",
                    "        e.g., good_form = 'Al2O3', atom_names = ['Al','O']",
                    "        \"\"\"",
                    "        return re.findall('[A-Z][a-z]?', self.good_form)",
                    "    ",
                    "    @property",
                    "    def atom_nums(self):",
                    "        \"\"\"",
                    "        returns list (int) corresponding with number of each element in composition",
                    "            order of list corresponds with alphabetized atomic symbols in composition",
                    "        e.g., good_form = 'Al2O3', atom_nums = [2, 3]",
                    "        \"\"\"",
                    "        return list(map(int, re.findall('\\d+', self.good_form)))",
                    "    ",
                    "    @property",
                    "    def frac_atom_nums(self):",
                    "        \"\"\"",
                    "        returns list (float) of mol fraction of each element in composition",
                    "            order of list corresponds with alphabetized atomic symbols in composition",
                    "        e.g., good_form = 'Al2O3', frac_atom_nums = [0.4, 0.6]",
                    "        \"\"\"",
                    "        atom_nums = self.atom_nums",
                    "        num_atoms = self.num_atoms",
                    "        return [num / num_atoms for num in atom_nums]",
                    "",
                    "    @property",
                    "    def conc_dict(self):",
                    "        \"\"\"",
                    "        returns dictionary of {el (str) : concentration in AxA'1-xByB'1-yXzX'3-z format (float)}",
                    "        \"\"\"",
                    "        els = self.atom_names",
                    "        conc = self.frac_atom_nums",
                    "        natoms = self.num_atoms",
                    "        return {els[idx] : conc[idx] *natoms/2 for idx in range(len(els))}",
                    "",
                    "    @property",
                    "    def num_els(self):",
                    "        \"\"\"",
                    "        returns how many unique elements in composition (int)",
                    "        e.g., good_form = 'Al2O3', num_els = 2",
                    "        \"\"\"",
                    "        return len(self.atom_names)",
                    "",
                    "    @property",
                    "    def num_atoms(self):",
                    "        \"\"\"",
                    "        returns how many atoms in composition (int)",
                    "        e.g., good_form = 'Al2O3', num_atoms = 5",
                    "        \"\"\"",
                    "        return np.sum(self.atom_nums)    ",
                    "    ",
                    "    @property",
                    "    def X_ox_dict(self):",
                    "        \"\"\"",
                    "        returns {el (str): oxidation state (int)} for allowed anions",
                    "        \"\"\"",
                    "        return {'N' : -3,",
                    "                'O' : -2,",
                    "                'S' : -2,",
                    "                'Se' : -2,",
                    "                'F' : -1,",
                    "                'Cl' : -1,",
                    "                'Br' : -1,",
                    "                'I' : -1,",
                    "                'Fo' : -1}",
                    "    ",
                    "    @property",
                    "    def plus_one(self):",
                    "        \"\"\"",
                    "        returns list of elements (str) likely to be 1+",
                    "        \"\"\"",
                    "        return ['H', 'Li', 'Na', 'K', 'Rb', 'Cs', 'Fr', 'Ag']",
                    "    ",
                    "    @property",
                    "    def plus_two(self):",
                    "        \"\"\"",
                    "        returns list of elements (str) likely to be 2+",
                    "        \"\"\"        ",
                    "        return ['Be', 'Mg', 'Ca', 'Sr', 'Ba', 'Ra']",
                    "    ",
                    "    @property",
                    "    def plus_three(self):",
                    "        \"\"\"",
                    "        returns list of elements (str) likely to be 3+",
                    "        \"\"\"        ",
                    "        return ['Sc', 'Y', 'La', 'Al', 'Ga', 'In',",
                    "                'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb',",
                    "                'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu']    ",
                    "    ",
                    "    @property",
                    "    def cations(self):",
                    "        \"\"\"",
                    "        returns list of cations (str)",
                    "        \"\"\"",
                    "        return self.As + self.Bs",
                    "    ",
                    "    @property",
                    "    def anions(self):",
                    "        \"\"\"",
                    "        returns list of anions (str)",
                    "        \"\"\"        ",
                    "        return self.Xs",
                    "    ",
                    "    @property",
                    "    def chi_dict(self):",
                    "        \"\"\"",
                    "        returns {el (str) : Pauling electronegativity (float)} for cations",
                    "        \"\"\"",
                    "        cations = self.cations",
                    "        chi_dict = {}",
                    "        df1 = pd.read_csv(\"https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-lab-base/raw/master/analysis-tools/perovsktie-predictor/electronegativities.csv\")",
                    "        tmp_cation = []",
                    "        tmp_cation.append(df1.columns.tolist()[0])",
                    "        tmp_cation.extend(df1[df1.columns.tolist()[0]])",
                    "        tmp_el = []",
                    "        tmp_el.append( df1.columns.tolist()[1] )",
                    "        tmp_el.extend( df1[df1.columns.tolist()[1]] )",
                    "        df2 = pd.DataFrame({\"cation\":tmp_cation, ",
                    "                     \"el\":tmp_el})",
                    "        # generate a dictionary of {cation : electronegativity} for help with assignment",
                    "        for cation in cations:",
                    "            idx = df2.index[df2['cation'] == cation].tolist()",
                    "            chi_dict[df2.loc[idx].cation.values[0]] = float(df2.loc[idx].el.values[0])",
                    "        return chi_dict",
                    "",
                    "    @property",
                    "    def site_dict(self):",
                    "        \"\"\"",
                    "        returns dictionary of {el : [el_SITE0, el_SITE1, ...]}",
                    "        \"\"\"",
                    "        els = self.atom_names",
                    "        nums = self.atom_nums",
                    "        site_dict = {els[idx] : ['_'.join([els[idx], str(counter)]) for counter in range(nums[idx])] for idx in range(len(els))}",
                    "        return site_dict",
                    "  ",
                    "    @property",
                    "    def allowed_ox(self):",
                    "        \"\"\"",
                    "        returns {el (str) : list of allowed oxidation states (int)} for cations",
                    "        \"\"\"",
                    "        site_dict = self.site_dict",
                    "        Xs = self.Xs",
                    "        cations = self.cations",
                    "        ox_dict = {}",
                    "        for cation in cations:",
                    "            tmp_dict1 = {}",
                    "            sites = site_dict[cation]",
                    "            for site in sites:",
                    "                tmp_dict2 = {}",
                    "                if cation in self.plus_one:",
                    "                    oxs = [1]",
                    "                elif cation in self.plus_two:",
                    "                    oxs = [2]",
                    "                else:",
                    "                    oxs = [val for val in list(Shannon_dict[cation].keys()) if val > 0]",
                    "                tmp_dict2['oxs'] = oxs",
                    "                tmp_dict1[site] = tmp_dict2",
                    "            ox_dict[cation] = tmp_dict1",
                    "        for X in Xs:",
                    "            tmp_dict1 = {}",
                    "            sites = site_dict[X]",
                    "            for site in sites:",
                    "                tmp_dict2 = {}",
                    "                tmp_dict2['oxs'] = [self.X_ox_dict[X]]",
                    "                tmp_dict1[site] = tmp_dict2",
                    "            ox_dict[X] = tmp_dict1",
                    "        return ox_dict",
                    "    ",
                    "    @property",
                    "    def X_charge(self):",
                    "        \"\"\"",
                    "        returns the total charge of anions (float)",
                    "        \"\"\"",
                    "        charge = 0",
                    "        allowed_ox = self.allowed_ox",
                    "        for key in allowed_ox:",
                    "            if key in self.Xs:",
                    "                X_sites = allowed_ox[key]",
                    "                for X_site in X_sites:",
                    "                    charge += allowed_ox[key][X_site]['oxs'][0]",
                    "        return charge",
                    "    ",
                    "    @property",
                    "    def idx_dict(self):",
                    "        \"\"\"",
                    "        returns dictionary of {el : [idx0, idx1, ...]}",
                    "        \"\"\"",
                    "        cations = self.cations",
                    "        allowed_ox = self.allowed_ox",
                    "        idx_dict = {}",
                    "        count = 0",
                    "        for key in cations:",
                    "            num_sites = len(allowed_ox[key].keys())",
                    "            indices = list(np.arange(count, count + num_sites))",
                    "            count += num_sites",
                    "            idx_dict[key] = indices",
                    "        return idx_dict",
                    "    ",
                    "    @property",
                    "    def bal_combos(self):",
                    "        \"\"\"",
                    "        returns dictionary of {ox state combo (tup) : {el : [ox state by site (float)]}}",
                    "        \"\"\"",
                    "        X_charge = self.X_charge",
                    "        allowed_ox = self.allowed_ox",
                    "        idx_dict = self.idx_dict",
                    "        cations = self.cations",
                    "        lists = [allowed_ox[key][site]['oxs'] for key in cations for site in list(allowed_ox[key].keys())]",
                    "        combos = list(product(*lists))",
                    "        isovalent_combos = []",
                    "        suitable_combos = []",
                    "        for combo in combos:",
                    "            iso_count = 0",
                    "            suit_count = 0",
                    "            for key in idx_dict:",
                    "                curr_oxs = [combo[idx] for idx in idx_dict[key]]",
                    "                if np.min(curr_oxs) == np.max(curr_oxs):",
                    "                    iso_count += 1",
                    "                if np.min(curr_oxs) >= np.max(curr_oxs) - 1:",
                    "                    suit_count += 1",
                    "            if iso_count == len(cations):",
                    "                isovalent_combos.append(combo)",
                    "            if suit_count == len(cations):",
                    "                suitable_combos.append(combo)",
                    "        bal_combos = [combo for combo in isovalent_combos if np.sum(combo) == -X_charge]",
                    "        if len(bal_combos) > 0:",
                    "            combo_to_idx_ox = {}",
                    "            for combo in bal_combos:",
                    "                idx_to_ox = {}",
                    "                for key in idx_dict:",
                    "                    idx_to_ox[key] = sorted([combo[idx] for idx in idx_dict[key]])",
                    "                    if idx_to_ox not in list(combo_to_idx_ox.values()):",
                    "                        combo_to_idx_ox[combo] = idx_to_ox                    ",
                    "                combo_to_idx_ox[combo] = idx_to_ox",
                    "            return combo_to_idx_ox",
                    "        else:",
                    "            bal_combos = [combo for combo in suitable_combos if combo not in isovalent_combos if np.sum(combo) == -X_charge]",
                    "            combo_to_idx_ox = {}",
                    "            for combo in bal_combos:",
                    "                idx_to_ox = {}",
                    "                for key in idx_dict:",
                    "                    idx_to_ox[key] = sorted([combo[idx] for idx in idx_dict[key]])",
                    "                    if idx_to_ox not in list(combo_to_idx_ox.values()):",
                    "                        combo_to_idx_ox[combo] = idx_to_ox",
                    "            return combo_to_idx_ox",
                    "        ",
                    "    @property",
                    "    def unique_combos(self):",
                    "        \"\"\"",
                    "        returns unique version of self.bal_combos",
                    "        \"\"\"",
                    "        combos = self.bal_combos",
                    "        if isinstance(combos, float) or len(combos) == 0:",
                    "            return np.nan",
                    "        unique_combos = {}",
                    "        for combo in combos:",
                    "            if combos[combo] not in list(unique_combos.values()):",
                    "                unique_combos[combo] = combos[combo]",
                    "        return unique_combos",
                    "        ",
                    "        ",
                    "    @property",
                    "    def combos_near_isovalency(self):",
                    "        \"\"\"",
                    "        returns dictionary of most isovalent (within element) unique combos",
                    "        \"\"\"",
                    "        combos = self.unique_combos",
                    "        if isinstance(combos, float) or len(combos) == 0:",
                    "            return np.nan        ",
                    "        cations = self.cations",
                    "        hetero_dict = {}",
                    "        for combo in combos:",
                    "            sum_states = 0",
                    "            for cation in cations:",
                    "                sum_states += len(list(set(combos[combo][cation])))",
                    "            hetero_dict[combo] = sum_states - len(set(cations))",
                    "        min_heterovalency = np.min(list(hetero_dict.values()))",
                    "        near_iso_dict = {}",
                    "        for combo in combos:",
                    "            if hetero_dict[combo] == min_heterovalency:",
                    "                near_iso_dict[combo] = combos[combo]",
                    "        return near_iso_dict",
                    "    ",
                    "    @property",
                    "    def choice_dict(self):",
                    "        \"\"\"",
                    "        returns dictionary of {el (str) : [potential ox states (float)]}",
                    "        \"\"\"",
                    "        combos = self.combos_near_isovalency",
                    "        if isinstance(combos, float) or len(combos) == 0:",
                    "            return np.nan        ",
                    "        cations = self.cations",
                    "        choices = {cation : [] for cation in cations}",
                    "        for cation in cations:",
                    "            for combo in combos:",
                    "                choices[cation].extend(combos[combo][cation])",
                    "                choices[cation] = list(set(choices[cation]))",
                    "        return choices",
                    "    ",
                    "    @property",
                    "    def chosen_ox_states(self):",
                    "        \"\"\"",
                    "        returns dictionary of {el (str) : chosen ox state (float)}",
                    "        \"\"\"",
                    "        cations = self.cations",
                    "        conc_dict = self.conc_dict",
                    "        els = self.els",
                    "        choices = self.choice_dict",
                    "        if isinstance(choices, float):",
                    "            return np.nan        ",
                    "        X_ox_dict = self.X_ox_dict",
                    "        ox_dict = {}",
                    "        ox_dict[self.X1] = X_ox_dict[self.X1]",
                    "        if self.X1 != self.X2:",
                    "            ox_dict[self.X2] = X_ox_dict[self.X2]",
                    "        for cation in cations:",
                    "            if len(choices[cation]) == 1:",
                    "                ox_dict[cation] = choices[cation][0]",
                    "        if len(ox_dict) == len(els):",
                    "            return ox_dict",
                    "        else:",
                    "            unspec_els = [el for el in els if el not in ox_dict]",
                    "            unspec_charge = -np.sum([conc_dict[el]*ox_dict[el] for el in ox_dict])",
                    "            if len(unspec_els) == 1:",
                    "                unspec_combos = list(product(choices[unspec_els[0]]))",
                    "            elif len(unspec_els) == 2:",
                    "                unspec_combos = list(product(choices[unspec_els[0]], choices[unspec_els[1]]))",
                    "            elif len(unspec_els) == 3:",
                    "                unspec_combos = list(product(choices[unspec_els[0]], choices[unspec_els[1]], choices[unspec_els[2]]))",
                    "            elif len(unspec_els) == 4:",
                    "                unspec_combos = list(product(choices[unspec_els[0]], choices[unspec_els[1]], choices[unspec_els[2]], choices[unspec_els[3]]))",
                    "            elif len(unspec_els) == 5:",
                    "                unspec_combos = list(product(choices[unspec_els[0]], choices[unspec_els[1]], choices[unspec_els[2]], choices[unspec_els[3]], choices[unspec_els[4]]))  ",
                    "            elif len(unspec_els) == 6:",
                    "                unspec_combos = list(product(choices[unspec_els[0]], choices[unspec_els[1]], choices[unspec_els[2]], choices[unspec_els[3]], choices[unspec_els[4]], choices[unspec_els[5]]))                 ",
                    "            good_combos = []",
                    "            for combo in unspec_combos:",
                    "                amt = 0",
                    "                for idx in range(len(unspec_els)):",
                    "                    amt += conc_dict[unspec_els[idx]]*combo[idx]",
                    "                if amt == unspec_charge:",
                    "                    good_combos.append(combo) ",
                    "            if len(good_combos) == 0:",
                    "                return np.nan",
                    "            biggest_spread = np.max([np.max(combo) - np.min(combo) for combo in good_combos])",
                    "            smallest_spread = np.min([np.max(combo) - np.min(combo) for combo in good_combos])",
                    "            spread_combos = [combo for combo in good_combos if np.max(combo) - np.min(combo) == biggest_spread]",
                    "            tight_combos = [combo for combo in good_combos if np.max(combo) - np.min(combo) == smallest_spread]",
                    "            chi_dict = self.chi_dict",
                    "            chis = [chi_dict[el] for el in unspec_els]",
                    "            maxdex = chis.index(np.max(chis))",
                    "            mindex = chis.index(np.min(chis))",
                    "            if np.min(chis) <= 0.9*np.max(chis):",
                    "                if len(spread_combos) > 1:",
                    "                    for combo in spread_combos:",
                    "                        if combo[mindex] == np.max(combo):",
                    "                            if combo[maxdex] == np.min(combo):",
                    "                                for idx in range(len(unspec_els)):",
                    "                                    el = unspec_els[idx]",
                    "                                    ox_dict[el] = combo[idx]",
                    "                                return ox_dict",
                    "                    min_ox_most_elec = np.min([combo[maxdex] for combo in spread_combos])",
                    "                    for combo in spread_combos:",
                    "                        if (combo[maxdex] == min_ox_most_elec):",
                    "                            for idx in range(len(unspec_els)):",
                    "                                el = unspec_els[idx]",
                    "                                ox_dict[el] = combo[idx]",
                    "                            return ox_dict",
                    "                else:",
                    "                    combo = spread_combos[0]",
                    "                    for idx in range(len(unspec_els)):",
                    "                        el = unspec_els[idx]",
                    "                        ox_dict[el] = combo[idx]",
                    "            else:",
                    "                if len(tight_combos) > 1:",
                    "                    for combo in tight_combos:",
                    "                        if combo[mindex] == np.max(combo):",
                    "                            if combo[maxdex] == np.min(combo):",
                    "                                for idx in range(len(unspec_els)):",
                    "                                    el = unspec_els[idx]",
                    "                                    ox_dict[el] = combo[idx]",
                    "                else:",
                    "                    combo = tight_combos[0]",
                    "                    for idx in range(len(unspec_els)):",
                    "                        el = unspec_els[idx]",
                    "                        ox_dict[el] = combo[idx]",
                    "        return ox_dict",
                    "    ",
                    "    @property",
                    "    def AB_radii_dict(self):",
                    "        \"\"\"",
                    "        returns {el (str) : {'A_rad' : radius if A (float),",
                    "                             'B_rad' : radius if B (float)}}",
                    "        \"\"\"",
                    "        ox_dict = self.chosen_ox_states",
                    "        if isinstance(ox_dict, float):",
                    "            return np.nan",
                    "        radii_dict = {}",
                    "        for el in ox_dict:",
                    "            if el not in [self.X1, self.X2]:",
                    "                tmp_dict = {}",
                    "                ox = ox_dict[el]",
                    "                coords = list(Shannon_dict[el][ox].keys())",
                    "                B_coords = [abs(coord - 6) for coord in coords]",
                    "                mindex = [idx for idx in range(len(B_coords)) if B_coords[idx] == np.min(B_coords)][0]",
                    "                B_coord = coords[mindex]",
                    "                A_coords = [abs(coord - 12) for coord in coords]",
                    "                mindex = [idx for idx in range(len(A_coords)) if A_coords[idx] == np.min(A_coords)][0]",
                    "                A_coord = coords[mindex]",
                    "                B_rad = Shannon_dict[el][ox][B_coord]['only_spin']",
                    "                A_rad = Shannon_dict[el][ox][A_coord]['only_spin']",
                    "                tmp_dict['A_rad'] = A_rad",
                    "                tmp_dict['B_rad'] = B_rad",
                    "                radii_dict[el] = tmp_dict",
                    "        return radii_dict",
                    "    ",
                    "    @property",
                    "    def nA1(self):",
                    "        \"\"\"",
                    "        returns oxidation state assigned to A (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).nA        ",
                    "        if isinstance(self.chosen_ox_states, float):",
                    "            return np.nan",
                    "        else:",
                    "            return self.chosen_ox_states[self.A1]",
                    "        ",
                    "    @property",
                    "    def nA2(self):",
                    "        \"\"\"",
                    "        returns oxidation state assigned to A (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).nA        ",
                    "        if isinstance(self.chosen_ox_states, float):",
                    "            return np.nan",
                    "        else:",
                    "            return self.chosen_ox_states[self.A2]    ",
                    "        ",
                    "    @property",
                    "    def nA(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for B (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).nA",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:      ",
                    "            return np.mean([self.nA1, self.nA2])    ",
                    "    ",
                    "    @property",
                    "    def nB1(self):",
                    "        \"\"\"",
                    "        returns oxidation state assigned to A (int)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).nB          ",
                    "        if isinstance(self.chosen_ox_states, float):",
                    "            return np.nan",
                    "        else:",
                    "            return self.chosen_ox_states[self.B1]",
                    "        ",
                    "    @property",
                    "    def nB2(self):",
                    "        \"\"\"",
                    "        returns oxidation state assigned to A (int)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).nB        ",
                    "        if isinstance(self.chosen_ox_states, float):",
                    "            return np.nan",
                    "        else:",
                    "            return self.chosen_ox_states[self.B2]",
                    "        ",
                    "    @property",
                    "    def nB(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for B (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).nB        ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:      ",
                    "            return np.mean([self.nB1, self.nB2])",
                    "        ",
                    "    @property",
                    "    def nX1(self):",
                    "        \"\"\"",
                    "        returns oxidation state assigned to X1 (int)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).nX        ",
                    "        if isinstance(self.chosen_ox_states, float):",
                    "            return np.nan",
                    "        else:",
                    "            return self.X_ox_dict[self.X1]    ",
                    "        ",
                    "    @property",
                    "    def nX2(self):",
                    "        \"\"\"",
                    "        returns oxidation state assigned to X2 (int)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).nX        ",
                    "        if isinstance(self.chosen_ox_states, float):",
                    "            return np.nan",
                    "        else:",
                    "            return self.X_ox_dict[self.X2]          ",
                    "",
                    "    @property",
                    "    def nX(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for X (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).nX       ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:      ",
                    "            return np.mean([self.nX1, self.nX2])            ",
                    "    ",
                    "    @property",
                    "    def rA1(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for A (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).rA             ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:        ",
                    "            return self.AB_radii_dict[self.A1]['A_rad']",
                    "        ",
                    "    @property",
                    "    def rA2(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for A (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).rA             ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:        ",
                    "            return self.AB_radii_dict[self.A2]['A_rad']",
                    "",
                    "    @property",
                    "    def rA(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for B (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).rA        ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:      ",
                    "            return np.mean([self.rA1, self.rA2])        ",
                    "        ",
                    "    @property",
                    "    def rB1(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for B (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).rB           ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:        ",
                    "            return self.AB_radii_dict[self.B1]['B_rad']",
                    "        ",
                    "    @property",
                    "    def rB2(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for B' (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).rB           ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:        ",
                    "            return self.AB_radii_dict[self.B2]['B_rad']       ",
                    "    ",
                    "    @property",
                    "    def rB(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for B (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).rB        ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:      ",
                    "            return np.mean([self.rB1, self.rB2])",
                    "    ",
                    "    @property",
                    "    def rX1(self):",
                    "        \"\"\"",
                    "        returns Shannon ionic radius for X (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).rX         ",
                    "        if self.X1 != 'N':",
                    "            return Shannon_dict[self.X1][self.X_ox_dict[self.X1]][6]['only_spin']",
                    "        else:",
                    "            return Shannon_dict[self.X1][self.X_ox_dict[self.X1]][4]['only_spin']",
                    "    ",
                    "    @property",
                    "    def rX2(self):",
                    "        \"\"\"",
                    "        returns Shannon ionic radius for X' (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).rX          ",
                    "        if self.X2 != 'N':",
                    "            return Shannon_dict[self.X2][self.X_ox_dict[self.X2]][6]['only_spin']",
                    "        else:",
                    "            return Shannon_dict[self.X2][self.X_ox_dict[self.X2]][4]['only_spin']",
                    "    ",
                    "    @property",
                    "    def rX(self):",
                    "        \"\"\"",
                    "        returns predicted Shannon ionic radius for X (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).rX        ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:",
                    "            return np.mean([self.rX1, self.rX2])    ",
                    "    ",
                    "    @property",
                    "    def mu(self):",
                    "        \"\"\"",
                    "        returns the predicted octahedral factor (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).mu      ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:          ",
                    "            return self.rB / self.rX",
                    "    ",
                    "    @property",
                    "    def t(self):",
                    "        \"\"\"",
                    "        returns the predicted Goldschmidt tolerance factor (float)",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).t        ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:          ",
                    "            return (self.rA + self.rX) / (np.sqrt(2) * (self.rB + self.rX))",
                    "        ",
                    "    @property",
                    "    def t_pred(self):",
                    "        \"\"\"",
                    "        returns 1 if perovskite or -1 if nonperovskite by t",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).t_pred        ",
                    "        if math.isnan(self.t):",
                    "            return np.nan",
                    "        else:",
                    "            return [1 if (self.t > 0.825) and (self.t < 1.059) else -1][0]",
                    "        ",
                    "    @property",
                    "    def tau(self):",
                    "        \"\"\"",
                    "        returns tau",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).tau      ",
                    "        if isinstance(self.AB_radii_dict, float):",
                    "            return np.nan",
                    "        else:",
                    "            if self.rA <= self.rB:",
                    "                return np.nan",
                    "            else:",
                    "                return ((1/self.mu) - (self.nA)**2 + (self.nA) * (self.rA/self.rB)/(np.log(self.rA/self.rB)))",
                    "            ",
                    "    @property",
                    "    def tau_pred(self):",
                    "        \"\"\"",
                    "        returns 1 if perovskite or -1 if nonperovskite by tau",
                    "        \"\"\"",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).tau_pred        ",
                    "        if math.isnan(self.tau):",
                    "            return np.nan",
                    "        else:",
                    "            return [1 if self.tau < 4.18 else -1][0]",
                    "        ",
                    "    @property",
                    "    def calibrate_tau(self):",
                    "        path_to_save = \"https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-lab-base/raw/master/analysis-tools/perovsktie-predictor/\"",
                    "        if not os.path.exists(os.path.join(path_to_save, 'save_clf12345.p')):",
                    "            print('creating classifier')",
                    "            np.random.seed(123)                  ",
                    "            df = pd.read_csv(os.path.join(path_to_save, 'TableS1.csv'))",
                    "            #df = pd.read_csv('TableS1.csv')",
                    "            #df = df.sample(n=20)",
                    "            df['tau'] = [PredictABX3(ABX3).tau for ABX3 in df.ABX3.values]",
                    "            X, y = df['tau'].values.reshape(-1, 1), df['exp_label'].values",
                    "            clf = CalibratedClassifierCV(cv=3)",
                    "            clf.fit(X, y)",
                    "            pickle.dump( clf, open(os.path.join(path_to_save, 'save_clf.p'), \"wb\" )  )",
                    "            return clf",
                    "        else:",
                    "            return pickle.load(open(os.path.join(path_to_save, 'save_clf.p'), \"rb\" ))",
                    "                                  ",
                    "        \"\"\"",
                    "        returns a calibrated classifier to yield tau probabilities",
                    "        \"\"\"",
                    "",
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
                    "    ",
                    "#    @property",
                    "#    def calibrate_tau(self):",
                    "#        \"\"\"",
                    "#        returns a calibrated classifier to yield tau probabilities",
                    "#        \"\"\"",
                    "#        df = pd.read_csv('TableS1.csv')",
                    "#        df['tau'] = [PredictABX3(ABX3).tau for ABX3 in df.ABX3.values]",
                    "#        X, y = df['tau'].values.reshape(-1, 1), df['exp_label'].values",
                    "#        clf = CalibratedClassifierCV(cv=3)",
                    "#        clf.fit(X, y)",
                    "#        return clf",
                    "    ",
                    "    def tau_prob(self, clf):",
                    "        \"\"\"",
                    "        Args:",
                    "            clf (sklearn object) - calibrated classifier based on tau",
                    "        Returns:",
                    "            probability of perovskite based on tau (float)",
                    "        \"\"\"",
                    "        if math.isnan(self.tau):",
                    "            return np.nan        ",
                    "        if self.is_single == 1:",
                    "            CCX3 = ''.join(self.As + self.Bs + self.Xs + ['3'])",
                    "            return PredictABX3(CCX3).tau_prob(clf) ",
                    "        else:",
                    "            X = [[self.tau]]",
                    "            return clf.predict_proba(X)[0][1]    ",
                    "        ",
                    "        ",
                    "#clf = PredictABX3('CaTiO3').calibrate_tau",
                    "#prob = PredictABX3(\"CaTiO3\").tau_prob(clf)",
                    "",
                    "#print(prob)",
                    ""
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "selectedType": "Hidden",
                "pluginName": "Python3",
                "shellId": "323B25B8FC19425D87DCCFD0DA19E4B8",
                "elapsedTime": 16966,
                "height": 56,
                "hidden": true
            },
            "evaluatorReader": true,
            "lineCount": 1365,
            "tags": ""
        },
        {
            "id": "codebuzJtD",
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
                    "<style type=\"text/css\">",
                    "/*!",
                    " * Nomad Beaker Notebook Template",
                    " *",
                    " * @copyright  Copyright 2017 Fritz Haber Institute of the Max Planck Society,",
                    " *             Benjamin Regler - Apache 2.0 License",
                    " * @license    http://www.apache.org/licenses/LICENSE-2.0",
                    " * @author     Benjamin Regler",
                    " * @version    1.0.0",
                    " *",
                    " * Licensed under the Apache License, Version 2.0 (the \"License\");",
                    " * you may not use this file except in compliance with the License.",
                    " * You may obtain a copy of the License at",
                    " * ",
                    " *     http://www.apache.org/licenses/LICENSE-2.0",
                    " *",
                    " * Unless required by applicable law or agreed to in writing, software",
                    " * distributed under the License is distributed on an \"AS IS\" BASIS,",
                    " * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.",
                    " * See the License for the specific language governing permissions and",
                    " * limitations under the License.",
                    " */",
                    "p{margin-bottom:1.3em}h1,h2,h3,h4{margin:1.414em 0 .5em;font-weight:inherit;line-height:1.2}h1{margin-top:0;font-size:3.998em}h2{font-size:2.827em}h3{font-size:1.999em}h4{font-size:1.414em}.font_small,small{font-size:.707em}.notebook-container{font-size:16px}.notebook-container .bkr{font-size:100%;font-weight:400;line-height:1.45;color:#333}.nomad--header h2{color:#20335d;font-weight:700;margin:0 0 .2em}.nomad--header h3{color:#20335d;font-weight:700;margin-top:0;text-indent:-1em;padding-left:1em}.nomad--header h3:before{content:\"\\2014\";padding-right:.25em}.nomad--header .nomad--description{margin:-1em 0 0 2em}.atomic-data--block,.nomad--last-updated{display:inline-block;margin-top:1em}.nomad--last-updated{color:grey;float:right;position:relative;z-index:1}.nomad--last-updated::before{bottom:-75%;content:attr(data-version);font-size:4em;font-weight:700;opacity:.2;position:absolute;right:0}.atomic-data label{display:block;font-size:medium;font-weight:700}.atomic-data--select,.chosen-container{width:100%!important}.atomic-data--select:disabled{color:#d3d3d3}.atomic-data--reset-buton{display:inline-block;margin-top:1.6em;width:100%}.modal-dialog{max-width:1000px;width:80%}.modal-header h1{font-size:2em;line-height:1.2}.modal-dialog h2{font-size:1.414em}.modal-dialog h2:first-child{margin-top:0}.modal-dialog h3{font-size:1.2em}.modal-dialog dt{font-size:larger;margin-top:1.414em}.modal-dialog img{width:100%}.modal-dialog .authors{text-transform:uppercase}",
                    "</style>",
                    "",
                    "<div id=\"teaser\" style='background-color: rgba(149,170,79, 1.0); background-position:  right center; background-size: 200px; background-repeat: no-repeat; ",
                    "    padding-top: 20px;",
                    "    padding-right: 10px;",
                    "    padding-bottom: 50px;",
                    "    padding-left: 80px;' > ",
                    "",
                    "  <div class=\"nomad--header\">",
                    "   <div style=\"text-align:center\">",
                    "    <h2> <img id=\"nomad\" src=\"https://nomad-coe.eu/uploads/nomad/images/NOMAD_Logo2.png\" height=\"100\" alt=\"NOMAD Logo\">  NOMAD Analytics Toolkit   ",
                    "  <img id=\"nomad\" src=\"https://www.nomad-coe.eu/uploads/nomad/backgrounds/head_big-data_analytics_2.png\" height=\"80\" alt=\"NOMAD Logo\"> </h2>",
                    "  </div>",
                    "    <h3>Predicting the stability of perovskite oxides and halides using a new tolerance factor</h3>",
                    "    <p class=\"nomad--description\">",
                    "      created by:",
                    "      Christopher Bartel<sup>1</sup> (<a href=\"mailto:christopher.bartel@colorado.edu\">email</a>),",
                    "      Christopher Sutton<sup>2</sup> (<a href=\"mailto:sutton@fhi-berlin.mpg.de\">email</a>)",
                    "  <br><br>",
                    "   ",
                    "      <sup>1</sup> University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, USA <br>",
                    "      <sup>2</sup> Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany <br>",
                    "      ",
                    "      <span class=\"nomad--last-updated\" data-version=\"v1.0.0\">[Last updated: October 16, 2017]</span>",
                    "    </p>",
                    "</div>",
                    "",
                    "</div>  ",
                    "",
                    "<div style='text-align: right;'>",
                    "<a href=\"https://analytics-toolkit.nomad-coe.eu/home/\" class=\"btn btn-primary\" style=\"font-size:larger;\">Back to Analytics Home</a> ",
                    "<a href=\"https://www.nomad-coe.eu/\" class=\"btn btn-primary\" style=\"font-size:larger;\">Back to nomad-coe</a> ",
                    "</div>",
                    ""
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "result": {
                    "type": "BeakerDisplay",
                    "innertype": "Html",
                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<style type=\"text/css\">\n/*!\n * Nomad Beaker Notebook Template\n *\n * @copyright  Copyright 2017 Fritz Haber Institute of the Max Planck Society,\n *             Benjamin Regler - Apache 2.0 License\n * @license    http://www.apache.org/licenses/LICENSE-2.0\n * @author     Benjamin Regler\n * @version    1.0.0\n *\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n * \n *     http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n */\np{margin-bottom:1.3em}h1,h2,h3,h4{margin:1.414em 0 .5em;font-weight:inherit;line-height:1.2}h1{margin-top:0;font-size:3.998em}h2{font-size:2.827em}h3{font-size:1.999em}h4{font-size:1.414em}.font_small,small{font-size:.707em}.notebook-container{font-size:16px}.notebook-container .bkr{font-size:100%;font-weight:400;line-height:1.45;color:#333}.nomad--header h2{color:#20335d;font-weight:700;margin:0 0 .2em}.nomad--header h3{color:#20335d;font-weight:700;margin-top:0;text-indent:-1em;padding-left:1em}.nomad--header h3:before{content:\"\\2014\";padding-right:.25em}.nomad--header .nomad--description{margin:-1em 0 0 2em}.atomic-data--block,.nomad--last-updated{display:inline-block;margin-top:1em}.nomad--last-updated{color:grey;float:right;position:relative;z-index:1}.nomad--last-updated::before{bottom:-75%;content:attr(data-version);font-size:4em;font-weight:700;opacity:.2;position:absolute;right:0}.atomic-data label{display:block;font-size:medium;font-weight:700}.atomic-data--select,.chosen-container{width:100%!important}.atomic-data--select:disabled{color:#d3d3d3}.atomic-data--reset-buton{display:inline-block;margin-top:1.6em;width:100%}.modal-dialog{max-width:1000px;width:80%}.modal-header h1{font-size:2em;line-height:1.2}.modal-dialog h2{font-size:1.414em}.modal-dialog h2:first-child{margin-top:0}.modal-dialog h3{font-size:1.2em}.modal-dialog dt{font-size:larger;margin-top:1.414em}.modal-dialog img{width:100%}.modal-dialog .authors{text-transform:uppercase}\n</style>\n\n<div id=\"teaser\" style=\"background-color: rgba(149,170,79, 1.0); background-position:  right center; background-size: 200px; background-repeat: no-repeat; \n    padding-top: 20px;\n    padding-right: 10px;\n    padding-bottom: 50px;\n    padding-left: 80px;\"> \n\n  <div class=\"nomad--header\">\n   <div style=\"text-align:center\">\n    <h2> <img id=\"nomad\" src=\"https://nomad-coe.eu/uploads/nomad/images/NOMAD_Logo2.png\" height=\"100\" alt=\"NOMAD Logo\">  NOMAD Analytics Toolkit   \n  <img id=\"nomad\" src=\"https://www.nomad-coe.eu/uploads/nomad/backgrounds/head_big-data_analytics_2.png\" height=\"80\" alt=\"NOMAD Logo\"> </h2>\n  </div>\n    <h3>Predicting the stability of perovskite oxides and halides using a new tolerance factor</h3>\n    <p class=\"nomad--description\">\n      created by:\n      Christopher Bartel<sup>1</sup> (<a href=\"mailto:christopher.bartel@colorado.edu\">email</a>),\n      Christopher Sutton<sup>2</sup> (<a href=\"mailto:sutton@fhi-berlin.mpg.de\">email</a>)\n  <br><br>\n   \n      <sup>1</sup> University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, USA <br>\n      <sup>2</sup> Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany <br>\n      \n      <span class=\"nomad--last-updated\" data-version=\"v1.0.0\">[Last updated: October 16, 2017]</span>\n    </p>\n</div>\n\n</div>  \n\n<div style=\"text-align: right;\">\n<a href=\"https://analytics-toolkit.nomad-coe.eu/home/\" class=\"btn btn-primary\" style=\"font-size:larger;\">Back to Analytics Home</a> \n<a href=\"https://www.nomad-coe.eu/\" class=\"btn btn-primary\" style=\"font-size:larger;\">Back to nomad-coe</a> \n</div>\n"
                },
                "selectedType": "BeakerDisplay",
                "elapsedTime": 0,
Christopher Sutton's avatar
Christopher Sutton committed
1636
                "height": 389
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
            },
            "evaluatorReader": true,
            "lineCount": 57
        },
        {
            "id": "codeokNLxg",
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
                    "<legend>Descriptor for Perovskite Stability</legend>",
                    "",
                    "<img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/> is a descriptor that takes as input the chemical composition <img src=\"http://latex.codecogs.com/svg.latex?(A,B,X)\" border=\"0\"/> and outputs a prediction of perovskite stability according to the formula:",
                    "",
                    "<p> <img src=\"http://latex.codecogs.com/svg.latex?\\tau =\\frac{r_X}{r_B} - n_A(n_A - \\frac{\\frac{r_A}{r_B}}{ln(\\frac{r_A}{r_B})}),\" border=\"0\"/><br />",
                    "  ",
                    "  where <img src=\"http://latex.codecogs.com/svg.latex?r_i\" border=\"0\"/> is the ionic radius of ion, <img src=\"http://latex.codecogs.com/svg.latex?i\" border=\"0\"/> and <img src=\"http://latex.codecogs.com/svg.latex?n_i\" border=\"0\"/> is the oxidation state of ion, <img src=\"http://latex.codecogs.com/svg.latex?i\" border=\"0\"/>, and <img src=\"http://latex.codecogs.com/svg.latex?\\tau<4.18\" border=\"0\"/> indicates stability in the perovskite structure.<br />",
                    "  ",
                    "<p> This descriptor was identified by applying the SISSO algorithm developed by R. Ouyang, S. Curtarolo, E. Ahmetick, M. Scheffler, L. Ghiringhelli: Phys. Rev. Materials 2, 083802 (2018) [<a href=\"https://journals.aps.org/prmaterials/pdf/10.1103/PhysRevMaterials.2.083802\">PDF</a>] {<a href=\"https://github.com/rouyang2017/SISSO\">Code</a>} which efficiently identifies <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/> from a space of ~3,000,000,000 potential descriptors. <br /><br />",
                    "  ",
                    "  <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/> requires the same information as Goldschmidt's famous tolerance factor (noting that <img src=\"http://latex.codecogs.com/svg.latex?r\" border=\"0\"/> is an implict function of <img src=\"http://latex.codecogs.com/svg.latex?n\" border=\"0\"/>): <br /><img src=\"http://latex.codecogs.com/svg.latex?t =\\frac{r_A+r_X}{\\sqrt{2}(r_B+r_X)}.\" border=\"0\"/><br /><br /> ",
                    "  ",
                    "  While the functional forms are comparable, the accuracies are not.  On a set of 576 <img src=\"http://latex.codecogs.com/svg.latex?ABX_3\" border=\"0\"/> compounds characterized experimentally at ambient conditions, <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/> achieves 92% accuracy in predicting whether the compound will or won't be stable as perovskite compared with 74% using <img src=\"http://latex.codecogs.com/svg.latex?t\" border=\"0\"/>. <br /><br />",
                    "  ",
                    "  <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/> is probabilistic, providing not only whether a given composition will crystallize as perovskite but also a probability on this prediction. ",
                    "  ",
                    "  Below you can input two cations - <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\"/> and <img src=\"http://latex.codecogs.com/svg.latex?B\" border=\"0\"/> - and one anion - <img src=\"http://latex.codecogs.com/svg.latex?X\" border=\"0\"/> - and the utility will automatically assign oxidation states and radii to each ion (more on this below) and provide the probability that the <img src=\"http://latex.codecogs.com/svg.latex?ABX_3\" border=\"0\"/> will form the perovskite structure. <img src=\"http://latex.codecogs.com/svg.latex?t\" border=\"0\"/> is also provided for context.<br /><br />",
                    "  ",
                    "  This result is visualized with respect to the cationic radii to show where in the space of stable and unstable perovskites the given composition sits. <br /><br />",
                    "  ",
Christopher Sutton's avatar
Christopher Sutton committed
1667
                    "  The descriptor also generalizes to double perovskites - compounds with substitutions at the <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\"/>, <img src=\"http://latex.codecogs.com/svg.latex?B\" border=\"0\"/>, or <img src=\"http://latex.codecogs.com/svg.latex?X\" border=\"0\"/> sites. Below you can explore the stability of compounds with 50/50 mixtures of ions on each or all of the sites - i.e., <img src=\"http://latex.codecogs.com/svg.latex?(AA')(BB')(XX')_3\" border=\"0\"/> formulas. <br /><br />",
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
                    "  ",
                    "  More details on the identification and application of <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/> are available within the <a href=\"https://arxiv.org/abs/1801.07700\">manuscript</a> and associated <a href=\"https://github.com/CJBartel/perovskite-stability\">github repository</a>.",
                    "",
                    "</p>"
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "result": {
                    "type": "BeakerDisplay",
                    "innertype": "Html",
Christopher Sutton's avatar
Christopher Sutton committed
1680
                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<legend>Descriptor for Perovskite Stability</legend>\n\n<img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"> is a descriptor that takes as input the chemical composition <img src=\"http://latex.codecogs.com/svg.latex?(A,B,X)\" border=\"0\"> and outputs a prediction of perovskite stability according to the formula:\n\n<p> <img src=\"http://latex.codecogs.com/svg.latex?\\tau =\\frac{r_X}{r_B} - n_A(n_A - \\frac{\\frac{r_A}{r_B}}{ln(\\frac{r_A}{r_B})}),\" border=\"0\"><br>\n  \n  where <img src=\"http://latex.codecogs.com/svg.latex?r_i\" border=\"0\"> is the ionic radius of ion, <img src=\"http://latex.codecogs.com/svg.latex?i\" border=\"0\"> and <img src=\"http://latex.codecogs.com/svg.latex?n_i\" border=\"0\"> is the oxidation state of ion, <img src=\"http://latex.codecogs.com/svg.latex?i\" border=\"0\">, and <img src=\"http://latex.codecogs.com/svg.latex?\\tau&lt;4.18\" border=\"0\"><!--4--> indicates stability in the perovskite structure.<br>\n  \n</p><p> This descriptor was identified by applying the SISSO algorithm developed by R. Ouyang, S. Curtarolo, E. Ahmetick, M. Scheffler, L. Ghiringhelli: Phys. Rev. Materials 2, 083802 (2018) [<a href=\"https://journals.aps.org/prmaterials/pdf/10.1103/PhysRevMaterials.2.083802\">PDF</a>] {<a href=\"https://github.com/rouyang2017/SISSO\">Code</a>} which efficiently identifies <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"> from a space of ~3,000,000,000 potential descriptors. <br><br>\n  \n  <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"> requires the same information as Goldschmidt's famous tolerance factor (noting that <img src=\"http://latex.codecogs.com/svg.latex?r\" border=\"0\"> is an implict function of <img src=\"http://latex.codecogs.com/svg.latex?n\" border=\"0\">): <br><img src=\"http://latex.codecogs.com/svg.latex?t =\\frac{r_A+r_X}{\\sqrt{2}(r_B+r_X)}.\" border=\"0\"><br><br> \n  \n  While the functional forms are comparable, the accuracies are not.  On a set of 576 <img src=\"http://latex.codecogs.com/svg.latex?ABX_3\" border=\"0\"> compounds characterized experimentally at ambient conditions, <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"> achieves 92% accuracy in predicting whether the compound will or won't be stable as perovskite compared with 74% using <img src=\"http://latex.codecogs.com/svg.latex?t\" border=\"0\">. <br><br>\n  \n  <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"> is probabilistic, providing not only whether a given composition will crystallize as perovskite but also a probability on this prediction. \n  \n  Below you can input two cations - <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\"> and <img src=\"http://latex.codecogs.com/svg.latex?B\" border=\"0\"> - and one anion - <img src=\"http://latex.codecogs.com/svg.latex?X\" border=\"0\"> - and the utility will automatically assign oxidation states and radii to each ion (more on this below) and provide the probability that the <img src=\"http://latex.codecogs.com/svg.latex?ABX_3\" border=\"0\"> will form the perovskite structure. <img src=\"http://latex.codecogs.com/svg.latex?t\" border=\"0\"> is also provided for context.<br><br>\n  \n  This result is visualized with respect to the cationic radii to show where in the space of stable and unstable perovskites the given composition sits. <br><br>\n  \n  The descriptor also generalizes to double perovskites - compounds with substitutions at the <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\">, <img src=\"http://latex.codecogs.com/svg.latex?B\" border=\"0\">, or <img src=\"http://latex.codecogs.com/svg.latex?X\" border=\"0\"> sites. Below you can explore the stability of compounds with 50/50 mixtures of ions on each or all of the sites - i.e., <img src=\"http://latex.codecogs.com/svg.latex?(AA')(BB')(XX')_3\" border=\"0\"> formulas. <br><br>\n  \n  More details on the identification and application of <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"> are available within the <a href=\"https://arxiv.org/abs/1801.07700\">manuscript</a> and associated <a href=\"https://github.com/CJBartel/perovskite-stability\">github repository</a>.\n\n</p>"
1681 1682 1683
                },
                "selectedType": "BeakerDisplay",
                "elapsedTime": 0,
Christopher Sutton's avatar
Christopher Sutton committed
1684
                "height": 652
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
            },
            "evaluatorReader": true,
            "lineCount": 25
        },
        {
            "id": "codemh6EPl",
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
                    "<legend>On assigning oxidation states and radii</legend>",
                    "",
                    "<img src=\"http://latex.codecogs.com/svg.latex?t\" border=\"0\"/> and <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/> are both functions of the site-specific radii, <img src=\"http://latex.codecogs.com/svg.latex?r_i\" border=\"0\"/>, yet it is not known <i>a priori</i> for a new formula which cation will sit on the 12-fold coordinated <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\"/>-site and 6-fold coordinted <img src=\"http://latex.codecogs.com/svg.latex?B\" border=\"0\"/>-site. To address this, we developed a systematic approach for making this determination based on the condition that <img src=\"http://latex.codecogs.com/svg.latex?r_A > r_B\" border=\"0\"/> because of the larger coordination number in the perovskite structure.",
                    "",
                    "Ionic radii have been developed by a number of researchers in the last 100 years, but R.D. Shannon's set [<a href=\"http://scripts.iucr.org/cgi-bin/paper?S0567739476001551\">link</a>] are regarded as the most comprehensive, provided as a function of both oxidation state, <img src=\"http://latex.codecogs.com/svg.latex?n_i\", border=\"0\"/> and coordination number,  <img src=\"http://latex.codecogs.com/svg.latex?CN_i\" border=\"0\"/>: <img src=\"http://latex.codecogs.com/svg.latex?r_i = f(n_i, CN_i)\" border=\"0\"/>.",
                    "<br /><br />",
                    "Given a new formula, <img src=\"http://latex.codecogs.com/svg.latex?CC'X_3\" border=\"0\"/> where <img src=\"http://latex.codecogs.com/svg.latex?C\" border=\"0\"/> and <img src=\"http://latex.codecogs.com/svg.latex?C'\" border=\"0\"/> are cations and we don't yet know which is <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\"/> and which is <img src=\"http://latex.codecogs.com/svg.latex?B\" border=\"0\"/>, we apply the following scheme:",
                    "",
                    "<br />",
                    "1) A list of allowed <img src=\"http://latex.codecogs.com/svg.latex?n\" border=\"0\"/> is defined for <img src=\"http://latex.codecogs.com/svg.latex?C\" border=\"0\"/> and <img src=\"http://latex.codecogs.com/svg.latex?C'\" border=\"0\"/> based on the set of <img src=\"http://latex.codecogs.com/svg.latex?n_i\" border=\"0\"/> such that <img src=\"http://latex.codecogs.com/svg.latex?r_i(n_i)\" border=\"0\"/> exists within Shannon's data.",
                    "",
                    "<br />2) All pairs of oxidation states <img src=\"http://latex.codecogs.com/svg.latex?(n_C, n_{C'})\" border=\"0\"/> that charge-balance <img src=\"http://latex.codecogs.com/svg.latex?X_3\" border=\"0\"/> are considered, where <img src=\"http://latex.codecogs.com/svg.latex?n_X\" border=\"0\"/> is typically known <i>a priori</i> (<i>e.g.</i>, <img src=\"http://latex.codecogs.com/svg.latex?n_O = 2^-\" border=\"0\"/>). ",
                    "",
                    "<br />3) In the infrequent case where more than one charge-balanced pair exists, a single solution is chosen based on the electronegativity ratio of the two cations, <img src=\"http://latex.codecogs.com/svg.latex?\\chi_C/\\chi_{C'}\" border=\"0\"/>. If <img src=\"http://latex.codecogs.com/svg.latex?0.9 < \\chi_C/\\chi_{C'} < 1.1\" border=\"0\"/>, the pair that minimizes <img src=\"http://latex.codecogs.com/svg.latex?|n_C-n_{C'}|\" border=\"0\"/> is chosen, otherwise, the pair that maximizes <img src=\"http://latex.codecogs.com/svg.latex?|n_C-n_{C'}|\" border=\"0\"/> is chosen. ",
                    "",
                    "<br />4) With <img src=\"http://latex.codecogs.com/svg.latex?(n_C, n_{C'})\" border=\"0\"/> determined, the radii of each cation if they were to sit on <img src=\"http://latex.codecogs.com/svg.latex?A\\/(CN = 12)\" border=\"0\"/> or  <img src=\"http://latex.codecogs.com/svg.latex?B\\/(CN = 6)\" border=\"0\"/>is generated using Shannon's table.",
                    "",
                    "<br />5) The determination of which cation is larger, and therefore the <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\"/>-site, is made by systematically comparing these radii.",
                    "",
                    "This strategy reproduces the assignment of the <img src=\"http://latex.codecogs.com/svg.latex?A\"/> and <img src=\"http://latex.codecogs.com/svg.latex?B\"/> cations for 100% of the 313 experimentally labeled <img src=\"http://latex.codecogs.com/svg.latex?ABX_3\" border=\"0\"/> perovskites in the set of 576 used to determine <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/>. Conveniently, this approach naturally yields <img src=\"http://latex.codecogs.com/svg.latex?{n_A,n_B,n_X,r_A,r_B,r_X}\" border=\"0\"/> which are the inputs to <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/> and <img src=\"http://latex.codecogs.com/svg.latex?t\" border=\"0\"/>."
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "result": {
                    "type": "BeakerDisplay",
                    "innertype": "Html",
                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<legend>On assigning oxidation states and radii</legend>\n\n<img src=\"http://latex.codecogs.com/svg.latex?t\" border=\"0\"> and <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"> are both functions of the site-specific radii, <img src=\"http://latex.codecogs.com/svg.latex?r_i\" border=\"0\">, yet it is not known <i>a priori</i> for a new formula which cation will sit on the 12-fold coordinated <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\">-site and 6-fold coordinted <img src=\"http://latex.codecogs.com/svg.latex?B\" border=\"0\">-site. To address this, we developed a systematic approach for making this determination based on the condition that <img src=\"http://latex.codecogs.com/svg.latex?r_A &gt; r_B\" border=\"0\"> because of the larger coordination number in the perovskite structure.\n\nIonic radii have been developed by a number of researchers in the last 100 years, but R.D. Shannon's set [<a href=\"http://scripts.iucr.org/cgi-bin/paper?S0567739476001551\">link</a>] are regarded as the most comprehensive, provided as a function of both oxidation state, <img src=\"http://latex.codecogs.com/svg.latex?n_i\" ,=\"\" border=\"0\"> and coordination number,  <img src=\"http://latex.codecogs.com/svg.latex?CN_i\" border=\"0\">: <img src=\"http://latex.codecogs.com/svg.latex?r_i = f(n_i, CN_i)\" border=\"0\">.\n<br><br>\nGiven a new formula, <img src=\"http://latex.codecogs.com/svg.latex?CC'X_3\" border=\"0\"> where <img src=\"http://latex.codecogs.com/svg.latex?C\" border=\"0\"> and <img src=\"http://latex.codecogs.com/svg.latex?C'\" border=\"0\"> are cations and we don't yet know which is <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\"> and which is <img src=\"http://latex.codecogs.com/svg.latex?B\" border=\"0\">, we apply the following scheme:\n\n<br>\n1) A list of allowed <img src=\"http://latex.codecogs.com/svg.latex?n\" border=\"0\"> is defined for <img src=\"http://latex.codecogs.com/svg.latex?C\" border=\"0\"> and <img src=\"http://latex.codecogs.com/svg.latex?C'\" border=\"0\"> based on the set of <img src=\"http://latex.codecogs.com/svg.latex?n_i\" border=\"0\"> such that <img src=\"http://latex.codecogs.com/svg.latex?r_i(n_i)\" border=\"0\"> exists within Shannon's data.\n\n<br>2) All pairs of oxidation states <img src=\"http://latex.codecogs.com/svg.latex?(n_C, n_{C'})\" border=\"0\"> that charge-balance <img src=\"http://latex.codecogs.com/svg.latex?X_3\" border=\"0\"> are considered, where <img src=\"http://latex.codecogs.com/svg.latex?n_X\" border=\"0\"> is typically known <i>a priori</i> (<i>e.g.</i>, <img src=\"http://latex.codecogs.com/svg.latex?n_O = 2^-\" border=\"0\">). \n\n<br>3) In the infrequent case where more than one charge-balanced pair exists, a single solution is chosen based on the electronegativity ratio of the two cations, <img src=\"http://latex.codecogs.com/svg.latex?\\chi_C/\\chi_{C'}\" border=\"0\">. If <img src=\"http://latex.codecogs.com/svg.latex?0.9 &lt; \\chi_C/\\chi_{C'} &lt; 1.1\" border=\"0\">, the pair that minimizes <img src=\"http://latex.codecogs.com/svg.latex?|n_C-n_{C'}|\" border=\"0\"> is chosen, otherwise, the pair that maximizes <img src=\"http://latex.codecogs.com/svg.latex?|n_C-n_{C'}|\" border=\"0\"> is chosen. \n\n<br>4) With <img src=\"http://latex.codecogs.com/svg.latex?(n_C, n_{C'})\" border=\"0\"> determined, the radii of each cation if they were to sit on <img src=\"http://latex.codecogs.com/svg.latex?A\\/(CN = 12)\" border=\"0\"> or  <img src=\"http://latex.codecogs.com/svg.latex?B\\/(CN = 6)\" border=\"0\">is generated using Shannon's table.\n\n<br>5) The determination of which cation is larger, and therefore the <img src=\"http://latex.codecogs.com/svg.latex?A\" border=\"0\">-site, is made by systematically comparing these radii.\n\nThis strategy reproduces the assignment of the <img src=\"http://latex.codecogs.com/svg.latex?A\"> and <img src=\"http://latex.codecogs.com/svg.latex?B\"> cations for 100% of the 313 experimentally labeled <img src=\"http://latex.codecogs.com/svg.latex?ABX_3\" border=\"0\"> perovskites in the set of 576 used to determine <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\">. Conveniently, this approach naturally yields <img src=\"http://latex.codecogs.com/svg.latex?{n_A,n_B,n_X,r_A,r_B,r_X}\" border=\"0\"> which are the inputs to <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"> and <img src=\"http://latex.codecogs.com/svg.latex?t\" border=\"0\">."
                },
                "selectedType": "BeakerDisplay",
                "elapsedTime": 0,
Christopher Sutton's avatar
Christopher Sutton committed
1727
                "height": 359
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
            },
            "evaluatorReader": true,
            "lineCount": 20
        },
        {
            "id": "codeVUE92J",
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
                    "<legend>Formulas with these cations (A, B) and anions (X) were used to identify <img src=\"http://latex.codecogs.com/svg.latex?\\tau\" border=\"0\"/></legend>",
                    "The utility will allow the use of some other cations and anions, but these have not been as thoroughly tested.",
                    "<br /><br />",
                    "",
                    "<img height=\"309.016994375\" width=\"500\" src=\"