Embedding.bkr 90.5 KB
Newer Older
ankit kariryaa's avatar
ankit kariryaa committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
{
    "beaker": "2",
    "evaluators": [
        {
            "name": "HTML",
            "plugin": "HTML",
            "view": {
                "cm": {
                    "mode": "htmlmixed"
                }
            }
        },
        {
            "name": "TeX",
            "plugin": "TeX",
            "view": {
                "cm": {
                    "mode": "stex"
                }
            }
        },
        {
            "name": "IPython",
            "plugin": "IPython",
            "imports": "",
            "supplementalClassPath": "",
            "view": {
                "cm": {
                    "mode": "python"
                }
            },
            "setup": "%matplotlib inline\nimport numpy\nimport matplotlib\nfrom matplotlib import pylab, mlab, pyplot\nnp = numpy\nplt = pyplot\nfrom IPython.display import display\nfrom IPython.core.pylabtools import figsize, getfigs\nfrom pylab import *\nfrom numpy import *\n"
        },
        {
            "name": "JavaScript",
            "plugin": "JavaScript",
            "jsSetting2": "",
            "jsSetting1": "",
            "view": {
                "cm": {
                    "mode": "javascript",
                    "background": "#FFE0F0"
                }
            },
            "languageVersion": "ES2015"
        }
    ],
    "cells": [
49
        {
50
            "id": "codeAQQJKW",
51
52
53
54
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
                    "<style type=\"text/css\">",
                    "/*!",
                    " * Nomad Beaker Notebook Template",
                    " *",
                    " * @copyright  Copyright 2017 Fritz Haber Institute of the Max Planck Society,",
                    " *             Benjamin Regler - Apache 2.0 License",
                    " * @license    http://www.apache.org/licenses/LICENSE-2.0",
                    " * @author     Benjamin Regler",
                    " * @version    1.0.0",
                    " *",
                    " * Licensed under the Apache License, Version 2.0 (the \"License\");",
                    " * you may not use this file except in compliance with the License.",
                    " * You may obtain a copy of the License at",
                    " * ",
                    " *     http://www.apache.org/licenses/LICENSE-2.0",
                    " *",
                    " * Unless required by applicable law or agreed to in writing, software",
                    " * distributed under the License is distributed on an \"AS IS\" BASIS,",
                    " * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.",
                    " * See the License for the specific language governing permissions and",
                    " * limitations under the License.",
                    " */",
                    "p{margin-bottom:1.3em}h1,h2,h3,h4{margin:1.414em 0 .5em;font-weight:inherit;line-height:1.2}h1{margin-top:0;font-size:3.998em}h2{font-size:2.827em}h3{font-size:1.999em}h4{font-size:1.414em}.font_small,small{font-size:.707em}.notebook-container{font-size:16px}.notebook-container .bkr{font-size:100%;font-weight:400;line-height:1.45;color:#333}.nomad--header h2{color:#20335d;font-weight:700;margin:0 0 .2em}.nomad--header h3{color:#20335d;font-weight:700;margin-top:0;text-indent:-1em;padding-left:1em}.nomad--header h3:before{content:\"\\2014\";padding-right:.25em}.nomad--header .nomad--description{margin:-1em 0 0 2em}.atomic-data--block,.nomad--last-updated{display:inline-block;margin-top:1em}.nomad--last-updated{color:grey;float:right;position:relative;z-index:1}.nomad--last-updated::before{bottom:-75%;content:attr(data-version);font-size:4em;font-weight:700;opacity:.2;position:absolute;right:0}.atomic-data label{display:block;font-size:medium;font-weight:700}.atomic-data--select,.chosen-container{width:100%!important}.atomic-data--select:disabled{color:#d3d3d3}.atomic-data--reset-buton{display:inline-block;margin-top:1.6em;width:100%}.modal-dialog{max-width:1000px;width:80%}.modal-header h1{font-size:2em;line-height:1.2}.modal-dialog h2{font-size:1.414em}.modal-dialog h2:first-child{margin-top:0}.modal-dialog h3{font-size:1.2em}.modal-dialog dt{font-size:larger;margin-top:1.414em}.modal-dialog img{width:100%}.modal-dialog .authors{text-transform:uppercase}",
                    "</style>"
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "result": {
                    "type": "BeakerDisplay",
                    "innertype": "Html",
                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<style type=\"text/css\">\n/*!\n * Nomad Beaker Notebook Template\n *\n * @copyright  Copyright 2017 Fritz Haber Institute of the Max Planck Society,\n *             Benjamin Regler - Apache 2.0 License\n * @license    http://www.apache.org/licenses/LICENSE-2.0\n * @author     Benjamin Regler\n * @version    1.0.0\n *\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n * \n *     http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n */\np{margin-bottom:1.3em}h1,h2,h3,h4{margin:1.414em 0 .5em;font-weight:inherit;line-height:1.2}h1{margin-top:0;font-size:3.998em}h2{font-size:2.827em}h3{font-size:1.999em}h4{font-size:1.414em}.font_small,small{font-size:.707em}.notebook-container{font-size:16px}.notebook-container .bkr{font-size:100%;font-weight:400;line-height:1.45;color:#333}.nomad--header h2{color:#20335d;font-weight:700;margin:0 0 .2em}.nomad--header h3{color:#20335d;font-weight:700;margin-top:0;text-indent:-1em;padding-left:1em}.nomad--header h3:before{content:\"\\2014\";padding-right:.25em}.nomad--header .nomad--description{margin:-1em 0 0 2em}.atomic-data--block,.nomad--last-updated{display:inline-block;margin-top:1em}.nomad--last-updated{color:grey;float:right;position:relative;z-index:1}.nomad--last-updated::before{bottom:-75%;content:attr(data-version);font-size:4em;font-weight:700;opacity:.2;position:absolute;right:0}.atomic-data label{display:block;font-size:medium;font-weight:700}.atomic-data--select,.chosen-container{width:100%!important}.atomic-data--select:disabled{color:#d3d3d3}.atomic-data--reset-buton{display:inline-block;margin-top:1.6em;width:100%}.modal-dialog{max-width:1000px;width:80%}.modal-header h1{font-size:2em;line-height:1.2}.modal-dialog h2{font-size:1.414em}.modal-dialog h2:first-child{margin-top:0}.modal-dialog h3{font-size:1.2em}.modal-dialog dt{font-size:larger;margin-top:1.414em}.modal-dialog img{width:100%}.modal-dialog .authors{text-transform:uppercase}\n</style>"
                },
                "selectedType": "BeakerDisplay",
                "elapsedTime": 0,
                "height": 50
            },
            "evaluatorReader": true,
            "lineCount": 24
        },
        {
            "id": "codev9z3kR",
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
                    "<div id=\"teaser\" style='background-color: rgba(149,170,79, 1.0); background-position:  right center; background-size: 200px; background-repeat: no-repeat; ",
                    "    padding-top: 20px;",
                    "    padding-right: 10px;",
                    "    padding-bottom: 50px;",
                    "    padding-left: 80px;' > ",
                    "",
                    "  <div class=\"nomad--header\">",
                    "   <div style=\"text-align:center\">",
                    "    <h2> <img id=\"nomad\" src=\"https://nomad-coe.eu/uploads/nomad/images/NOMAD_Logo2.png\" height=\"100\" alt=\"NOMAD Logo\">  NOMAD Analytics Toolkit   ",
                    "  <img id=\"nomad\" src=\"https://www.nomad-coe.eu/uploads/nomad/backgrounds/head_big-data_analytics_2.png\" height=\"80\" alt=\"NOMAD Logo\"> </h2>",
                    "  </div>",
                    "    <h3> Visualizing material-similarity: Octet-binary zincblende vs. rocksalt semiconductors</h3>",
                    "    <p class=\"nomad--description\">",
                    "      created by:",
                    " Angelo Ziletti<sup> 1</sup>,",
                    " Ankit Kariryaa<sup>1</sup>, ",
                    " Emre Ahmetcik<sup>1</sup>,",
                    " Fawzi R. Mohamed<sup>1</sup>,",
                    " Luca Ghiringhelli<sup>1</sup>,",
                    " and Matthias Scheffler<sup>1</sup> <br><br>",
                    "   ",
                    "      <sup>1</sup> Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany <br>",
                    "      <span class=\"nomad--last-updated\" data-version=\"v1.0.0\">[Last updated: May 12, 2017]</span>",
                    "    </p>",
                    "</div>",
                    "",
                    "</div>  ",
                    "",
                    "<div style='text-align: right;'>",
                    "<a href=\"https://analytics-toolkit.nomad-coe.eu/home/\" class=\"btn btn-primary\" style=\"font-size:larger;\">Back to Analytics Home</a> ",
                    "<a href=\"https://www.nomad-coe.eu/\" class=\"btn btn-primary\" style=\"font-size:larger;\">Back to NOMAD CoE Home</a> ",
                    "</div>"
134
135
                ],
                "hidden": true
136
137
138
139
140
141
            },
            "output": {
                "state": {},
                "result": {
                    "type": "BeakerDisplay",
                    "innertype": "Html",
142
                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<div id=\"teaser\" style=\"background-color: rgba(149,170,79, 1.0); background-position:  right center; background-size: 200px; background-repeat: no-repeat; \n    padding-top: 20px;\n    padding-right: 10px;\n    padding-bottom: 50px;\n    padding-left: 80px;\"> \n\n  <div class=\"nomad--header\">\n   <div style=\"text-align:center\">\n    <h2> <img id=\"nomad\" src=\"https://nomad-coe.eu/uploads/nomad/images/NOMAD_Logo2.png\" alt=\"NOMAD Logo\" height=\"100\">  NOMAD Analytics Toolkit   \n  <img id=\"nomad\" src=\"https://www.nomad-coe.eu/uploads/nomad/backgrounds/head_big-data_analytics_2.png\" alt=\"NOMAD Logo\" height=\"80\"> </h2>\n  </div>\n    <h3> Visualizing material-similarity: Octet-binary zincblende vs. rocksalt semiconductors</h3>\n    <p class=\"nomad--description\">\n      created by:\n Angelo Ziletti<sup> 1</sup>,\n Ankit Kariryaa<sup>1</sup>, \n Emre Ahmetcik<sup>1</sup>,\n Fawzi R. Mohamed<sup>1</sup>,\n Luca Ghiringhelli<sup>1</sup>,\n and Matthias Scheffler<sup>1</sup> <br><br>\n   \n      <sup>1</sup> Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany <br>\n      <span class=\"nomad--last-updated\" data-version=\"v1.0.0\">[Last updated: May 12, 2017]</span>\n    </p>\n</div>\n\n</div>  \n\n<div style=\"text-align: right;\">\n<a href=\"https://analytics-toolkit.nomad-coe.eu/home/\" class=\"btn btn-primary\" style=\"font-size:larger;\">Back to Analytics Home</a> \n<a href=\"https://www.nomad-coe.eu/\" class=\"btn btn-primary\" style=\"font-size:larger;\">Back to NOMAD CoE Home</a> \n</div>"
143
144
145
                },
                "selectedType": "BeakerDisplay",
                "elapsedTime": 0,
146
                "height": 366
147
148
            },
            "evaluatorReader": true,
149
            "lineCount": 32
ankit kariryaa's avatar
ankit kariryaa committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        },
        {
            "id": "codeubF2um",
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
                    "<!-- Button trigger modal -->",
                    "<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-motivation-modal\">",
                    " Introduction and motivation",
                    "</button>",
                    "",
                    "<!-- Modal -->",
                    "<div class=\"modal fade\" id=\"lasso-motivation-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-motivation-modal-label\">",
                    "  <div class=\"modal-dialog modal-lg\" role=\"document\">",
                    "    <div class=\"modal-content\">",
                    "      <div class=\"modal-header\">",
                    "        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>",
                    "        <h4 class=\"modal-title\" id=\"lasso-motivation-modal-label\">Introduction and motivation</h4>",
                    "      </div>",
                    "      <div class=\"modal-body lasso_instructions\">",
                    "        <p> In this tutorial, we present a tool that produces two-dimensional structure maps for octet binary compounds, by starting from a high-dimensional set of <i>features</i> (coordinates) that identify each data point (material), based on free-atom data of the atomic species constituting the binary material. </p>",
172
                    "          ",
ankit kariryaa's avatar
ankit kariryaa committed
173
174
175
176
                    "        <p> The low-dimensional embedding methods (here, two-dimensional for the sake of visualization) are <i>unsupervised</i> machine-learning algorithms; so, in our example, the algorithm processes only the spatial arrangement of the points in the high-dimensional representation that is determined by the user. </p>",
                    "        ",
                    "        <p> In the linear method, <b>principal component analysis (<a href=\"https://en.wikipedia.org/wiki/Feature_scaling\" target=\"_blank\">PCA</a>)</b>, the direction (linear combination of the input coordinates) with the maximum variance is identified as the first principal component (PC). The direction perpendicular to the first PC with the largest variance is the second PC.",
                    "          The process can be iterated up to as many dimensions as the initial dimensionality of the data, but here we stop at the second dimension and give the amount of total variance recovered by the first two principal components. </p>",
177
178
                    "      <p> In the two popular non-linear method we chose, <b>multidimensional scaling (<a href=\"https://en.wikipedia.org/wiki/Multidimensional_scaling\" target=\"_blank\">MDS</a>) </b> tries to preserve the distances from the given high-dimensional to the two-dimensional representation, ",
                    "        and the <b>t-Distributed Stochastic Neighbor Embedding (<a href=\"https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding\" target=\"_blank\">t-SNE</a>) </b> tries to preserve the local shape of groups of neighboring points. Both methods use a notion of distance that in our example is the Euclidean norm, even if in principle it could be any proper norm. </p>",
ankit kariryaa's avatar
ankit kariryaa committed
179
                    "",
180
                    "        <p> In the results, we show the data points colored according to the difference in energy between the Rocksalt (RS) and Zincblende (ZB) crystal structures (both relaxed to their local minima) of the material they represent. The labeling and consequent coloring are independent of the embedding method used, therefore the labeling is an <i>a posteriori</i>",
181
                    "          check that the high-dimensional representation could contain information about the labeling itself. In practice, if the coloring identifies clearly distinct areas, then the two dimensional representation is a map for the prediction of the labels, so that a new data point of unknown labeling, that lands in the 2D map in a area of points with known labeling, is expected to belong to that same labeling. </p>",
ankit kariryaa's avatar
ankit kariryaa committed
182
183
                    "        ",
                    "<p>The merit of the embedding methods is to provide relatively inexpensive tools to visually test whether a given set of features contains information about an investigated property (label). For this reason, they are widely used as preliminary tools for discovering structures in the data. </p>",
184
                    "<p> The prediction of RS vs ZB structure from a simple descriptor has a notable history in materials science [1-7], where descriptors were designed by chemically/physically-inspired intuition. </p>",
ankit kariryaa's avatar
ankit kariryaa committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
                    "",
                    "        <p>References:</p>",
                    "        <ol>",
                    "          <li>J. A. van Vechten, Phys. Rev. 182, 891 (1969).</li>",
                    "          <li>J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).</li>",
                    "          <li>J. St. John and A.N. Bloch, Phys. Rev. Lett. 33, 1095 (1974).</li>",
                    "          <li>J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 17, 2453 (1978).</li>",
                    "          <li>A. Zunger, Phys. Rev. B 22, 5839 (1980).</li>",
                    "          <li>D. G. Pettifor, Solid State Commun. 51, 31 (1984).</li>",
                    "          <li>Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. Andreoni, Phys. Rev. B 85, 104104 (2012).</li>",
                    "        </ol>",
                    "      </div>",
                    "      <div class=\"modal-footer\">",
                    "        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>",
                    "<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->",
                    "      </div>",
                    "    </div>",
                    "  </div>",
                    "</div>"
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "result": {
                    "type": "BeakerDisplay",
                    "innertype": "Html",
212
                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-motivation-modal\">\n Introduction and motivation\n</button>\n\n<!-- Modal -->\n<div style=\"display: none;\" class=\"modal fade\" id=\"lasso-motivation-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-motivation-modal-label\">\n  <div class=\"modal-dialog modal-lg\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h4 class=\"modal-title\" id=\"lasso-motivation-modal-label\">Introduction and motivation</h4>\n      </div>\n      <div class=\"modal-body lasso_instructions\">\n        <p> In this tutorial, we present a tool that produces two-dimensional structure maps for octet binary compounds, by starting from a high-dimensional set of <i>features</i> (coordinates) that identify each data point (material), based on free-atom data of the atomic species constituting the binary material. </p>\n          \n        <p> The low-dimensional embedding methods (here, two-dimensional for the sake of visualization) are <i>unsupervised</i> machine-learning algorithms; so, in our example, the algorithm processes only the spatial arrangement of the points in the high-dimensional representation that is determined by the user. </p>\n        \n        <p> In the linear method, <b>principal component analysis (<a href=\"https://en.wikipedia.org/wiki/Feature_scaling\" target=\"_blank\">PCA</a>)</b>, the direction (linear combination of the input coordinates) with the maximum variance is identified as the first principal component (PC). The direction perpendicular to the first PC with the largest variance is the second PC.\n          The process can be iterated up to as many dimensions as the initial dimensionality of the data, but here we stop at the second dimension and give the amount of total variance recovered by the first two principal components. </p>\n      <p> In the two popular non-linear method we chose, <b>multidimensional scaling (<a href=\"https://en.wikipedia.org/wiki/Multidimensional_scaling\" target=\"_blank\">MDS</a>) </b> tries to preserve the distances from the given high-dimensional to the two-dimensional representation, \n        and the <b>t-Distributed Stochastic Neighbor Embedding (<a href=\"https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding\" target=\"_blank\">t-SNE</a>) </b> tries to preserve the local shape of groups of neighboring points. Both methods use a notion of distance that in our example is the Euclidean norm, even if in principle it could be any proper norm. </p>\n\n        <p> In the results, we show the data points colored according to the difference in energy between the Rocksalt (RS) and Zincblende (ZB) crystal structures (both relaxed to their local minima) of the material they represent. The labeling and consequent coloring are independent of the embedding method used, therefore the labeling is an <i>a posteriori</i>\n          check that the high-dimensional representation could contain information about the labeling itself. In practice, if the coloring identifies clearly distinct areas, then the two dimensional representation is a map for the prediction of the labels, so that a new data point of unknown labeling, that lands in the 2D map in a area of points with known labeling, is expected to belong to that same labeling. </p>\n        \n<p>The merit of the embedding methods is to provide relatively inexpensive tools to visually test whether a given set of features contains information about an investigated property (label). For this reason, they are widely used as preliminary tools for discovering structures in the data. </p>\n<p> The prediction of RS vs ZB structure from a simple descriptor has a notable history in materials science [1-7], where descriptors were designed by chemically/physically-inspired intuition. </p>\n\n        <p>References:</p>\n        <ol>\n          <li>J. A. van Vechten, Phys. Rev. 182, 891 (1969).</li>\n          <li>J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).</li>\n          <li>J. St. John and A.N. Bloch, Phys. Rev. Lett. 33, 1095 (1974).</li>\n          <li>J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 17, 2453 (1978).</li>\n          <li>A. Zunger, Phys. Rev. B 22, 5839 (1980).</li>\n          <li>D. G. Pettifor, Solid State Commun. 51, 31 (1984).</li>\n          <li>Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. Andreoni, Phys. Rev. B 85, 104104 (2012).</li>\n        </ol>\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>\n<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->\n      </div>\n    </div>\n  </div>\n</div>"
ankit kariryaa's avatar
ankit kariryaa committed
213
214
215
216
217
218
                },
                "selectedType": "BeakerDisplay",
                "elapsedTime": 0,
                "height": 72
            },
            "evaluatorReader": true,
219
            "lineCount": 47
ankit kariryaa's avatar
ankit kariryaa committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        },
        {
            "id": "markdowntnAHej",
            "type": "markdown",
            "body": [
                "<p style=\"font-size: 15px;\"> <b> Machine learning methods: </b> <br>",
                "Multi- to 2-dimensional embedding, i.e. Principal Component Analysis (PCA), and a selection of non-linear embedding methods."
            ],
            "evaluatorReader": false
        },
        {
            "id": "codeZ2DSp3",
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
                    "<style type=\"text/css\">",
                    " .lasso_instructions{",
                    "    font-size: 15px;",
                    "  } ",
                    "</style>",
                    "<!-- Button trigger modal -->",
                    "<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-instructions-modal\">",
                    " Instructions",
                    "</button>",
                    "",
                    "<!-- Modal -->",
                    "<div class=\"modal fade\" id=\"lasso-instructions-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-instructions-modal-label\">",
                    "  <div class=\"modal-dialog\" role=\"document\">",
                    "    <div class=\"modal-content\">",
                    "      <div class=\"modal-header\">",
                    "        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>",
                    "        <h4 class=\"modal-title\" id=\"lasso-instructions-modal-label\">Instructions</h4>",
                    "      </div>",
                    "      <div class=\"modal-body lasso_instructions\">",
                    "<p> In this example, you can run the linear low-dimensional embedding method, <b>principal component analysis (<a href=\"https://en.wikipedia.org/wiki/Feature_scaling\" target=\"_blank\">PCA</a>)</b> and two selected non-linear methods, <b>multidimensional scaling (<a href=\"https://en.wikipedia.org/wiki/Multidimensional_scaling\" target=\"_blank\">MDS</a>) </b>",
                    "        and <b>t-Distributed Stochastic Neighbor Embedding (<a href=\"https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding\" target=\"_blank\">t-SNE</a>) </b>. </p>",
                    "      ",
258
                    "<p> The input features, that can be selected in the checklist below (any number of features larger than 2 is allowed), represent chemical elements constituting binary octet materials, that crystallize typically into rocksalt or zincblende crystal structure. </p>",
ankit kariryaa's avatar
ankit kariryaa committed
259
260
261
262
263
                    "<p> The next step is to select the embedding method (exclusive selection) and whether each feature is pre-processed by dividing it by the standard deviation of the whole population (all data points). Note that the feature are anyhow centered around their mean value as pre-processing.</p>      ",
                    "        ",
                    "<p> After selecting the list of features, the method, and the normalization criterion, click <b>“Run two-dimensional embedding”</b> to apply the selected method. </p>",
                    "  ",
                    "<p> During and at the end of the run, a brief summary is printed out below the <b>“Run two-dimensional embedding”</b> button. After the end of the run, click on <b>“View interactive 2D scatter plot”</b> (it is unlocked  at the end of the run) to open a new tab where the two-dimensional map is shown as an interactive scatter plot. </p>",
264
265
                    "<p> Note1: the plot stays active also after another run is performed, so that the output of several sets of input parameters can be compared in the viewer tabs.</p>",
                    "        <!--- <p> Note2: with the following selection of features:<br> ",
ankit kariryaa's avatar
ankit kariryaa committed
266
267
                    "        ['rs(A)', 'rs(B)', 'rp(A)', 'rp(B)', 'Es(A)/sqrt(Zval(A))', 'Es(B)/sqrt(Zval(B))', 'Ep(A)/sqrt(Zval(A))', 'Ep(B)/sqrt(Zval(B))']<br>",
                    "        and PCA method, one obtains a result similar to Fig. 4 in Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. Andreoni, Phys. Rev. B 85, 104104 (2012).",
268
269
                    "          The plot may appear mirrored because the sign of the principal component is immaterial. Besides, the input data are slightly different (here, everything is calculated at the converged LDA level).",
                    "        </p> -->",
ankit kariryaa's avatar
ankit kariryaa committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
                    "      </div>",
                    "      <div class=\"modal-footer\">",
                    "        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>",
                    "<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->",
                    "      </div>",
                    "    </div>",
                    "  </div>",
                    "</div>"
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "result": {
                    "type": "BeakerDisplay",
                    "innertype": "Html",
286
                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<style type=\"text/css\">\n .lasso_instructions{\n    font-size: 15px;\n  } \n</style>\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-instructions-modal\">\n Instructions\n</button>\n\n<!-- Modal -->\n<div style=\"display: none;\" class=\"modal fade\" id=\"lasso-instructions-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-instructions-modal-label\">\n  <div class=\"modal-dialog\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h4 class=\"modal-title\" id=\"lasso-instructions-modal-label\">Instructions</h4>\n      </div>\n      <div class=\"modal-body lasso_instructions\">\n<p> In this example, you can run the linear low-dimensional embedding method, <b>principal component analysis (<a href=\"https://en.wikipedia.org/wiki/Feature_scaling\" target=\"_blank\">PCA</a>)</b> and two selected non-linear methods, <b>multidimensional scaling (<a href=\"https://en.wikipedia.org/wiki/Multidimensional_scaling\" target=\"_blank\">MDS</a>) </b>\n        and <b>t-Distributed Stochastic Neighbor Embedding (<a href=\"https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding\" target=\"_blank\">t-SNE</a>) </b>. </p>\n      \n<p> The input features, that can be selected in the checklist below (any number of features larger than 2 is allowed), represent chemical elements constituting binary octet materials, that crystallize typically into rocksalt or zincblende crystal structure. </p>\n<p> The next step is to select the embedding method (exclusive selection) and whether each feature is pre-processed by dividing it by the standard deviation of the whole population (all data points). Note that the feature are anyhow centered around their mean value as pre-processing.</p>      \n        \n<p> After selecting the list of features, the method, and the normalization criterion, click <b>“Run two-dimensional embedding”</b> to apply the selected method. </p>\n  \n<p> During and at the end of the run, a brief summary is printed out below the <b>“Run two-dimensional embedding”</b> button. After the end of the run, click on <b>“View interactive 2D scatter plot”</b> (it is unlocked  at the end of the run) to open a new tab where the two-dimensional map is shown as an interactive scatter plot. </p>\n<p> Note1: the plot stays active also after another run is performed, so that the output of several sets of input parameters can be compared in the viewer tabs.</p>\n        <!--- <p> Note2: with the following selection of features:<br> \n        ['rs(A)', 'rs(B)', 'rp(A)', 'rp(B)', 'Es(A)/sqrt(Zval(A))', 'Es(B)/sqrt(Zval(B))', 'Ep(A)/sqrt(Zval(A))', 'Ep(B)/sqrt(Zval(B))']<br>\n        and PCA method, one obtains a result similar to Fig. 4 in Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. Andreoni, Phys. Rev. B 85, 104104 (2012).\n          The plot may appear mirrored because the sign of the principal component is immaterial. Besides, the input data are slightly different (here, everything is calculated at the converged LDA level).\n        </p> -->\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>\n<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->\n      </div>\n    </div>\n  </div>\n</div>"
ankit kariryaa's avatar
ankit kariryaa committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
                },
                "selectedType": "BeakerDisplay",
                "elapsedTime": 0,
                "height": 72
            },
            "evaluatorReader": true,
            "lineCount": 42
        },
        {
            "id": "lasso_gui",
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
                    "<script>",
                    "var run_lasso = function() {",
                    "  $(\"#lasso_result_button\").removeClass(\"active\").addClass(\"disabled\");",
                    "  getFeatures();",
                    "  getEmbedMethod();",
                    "  getStandardize();",
307
                    "  getUnits();",
ankit kariryaa's avatar
ankit kariryaa committed
308
309
310
311
312
313
314
315
316
317
318
319
320
                    "  beaker.evaluate(\"lasso_cell\"); // evaluate cells with tag \"lasso_cell\"",
                    " // view_result()",
                    "};",
                    "var reset_lasso = function(){",
                    "  beaker.evaluate(\"lasso_gui\");",
                    "};",
                    "var getFeatures = function() {",
                    "    beaker.selected_feature_list = [];",
                    "    $('#lasso_features_select input:checkbox').each(function () {",
                    "        if(this.checked )",
                    "          beaker.selected_feature_list.push(this.value);",
                    "    });",
                    "};",
321
322
323
324
                    "  ",
                    "var getUnits = function() {",
                    "   beaker.units = $(\"#units_select\").val();",
                    "};",
ankit kariryaa's avatar
ankit kariryaa committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
                    "  ",
                    "var getEmbedMethod = function() {",
                    "   beaker.embed_method = \"pca\";",
                    "   $('#embed_method_selector input:radio').each(function () {",
                    "     if(this.checked )",
                    "       beaker.embed_method = this.value;",
                    "   });",
                    "};",
                    "  ",
                    "var getStandardize = function() {",
                    "   beaker.standardize = \"yes\";",
                    "   $('#standardize input:radio').each(function () {",
                    "     if(this.checked )",
                    "       beaker.standardize = this.value;",
                    "   });",
                    "};",
                    "  ",
                    "beaker.view_result = function(result_link) {",
                    "//   beaker.evaluate(\"lasso_viewer_result\").then(function(x) {",
                    "    $(\"#lasso_result_button\").attr(\"href\", result_link);",
                    "//   }); ",
                    "  $(\"#lasso_result_button\").removeClass(\"disabled\").addClass(\"active\");",
                    "}",
                    "</script>",
                    "<style type=\"text/css\">",
                    "  label {",
                    "    font-size: 18px;",
                    "  }",
                    " .lasso_control{",
                    "    font-size: 18px;",
                    "  }   ",
                    ".lasso_form_group input {",
                    "    width: 15px;",
                    "    height: 15px;",
                    "    padding: 0;",
                    "    margin:0;",
                    "    padding-right:5px; ",
                    "    vertical-align: bottom;",
                    "    top: -1px;",
                    "} ",
                    " .lasso_selection_description{",
                    "        padding: 10px 15px;",
                    "  }",
                    "</style>",
                    "<div class=\"lasso_control\">",
                    "  <div class=\"row\">",
                    "    <p class=\"lasso_selection_description\"><b>Primary features </b>",
372
                    "  (hover the mouse pointer over the feature names to see a full description):</p>",
ankit kariryaa's avatar
ankit kariryaa committed
373
374
                    "    <form id=\"lasso_features_select\">",
                    "      <div class=\"lasso_form_group\">",
375
376
377
378
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_ionization_potential\" CHECKED > <span title=\"Atomic ionization potential\"><i>IP</i> </span></label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_electron_affinity\" CHECKED > <span title=\"Atomic electron affinity\"> <i>EA</i></span></label>",
                    "          <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_homo\"  > <span title=\"Energy of highest occupied molecular orbital\"><i>E</i> <sub>HOMO</sub></span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-2\"> <input type=\"checkbox\" value=\"atomic_lumo\"  > <span title=\"Energy of lowest unoccupied molecular orbital\"> <i>E</i> <sub>LUMO</sub>  </span> </label>",
ankit kariryaa's avatar
ankit kariryaa committed
379
                    "        ",
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_rs_max\" CHECKED > <span title=\"Radius at which the radial probability density of the valence s orbital is maximum\"> <i>r</i><sub>s</sub>  </span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_rp_max\" CHECKED > <span title=\"Radius at which the radial probability density of the valence p orbital is maximum\"> <i>r</i><sub>p</sub>  </span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_rd_max\" CHECKED > <span title=\"Radius at which the radial probability density of the valence d orbital is maximum\"> <i>r</i><sub>d</sub>  </span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_number\" > <span title=\"Atomic number\"> <i>Z</i>  </span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_number_valence_electrons\" > <span title=\"Number of valence electrons\"> <i>Z</i><sub>val</sub>  </span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"period\" > <span title=\"Period (in the periodic table)\"> <i>n</i> <sub>period</sub>  </span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_r_by_2_dimer\" > <span title=\"Bond length of the dimer\"> <i>d</i> <sub>dimer</sub> </span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_electronic_binding_energy_dimer\" > <span title=\"Binding energy of the dimer\"> <i>E</i> <sub>b</sub> </span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"atomic_homo_lumo_diff\" > <span title=\"HOMO-LUMO gap of the dimer\"> Δ<i>E</i><sub>HL</sub>  </span> </label>",
                    "        ",
                    "<!---              <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"Es/sqrt(Zval)\"  > ",
                    "         <span title=\"Energy of the valence s orbital(s) divided by the square root of the number of valence electrons. [Phys. Rev. B 85, 104104 (2012)]\"> <i>E</i><sub>s</sub>/sqrt(<i>Z</i> <sub>val</sub>) </span> </label>",
                    "         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"Ep/sqrt(Zval)\"  > ",
                    "         <span title=\"Energy of the valence p orbital(s) divided by the square root of the number of valence electrons. [Phys. Rev. B 85, 104104 (2012)]\"> <i>E</i><sub>p</sub>/sqrt(<i>Z</i> <sub>val</sub>) </span> </label>",
                    "-->      ",
ankit kariryaa's avatar
ankit kariryaa committed
395
396
397
                    "      </div>",
                    "    </form>",
                    "  </div>  <!-- End of row-->",
398
399
400
                    "    ",
                    "  <br>",
                    "    <div class=\"row\"> <!-- Start of row-->",
401
                    "  <p class=\"lasso_selection_description\"><b>Units of measurement: </b> ",
402
403
404
405
406
407
408
                    "  <select id='units_select'>",
                    "    <option value=\"eV_angstrom\" > [energy]=eV;&nbsp;&nbsp;[length]=angstrom</option>",
                    "    <option value=\"J_m\" > [energy]=J;&nbsp;&nbsp;[length]=m</option>",
                    "    <option value=\"kcal/mol_angstrom\" > [energy]=kcal/mol;&nbsp;&nbsp;[length]=angstrom</option>",
                    "  </select> </p>",
                    "  </div><!-- End of row-->",
                    "  ",
ankit kariryaa's avatar
ankit kariryaa committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
                    "  <br>",
                    "  <div class=\"row\"> <!-- Start of second row-->",
                    "      <div class=\"lasso_form_group\">",
                    "        <p class=\"lasso_selection_description\"><b>Embedding methods:</b> </p>",
                    "        <div id='embed_method_selector'>",
                    "          <label class =\"col-xs-4 col-md-4 col-lg-4\"><input type=\"radio\" name=\"inlineRadioOptions\" id=\"inlineRadio1\" value=\"pca\" CHECKED>  Principal Compenent Analysis (PCA) [<a href=\"https://en.wikipedia.org/wiki/Principal_component_analysis\" target=\"_blank\">more info</a>]</label>",
                    "          <label class =\"col-xs-4 col-md-4 col-lg-4\"><input type=\"radio\" name=\"inlineRadioOptions\" id=\"inlineRadio2\" value=\"mds\"> Multidimensional scaling (MDS) [<a href=\"https://en.wikipedia.org/wiki/Multidimensional_scaling\" target=\"_blank\">more info</a>]</label>",
                    "          <label class =\"col-xs-4 col-md-4 col-lg-4\"><input type=\"radio\" name=\"inlineRadioOptions\" id=\"inlineRadio3\" value=\"tsne_pca\"> t-Distributed Stochastic Neighbor Embedding (t-SNE) [<a href=\"https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding\" target=\"_blank\">more info</a>]</label>",
                    "        </div>         ",
                    "      </div>",
                    "  </div><!-- End of row-->  ",
                    "    <div class=\"row\"> <!-- Start of second row-->",
                    "      <div class=\"lasso_form_group\">",
                    "        <p class=\"lasso_selection_description\"><b>Scale data to unit-variance:</b>",
                    "        (data are centered around the mean in any case) [<a href=\"https://en.wikipedia.org/wiki/Feature_scaling\" target=\"_blank\">more info</a>]</p>",
                    "        <div id='standardize'>",
                    "          <label class =\"col-xs-4 col-md-4 col-lg-4\"><input type=\"radio\" name=\"inlineRadioOptionsStandardize\" id=\"inlineRadio4\" value=\"True\" CHECKED> yes </label>",
                    "          <label class =\"col-xs-4 col-md-4 col-lg-4\"><input type=\"radio\" name=\"inlineRadioOptionsStandardize\" id=\"inlineRadio5\" value=\"False\"> no </label>",
                    "        </div>         ",
                    "      </div>",
                    "  </div><!-- End of row-->  ",
                    "  <br>",
                    "",
                    "<!-- <span title=''> <img src=\"http://images.clipartpanda.com/question-purzen_Icon_with_question_mark_Vector_Clipart.png\" style=\"height: 30px; width: 30px;\"> </span> -->",
                    "  <button class=\"btn btn-default\" onclick='run_lasso()'>RUN TWO-DIMENSIONAL EMBEDDING</button>",
                    "  <button class=\"btn btn-default\" onclick='reset_lasso()'>RESET</button>",
                    "  <label title=\"This button becomes active when the run is finished. By clicking it, an interactive structural-similarity plot will be opened\"> <a href=\"#\" target=\"_blank\" class=\"btn btn-primary disabled\" id=\"lasso_result_button\" >View interactive 2D scatter plot</a> </label>",
                    "</div> <!-- End of lasso_control -->",
                    ""
                ],
                "hidden": true
            },
            "output": {
                "selectedType": "BeakerDisplay",
                "outputArrived": true,
444
                "elapsedTime": 0,
ankit kariryaa's avatar
ankit kariryaa committed
445
446
447
448
                "state": {},
                "result": {
                    "type": "BeakerDisplay",
                    "innertype": "Html",
449
                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<script>\nvar run_lasso = function() {\n  $(\"#lasso_result_button\").removeClass(\"active\").addClass(\"disabled\");\n  getFeatures();\n  getEmbedMethod();\n  getStandardize();\n  getUnits();\n  beaker.evaluate(\"lasso_cell\"); // evaluate cells with tag \"lasso_cell\"\n // view_result()\n};\nvar reset_lasso = function(){\n  beaker.evaluate(\"lasso_gui\");\n};\nvar getFeatures = function() {\n    beaker.selected_feature_list = [];\n    $('#lasso_features_select input:checkbox').each(function () {\n        if(this.checked )\n          beaker.selected_feature_list.push(this.value);\n    });\n};\n  \nvar getUnits = function() {\n   beaker.units = $(\"#units_select\").val();\n};\n  \nvar getEmbedMethod = function() {\n   beaker.embed_method = \"pca\";\n   $('#embed_method_selector input:radio').each(function () {\n     if(this.checked )\n       beaker.embed_method = this.value;\n   });\n};\n  \nvar getStandardize = function() {\n   beaker.standardize = \"yes\";\n   $('#standardize input:radio').each(function () {\n     if(this.checked )\n       beaker.standardize = this.value;\n   });\n};\n  \nbeaker.view_result = function(result_link) {\n//   beaker.evaluate(\"lasso_viewer_result\").then(function(x) {\n    $(\"#lasso_result_button\").attr(\"href\", result_link);\n//   }); \n  $(\"#lasso_result_button\").removeClass(\"disabled\").addClass(\"active\");\n}\n</script>\n<style type=\"text/css\">\n  label {\n    font-size: 18px;\n  }\n .lasso_control{\n    font-size: 18px;\n  }   \n.lasso_form_group input {\n    width: 15px;\n    height: 15px;\n    padding: 0;\n    margin:0;\n    padding-right:5px; \n    vertical-align: bottom;\n    top: -1px;\n} \n .lasso_selection_description{\n        padding: 10px 15px;\n  }\n</style>\n<div class=\"lasso_control\">\n  <div class=\"row\">\n    <p class=\"lasso_selection_description\"><b>Primary features </b>\n  (hover the mouse pointer over the feature names to see a full description):</p>\n    <form id=\"lasso_features_select\">\n      <div class=\"lasso_form_group\">\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_ionization_potential\" checked=\"\" type=\"checkbox\"> <span title=\"Atomic ionization potential\"><i>IP</i> </span></label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_electron_affinity\" checked=\"\" type=\"checkbox\"> <span title=\"Atomic electron affinity\"> <i>EA</i></span></label>\n          <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_homo\" type=\"checkbox\"> <span title=\"Energy of highest occupied molecular orbital\"><i>E</i> <sub>HOMO</sub></span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-2\"> <input value=\"atomic_lumo\" type=\"checkbox\"> <span title=\"Energy of lowest unoccupied molecular orbital\"> <i>E</i> <sub>LUMO</sub>  </span> </label>\n        \n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_rs_max\" checked=\"\" type=\"checkbox\"> <span title=\"Radius at which the radial probability density of the valence s orbital is maximum\"> <i>r</i><sub>s</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_rp_max\" checked=\"\" type=\"checkbox\"> <span title=\"Radius at which the radial probability density of the valence p orbital is maximum\"> <i>r</i><sub>p</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_rd_max\" checked=\"\" type=\"checkbox\"> <span title=\"Radius at which the radial probability density of the valence d orbital is maximum\"> <i>r</i><sub>d</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_number\" type=\"checkbox\"> <span title=\"Atomic number\"> <i>Z</i>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_number_valence_electrons\" type=\"checkbox\"> <span title=\"Number of valence electrons\"> <i>Z</i><sub>val</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"period\" type=\"checkbox\"> <span title=\"Period (in the periodic table)\"> <i>n</i> <sub>period</sub>  </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_r_by_2_dimer\" type=\"checkbox\"> <span title=\"Bond length of the dimer\"> <i>d</i> <sub>dimer</sub> </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_electronic_binding_energy_dimer\" type=\"checkbox\"> <span title=\"Binding energy of the dimer\"> <i>E</i> <sub>b</sub> </span> </label>\n         <label class=\"col-xs-4 col-md-4 col-lg-3\"> <input value=\"atomic_homo_lumo_diff\" type=\"checkbox\"> <span title=\"HOMO-LUMO gap of the dimer\"> Δ<i>E</i><sub>HL</sub>  </span> </label>\n        \n<!---              <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"Es/sqrt(Zval)\"  > \n         <span title=\"Energy of the valence s orbital(s) divided by the square root of the number of valence electrons. [Phys. Rev. B 85, 104104 (2012)]\"> <i>E</i><sub>s</sub>/sqrt(<i>Z</i> <sub>val</sub>) </span> </label>\n         <label class =\"col-xs-4 col-md-4 col-lg-3\"> <input type=\"checkbox\" value=\"Ep/sqrt(Zval)\"  > \n         <span title=\"Energy of the valence p orbital(s) divided by the square root of the number of valence electrons. [Phys. Rev. B 85, 104104 (2012)]\"> <i>E</i><sub>p</sub>/sqrt(<i>Z</i> <sub>val</sub>) </span> </label>\n-->      \n      </div>\n    </form>\n  </div>  <!-- End of row-->\n    \n  <br>\n    <div class=\"row\"> <!-- Start of row-->\n  <p class=\"lasso_selection_description\"><b>Units of measurement: </b> \n  <select id=\"units_select\">\n    <option value=\"eV_angstrom\"> [energy]=eV;&nbsp;&nbsp;[length]=angstrom</option>\n    <option value=\"J_m\"> [energy]=J;&nbsp;&nbsp;[length]=m</option>\n    <option value=\"kcal/mol_angstrom\"> [energy]=kcal/mol;&nbsp;&nbsp;[length]=angstrom</option>\n  </select> </p>\n  </div><!-- End of row-->\n  \n  <br>\n  <div class=\"row\"> <!-- Start of second row-->\n      <div class=\"lasso_form_group\">\n        <p class=\"lasso_selection_description\"><b>Embedding methods:</b> </p>\n        <div id=\"embed_method_selector\">\n          <label class=\"col-xs-4 col-md-4 col-lg-4\"><input name=\"inlineRadioOptions\" id=\"inlineRadio1\" value=\"pca\" checked=\"\" type=\"radio\">  Principal Compenent Analysis (PCA) [<a href=\"https://en.wikipedia.org/wiki/Principal_component_analysis\" target=\"_blank\">more info</a>]</label>\n          <label class=\"col-xs-4 col-md-4 col-lg-4\"><input name=\"inlineRadioOptions\" id=\"inlineRadio2\" value=\"mds\" type=\"radio\"> Multidimensional scaling (MDS) [<a href=\"https://en.wikipedia.org/wiki/Multidimensional_scaling\" target=\"_blank\">more info</a>]</label>\n          <label class=\"col-xs-4 col-md-4 col-lg-4\"><input name=\"inlineRadioOptions\" id=\"inlineRadio3\" value=\"tsne_pca\" type=\"radio\"> t-Distributed Stochastic Neighbor Embedding (t-SNE) [<a href=\"https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding\" target=\"_blank\">more info</a>]</label>\n        </div>         \n      </div>\n  </div><!-- End of row-->  \n    <div class=\"row\"> <!-- Start of second row-->\n      <div class=\"lasso_form_group\">\n        <p class=\"lasso_selection_description\"><b>Scale data to unit-variance:</b>\n        (data are centered around the mean in any case) [<a href=\"https://en.wikipedia.org/wiki/Feature_scaling\" target=\"_blank\">more info</a>]</p>\n        <div id=\"standardize\">\n          <label class=\"col-xs-4 col-md-4 col-lg-4\"><input name=\"inlineRadioOptionsStandardize\" id=\"inlineRadio4\" value=\"True\" checked=\"\" type=\"radio\"> yes </label>\n          <label class=\"col-xs-4 col-md-4 col-lg-4\"><input name=\"inlineRadioOptionsStandardize\" id=\"inlineRadio5\" value=\"False\" type=\"radio\"> no </label>\n        </div>         \n      </div>\n  </div><!-- End of row-->  \n  <br>\n\n<!-- <span title=''> <img src=\"http://images.clipartpanda.com/question-purzen_Icon_with_question_mark_Vector_Clipart.png\" style=\"height: 30px; width: 30px;\"> </span> -->\n  <button class=\"btn btn-default\" onclick=\"run_lasso()\">RUN TWO-DIMENSIONAL EMBEDDING</button>\n  <button class=\"btn btn-default\" onclick=\"reset_lasso()\">RESET</button>\n  <label title=\"This button becomes active when the run is finished. By clicking it, an interactive structural-similarity plot will be opened\"> <a href=\"#\" target=\"_blank\" class=\"btn btn-primary disabled\" id=\"lasso_result_button\">View interactive 2D scatter plot</a> </label>\n</div> <!-- End of lasso_control -->\n"
ankit kariryaa's avatar
ankit kariryaa committed
450
                },
451
                "height": 591
ankit kariryaa's avatar
ankit kariryaa committed
452
453
            },
            "evaluatorReader": true,
454
            "lineCount": 137
ankit kariryaa's avatar
ankit kariryaa committed
455
        },
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        {
            "id": "codecuLX9f",
            "type": "code",
            "evaluator": "HTML",
            "input": {
                "body": [
                    "<p style=\"text-align: left; color: #aa3311; font-weight: 900; font-size: 18pt;\"> Note:</p>",
                    "<p style=\"text-align: left; color: #aa3311; font-weight: 400; font-size: 12pt;\"> you will automatically generate atomic descriptors, select an <i>optimal two-dimensional representation</i>, and produce a <i>fully-interactive plot</i> of your results. <br>",
                    "Please understand that the whole procedure may take a few moments.</p>"
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "result": {
                    "type": "BeakerDisplay",
                    "innertype": "Html",
                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<p style=\"text-align: left; color: #aa3311; font-weight: 900; font-size: 18pt;\"> Note:</p>\n<p style=\"text-align: left; color: #aa3311; font-weight: 400; font-size: 12pt;\"> you will automatically generate atomic descriptors, select an <i>optimal two-dimensional representation</i>, and produce a <i>fully-interactive plot</i> of your results. <br>\nPlease understand that the whole procedure may take a few moments.</p>"
                },
                "selectedType": "BeakerDisplay",
                "elapsedTime": 0,
477
                "height": 169
478
479
480
481
            },
            "evaluatorReader": true,
            "lineCount": 3
        },
ankit kariryaa's avatar
ankit kariryaa committed
482
483
484
485
486
487
488
        {
            "id": "code2uVtKX",
            "type": "code",
            "evaluator": "IPython",
            "input": {
                "body": [
                    "from IPython.core.display import HTML ",
489
490
491
492
493
494
495
                    "from nomad_sim.wrappers import get_json_list, calc_descriptor ",
                    "from nomad_sim.wrappers import calc_model, calc_embedding, plot",
                    "from nomad_sim.utils_crystals import create_supercell",
                    "from nomad_sim.utils_crystals import create_vacancies",
                    "from nomad_sim.utils_crystals import random_displace_atoms",
                    "from nomad_sim.utils_crystals import substitute_atoms",
                    "from nomad_sim.descriptors import XrayDiffraction",
496
497
                    "from nomad_sim.utils_crystals import create_supercell",
                    "",
498
499
500
501
502
                    "# hack to change to local/Beaker mode in all files in the packages",
                    "# DEPRECATED",
                    "import __builtin__",
                    "__builtin__.isBeaker = True",
                    "",
ankit kariryaa's avatar
ankit kariryaa committed
503
504
                    "import hashlib",
                    "",
505
506
507
508
509
510
                    "import sys, os",
                    "import pandas as pd",
                    "import numpy as np",
                    "import json",
                    "",
                    "",
ankit kariryaa's avatar
ankit kariryaa committed
511
512
513
                    "# define paths",
                    "tmp_folder = '/home/beaker/.beaker/v1/web/tmp/'",
                    "control_file = '/home/beaker/.beaker/v1/web/tmp/control.json'",
514
                    "data_folder='/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/'",
ankit kariryaa's avatar
ankit kariryaa committed
515
                    "lookup_file = '/home/beaker/.beaker/v1/web/tmp/lookup.dat'",
516
517
                    "collection_path = '/home/beaker/test/nomad_sim/data_zcrs/ExtendedBinaries_Dimers_Atoms_new.json'",
                    "path_to_collection = '/home/beaker/test/nomad_sim/data_zcrs/ExtendedBinaries_Dimers_Atoms_new.json'",
ankit kariryaa's avatar
ankit kariryaa committed
518
                    "",
519
520
521
522
523
524
525
526
527
528
529
530
531
532
                    "# define units",
                    "if beaker.units == 'eV_angstrom':",
                    "    energy_unit = 'eV'",
                    "    length_unit = 'angstrom'",
                    "elif beaker.units == 'J_m':",
                    "    energy_unit = 'J'",
                    "    length_unit = 'm'",
                    "elif beaker.units == 'kcal/mol_angstrom':",
                    "    energy_unit = 'kcal/mol'",
                    "    length_unit = 'angstrom'"
                ],
                "hidden": true
            },
            "output": {
533
                "selectedType": "Results",
534
535
                "state": {},
                "pluginName": "IPython",
536
                "shellId": "D34CAE3B04D54A4F8A1EF670EFBEB2A1",
537
                "height": 103,
538
                "elapsedTime": 25150
539
540
            },
            "evaluatorReader": true,
541
            "lineCount": 41,
542
543
544
545
546
547
548
549
            "tags": "lasso_cell"
        },
        {
            "id": "codelrvhSB",
            "type": "code",
            "evaluator": "IPython",
            "input": {
                "body": [
ankit kariryaa's avatar
ankit kariryaa committed
550
                    "# get the json_list",
551
552
                    "#json_list = get_json_list(method='folder', drop_duplicates=False, ",
                    "#    data_folder=data_folder, tmp_folder=tmp_folder)",
ankit kariryaa's avatar
ankit kariryaa committed
553
                    "",
554
555
                    "# pass only lowest energy structures to save time for demonstation purposes",
                    "json_list = [",
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P-M1B6jU_t-kPPKkoFU9kZkEbx332.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P0e8gRRxOvcJquPDa7SeYFk2OCiFS.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P0tj3NYHfrit7NB0ewfG-fIjRWuJD.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P2R4Ds9DFm8USF_AgHtQnWK1TkQiR.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P36pL30yblwhze_vHZYZ_cybqeH4V.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P39GmzBY478BzuXrZM-0i2Z-njyb9.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P3hSpXydSB6z3p79OEIOQK6llto1K.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P51AKUeSNYXrRBK_-uc8y1-bCfUNg.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P5q6OPnbkCI9OZnxRMmigkwjECTEe.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P7JW4GQVa_xQ4YKM88F9LFzyVoXke.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P7kHL_6prXXdx5_MzMVmwsmStNoc0.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P81vIYtJtOEx4n865B86z-KvUb6hA.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P9Yuhn2S6hqpJ0cf9E9uw5G5bJlzV.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P9sheCSX6Gol5L-IsCvDlnmT_MEGG.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PA3s37bS9VLUzI5wYL_ntZ6RIM6IJ.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PAlWHa4oJtvotPEJZkbrlNC_sn0h2.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PB0yzgD_PWA0LKTKGJ8ZZuD33YEUG.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PC8N-y0PPPHeAwhkYGyYYI9H1UUHy.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PCeh79N53GyBSPmZQQJ97G0eAHaDT.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PEYkIqgUpWfoq4Tcsy8_bFVUs9mko.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PEhAEeu8aSPA_d3_dHCjTlAi1y09j.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PGRvHpDj8bRbzvIL0c9yfOmeZjfah.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PHfNgOoPEHjzs9iOh900vIUv-GVJl.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKSpxMXqdSstTt6Es26kroYBYENnq.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKfJHS4WQGppgde2dACUjMuVoL2sB.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKu0vasdF5E6n3C3QydIjCtGOIla4.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PM3KjHYJjTA26va4uYXD8homH7pUm.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PME2sPwrfVW7U0veuObWai6ryPqou.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PMxYGoRCMDXQWrNytWJHc-vUgRKTT.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PN0Q_OXA7e5yO6EkDKkOpGHM6hyCj.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PNXyczNslCGZT642R9ZFYGvidFvua.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PNavIaZhgwAeZM0-QhWHe_38iUgEF.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/POIYfYCEIron9yzowfHWhVea-VEFW.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PQB49fu8BN3kua7uLKQLlT5dWdHi0.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PQESlzgesuFywpq09x-vZ0gikcjPf.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PQhb3_h4Bo9e5xjhhTUBY_8uOEtTM.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PV--hzM8rvSS8a6LZBuuW6IPbqvY6.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PVshjrYqjAg_8QtgfGW2ABnR-mlIP.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PWNXU92VwL7KkuoxItglRiuifcOnk.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PWkXOKoiw0iAE585QkElUZNCYOqYI.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PX39jEfgLeDPddrkPuTvUfVv4_thl.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PYOw5h3ttt0tMyUPOvqDPc6yArPTy.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PYeYlDJb7j4qJ9ol38GSM_eYJsiSe.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PZuBrsUzsdX__rAeKn_JQgfX-YGoo.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P_1mfRE8eDZ7zCLQwGT_3n8YC34dE.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P_DFu-YobOdcOb1mfdI22vrtaSQAh.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P_rlThO8Jv0C2YIgYKLbCTM1rvfW-.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PbVMALFnpGdoEyabKhI_3DtbUX6W7.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PcYC-NeMnx_goUeYg8PmaNVo0chDc.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PcyDh6nCotXyohIHh5k1dx5L5D5X9.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pd5Tx2nPg7dFY-jys9XwKne6OQtKX.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PdHoVKHCES7XtBpTVk0eihbo0kqmR.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PeXgyF2iElVtNWSX9xZhroKK8nJJ4.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PfGXdJkORwLQ-aX-d9bla7obqtnkt.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PhaEAJ72mzGm65KpjGcnVVlFax_l7.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Phw2RDlr8RJrjY8nb2PfCE6Bf--N0.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PiOIHShEKCjdganj-Sd0MkJaLglGr.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PjGykEyzLOFynTPTNDcycF0GYg1PE.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pkole11VWAOiu91qHeq6lOzIM2Y1Y.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pl7aTuAjyxpsJM7vLAOVHYwJm-QE6.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PlIiyctCzbm5lbDOxpwEi3GbORHRD.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PmILc9BsSYjJ9OKH4MkPr0D4LGYGC.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PmenrFglDQWoTWLNvVVobyI3dmkIe.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PmmsPJ6ouZjFnoIdGfis_3AHs9clP.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PoWlbXJuGJ4-22DclM15L_g44LN3P.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pp4wUDDucIEdS9euDT89Y6xQA_JPq.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PpikjM2BVj1atNlsbkcJzK9TkUIox.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PqmzGiDuYJ-Q8j-KfLDlQBvWb2Gjt.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pr6E85ezTMa4WX-GTFoms6w0Rb0hT.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PrTcNbJ50u8bqAFWGjPJKqnuuEvY7.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PsmYUa8-6qr40jG7XJhUIynL1Ue8b.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pst86UVhV07OfKDhwlp0PNxiMtXki.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pu9uI6ldU3ZVgwfmy-Um0D7IBxTCK.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PudM2fYFckG7O5R4BJqg04tK_l1bd.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PvXy3VrpadhZLQAwphJE6GVB_0OUp.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pws96oc5f7jIltD9Vvqc3svzL4mcW.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PxJnNtspUIcqGhneVuSJKposdVxH_.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PxrF4NRKjX9jsmVIocs7uQuLwD_cS.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PyizrsR40QyxopYKKk2jUtl7nElXJ.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PyukHM_doowQLr1Ipwa8feMxPVmI2.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PzkPWSKWCQ14F1io7eGkOhK7h0O_Q.json', ",
                    "'/parsed/prod-022/FhiAimsParser2.0.0-2-gf9335c4/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pzl8jOEFAC45VXxnxMJ7_nf2xS6v2.json']",
638
639
640
641
642
643
644
645
                    ""
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "selectedType": "Hidden",
                "pluginName": "IPython",
646
647
                "shellId": "D34CAE3B04D54A4F8A1EF670EFBEB2A1",
                "elapsedTime": 491
648
649
650
651
652
653
654
655
656
657
658
            },
            "evaluatorReader": true,
            "lineCount": 89,
            "tags": "lasso_cell"
        },
        {
            "id": "codeVePPlk",
            "type": "code",
            "evaluator": "IPython",
            "input": {
                "body": [
659
660
661
                    "operations_on_structure = [(create_supercell, {'replicas': [3, 3, 3]})]",
                    "op_list = np.zeros(len(json_list))",
                    "",
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
                    "kwargs = {'path_to_collection': path_to_collection,",
                    "          'feature_order_by': 'atomic_mulliken_electronegativity',",
                    "          'energy_unit': energy_unit,",
                    "          'length_unit': length_unit}",
                    "",
                    "dict_delta_e = {'SeZn': 4.2159179660687287e-20, 'InSb': 1.2506570609555687e-20, 'AgCl': -6.8568799955090609e-21, 'SZn': 4.4190167090138643e-20, 'BN': 2.7430550221687302e-19, 'GaSb': 2.4773702178144287e-20, 'BrRb': -2.6246943074069208e-20, 'BaTe': -6.0143598233041078e-20, 'BeSe': 7.9298202208796193e-20, 'MgS': -1.3890792272791661e-20, 'AsB': 1.4018696180162358e-19, 'AlAs': 3.416831556361176e-20, 'BP': 1.632978757533666e-19, 'TeZn': 3.9253535511316122e-20, 'MgSe': -8.8603255975880209e-21, 'ClLi': -6.149391549293258e-21, 'FK': -2.3456843288794608e-20, 'BrLi': -5.2465217764284492e-21, 'BSb': 9.3062289002001379e-20, 'ClRb': -2.5715504707788539e-20, 'GeSn': 1.3083912918128912e-20, 'CsI': -2.6017342042091155e-20, 'CaTe': -5.6149286826500206e-20, 'ClK': -2.6349506219210773e-20, 'Sn2': 2.7179163244033424e-21, 'BrCs': -2.4972695386489382e-20, 'CsF': -1.734569615637085e-20, 'BrCu': 2.442400384019518e-20, 'CaSe': -5.7806170659176063e-20, 'AgF': -2.4634695420313482e-20, 'MgTe': -7.3560522736479063e-22, 'FLi': -9.5310792412059186e-21, 'CuF': -2.7272687327072279e-21, 'FNa': -2.3357835066436331e-20, 'C2': 4.2114873809101575e-19, 'BaO': -1.4900011177054134e-20, 'AgBr': -4.8118839046830307e-21, 'MgO': -3.721451404088126e-20, 'FRb': -2.1724838814450727e-20, 'AlN': 1.1687730189874494e-20, 'Si2': 4.4727296163305501e-20, 'SiSn': 2.1646816357014748e-20, 'OSr': -3.5297012817210187e-20, 'ClNa': -2.1307665354820141e-20, 'AsIn': 2.14767895373523e-20, 'OZn': 1.633710321777262e-20, 'CGe': 1.3000748379902827e-19, 'CdO': -1.348413629348854e-20, 'InP': 2.8709930119109753e-20, 'SSr': -5.9029656118592692e-20, 'InN': 2.4628706405675984e-20, 'BaSe': -5.5025977545738119e-20, 'BrK': -2.6624325013472597e-20, 'BeTe': 7.5075740576200973e-20, 'CdS': 1.1643465692630618e-20, 'CdTe': 1.8351256432814928e-20, 'GeSi': 4.217091895225337e-20, 'GaP': 5.5876198809236085e-20, 'CdSe': 1.3389702567051265e-20, 'INa': -1.8399111846593045e-20, 'AlP': 3.5080994271602511e-20, 'BeO': 1.1084460139894976e-19, 'AsGa': 4.3944144343852047e-20, 'Ge2': 3.218012279776111e-20, 'SeSr': -6.0003270319365202e-20, 'CSi': 1.071894196156348e-19, 'BaS': -5.1231589897332471e-20, 'AgI': 5.9161045280535275e-21, 'GaN': 6.9445584247860156e-20, 'CaS': -5.9141658617526103e-20, 'AlSb': 2.5133142314028706e-20, 'IK': -2.6762621853286689e-20, 'ILi': -3.4704646494924847e-21, 'ClCs': -2.4088110334584613e-20, 'CaO': -4.2492775596486839e-20, 'CuI': 3.2792483878850995e-20, 'CSn': 7.2664795347721018e-20, 'BeS': 8.1122637897805144e-20, 'IRb': -2.6788624696652254e-20, 'BrNa': -2.0256115610545176e-20, 'SrTe': -6.0769715445352658e-20, 'ClCu': 2.5035406212316063e-20}",
                    "",
                    "#derived_features = []",
                    "#selected_feature_list = beaker.selected_feature_list",
                    "",
                    "#if 'Es/sqrt(Zval)' in selected_feature_list:",
                    "#    derived_features.append('Es/sqrt(Zval)')",
                    "#    selected_feature_list.remove('Es/sqrt(Zval)')",
                    "#    selected_feature_list.append('atomic_valence_s_orbital')",
                    "#    selected_feature_list.append('atomic_number_valence_electrons')",
                    "    ",
                    "#if 'Ep/sqrt(Zval)' in selected_feature_list:",
                    "#    derived_features.append('Ep/sqrt(Zval)')",
                    "#    selected_feature_list.remove('Ep/sqrt(Zval)')",
                    "#    selected_feature_list.append('atomic_valence_p_orbital')",
                    "#    selected_feature_list.append('atomic_number_valence_electrons')",
                    "   ",
                    "descriptor = calc_descriptor(",
                    "    desc_type='atomic_features',",
ankit kariryaa's avatar
ankit kariryaa committed
686
                    "    selected_feature_list=beaker.selected_feature_list,",
687
688
689
690
691
                    "    dict_delta_e=dict_delta_e,",
                    "    op_list=op_list,",
                    "    operations_on_structure=operations_on_structure,",
                    "    json_list=json_list, tmp_folder=tmp_folder,",
                    "    **kwargs)"
ankit kariryaa's avatar
ankit kariryaa committed
692
693
694
695
696
                ],
                "hidden": true
            },
            "output": {
                "state": {},
697
                "selectedType": "Results",
ankit kariryaa's avatar
ankit kariryaa committed
698
                "pluginName": "IPython",
699
700
                "shellId": "D34CAE3B04D54A4F8A1EF670EFBEB2A1",
                "elapsedTime": 14064,
701
                "height": 166
ankit kariryaa's avatar
ankit kariryaa committed
702
703
            },
            "evaluatorReader": true,
704
            "lineCount": 33,
ankit kariryaa's avatar
ankit kariryaa committed
705
706
            "tags": "lasso_cell"
        },
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        {
            "id": "codeZFE5kr",
            "type": "code",
            "evaluator": "IPython",
            "input": {
                "body": [
                    "# pass only lowest energy structures to save time for demonstation purposes",
                    "json_list = [",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pm0_fbKdKA2iyued6niH-AARk8hhM.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PzZe8HJ1RoiT6LBluiHmTN9IDP6vE.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P6N-eaR5japcqjIGylr67mAGo9L-S.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PMbzdub7JONozp5LPWlPqLbGuLt3F.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PyBnwEdQ98isxcx9_miHJ2Tr82JrN.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PECMSMMNgxQUVLxlv5IWYEvWOatMh.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PK5EwBMnyyGjm5_lykmBBaMU7FzFl.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PezFp7D_Pzi-KwwYE9WlnFWtpTP_2.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PlQ7NfvecVk8-o2I_Fbz0hNtkAJAw.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PWBxopsGbXEANMPDUxcMi-PzKvqxH.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PUC2t35p9KOEdmaAyB7I91DoUyae7.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P1RXpIJmIprXumBAD3Lk20-RwmC19.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PoXHWtsIc1BlQ7N2bsUiZ0PJnFa6O.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PVvk2rLGsl4Gd6Q3l0Cbnyi1bM4XO.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pb4Ku0TY7IkW9pjHBECQguVhvtd6Q.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pqky2IgyYljS01KXKFanIV11nbcCT.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PeXUCf_QcDwfIhLJTg61D3lsjvJQu.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PVH2AkTXt2QDVEfJdFkGPAMk1_dQO.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PLoQIJtvhgUQcXFhb0k_6mWOPV9NI.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pp-9DTkK5y5w7fFZOf-5JJc9SCPD1.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PN0pxdAiZpbbUV2jORc4LSy5MaYWe.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PGex81N1PxLHkRkSGopRqqLQ4tSkp.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PWNJV2eK0tIrw_AEg-EpXTggLH88h.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PbkJ-LOXCmwltwIWDXwnHWXpySRVi.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PB-GqTDr-DZ-j4OKjRNJEp1hnOGvG.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pb4jnAWzhAL1kkV-J0QHJTsWUtBCj.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PwXFVrN5zPsZq5W93S0r3XPR3O7kq.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PhF_jMdta8Ncok9i2JHC7G1ZM5KPP.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pt5thhX-pEWdlL6-DGsQe2r6Gr-lu.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PSvyfO0p4QEfhh7dUujLdUg8lCNs0.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PHQG6-EPlnROo0wmc11YFOLefErCO.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P_Lx9ePtVOK5MyoQBlUWA_kePKF_J.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P-WFXv4pg5JXNw8v86SVKW9_gFrbO.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PkP9vxbD_d5in7JZZd-W-Rv7yvYzJ.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pi1rNqBwWwWQBy5RoGVMcJaix-ISM.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pz-zWbbn5PNd-5CJdBVD60npmzSwn.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PTijdgDWu11E79tuyylukptiyCtv2.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pr3fuw6xCJS5vZiUf9B5tW2KT_LQW.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PGsPQn1h36VyBTthr3CnA6yAtlzs3.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Ph-6A75k6v-qJ-tgzcs-BoIWFGqQb.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P4dSQn4GKPhaTawz0JtVOyotDaGom.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PbV7iF5sNHb5Y7MIF4vaxwqWLsHdh.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PVQgfnLx6_iwg7AoMC0GB0VQmBJ6g.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Ppn_-f3QxBgeCwkICEO4BL62GIBx6.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PJYTR_x-6ANZ-cAsi75D5h9Gvb1e-.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PJz4SOdD_cp-YPSfaJ0QWYOzYiZB7.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PcpD0axNY3fEO1jmggSHMCtnWuX2q.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pb0-IKoZYu3Pmbu323yUsGR8jQe_e.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P-1SH_T1kd13-U3MEB7Xz-_eToBHT.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PUcFCGgEnxeFQIWTg8qeByla9jJJg.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pd23q1LJrA4DOKbForwH4cvHWRk6U.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PB8zc5-R1ZXaxutxBRsD247NMyR2N.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Phb63KR9BOj86coXGS0bKGD2xq5O2.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PZo5v3_KRI2CARrYsoiYNun-FaJCd.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PLlOCjkEQ61Se5wdc_H7h4MP65gOC.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PSFiXUNv75SzlqJDfVZ0BFKrSsAax.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PWoElPtI5U48PFUHK-yXJfn4JaasP.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P0Zgt21TvKKb18vKKFKXYNI-bDofb.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pv4l5-nI7xyQQgnAULtpVXTuXvZo9.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PtPzGOtC64C9WwpqoUjnlET1liwRP.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PC4jwHwSTdNEilYtIDuuNIRBUH_Df.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PkUwSxY7ro62M6SUfGJGZJTa1z1G0.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/POHjGTnYd8JGgqzKrI5tTc_o8GPAy.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pg4Lo5RY8cWWojQUOg9ikurdCqPnb.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PC0ikq0ulkygT2Co59UBAl9YcYxbG.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pw3ao50E0u9EV1Kb8W3-o-fSnuyxs.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PF8Zb1nzPb5YMugWmjUm0gAS0JySC.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKCyiUMeNTeE2Qp-8ElDtGu3iDVh0.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PokNGy5MbvPoNIi4g95YgX_oF4AI6.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P0KVR6NK-7BxgOXt-9FWllzZwD66-.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PleD1AL4HSm48SHMVamKaMdll77TE.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PKUz1_qykpLy_iKM-at6yErVDGuXD.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PCgNXVu7zVP-rO_jZl4Vc-Z0K_WPH.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PavCzBt15bIH5NeKUXulmwe7uQyAM.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PRakENtX-ME-LrbIo19w0RDyRE6Bi.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pbb6tWhL8Cn4P0j4XcwS8O6oopygF.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PwTh1t979bFWSWD2gFWLF_rVtJKv8.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/P1cjW50CGsQC-wkw0ZfTGzpzrdXCQ.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pq0gpi99XHDz4L10rfZOe1YlMTo5R.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PFvJLQd4N-p0O9ytP6TRzvEqM94gJ.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/PUzjQT0patVJ9CyvEnKl_xQwoO7iX.json',",
                    "'/parsed/prod-017/FhiAimsParser2.0.0/RWApItBGtGUDsfMVlHKqrjUQ4rShT/Pj4jIPerqprBjHAT6ZKsbXGPsSmze.json']",
                    ""
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "selectedType": "Hidden",
                "pluginName": "IPython",
805
806
                "shellId": "D34CAE3B04D54A4F8A1EF670EFBEB2A1",
                "elapsedTime": 407,
807
808
809
810
811
812
                "height": 78
            },
            "evaluatorReader": true,
            "tags": "lasso_cell",
            "lineCount": 85
        },
ankit kariryaa's avatar
ankit kariryaa committed
813
814
815
816
817
818
819
820
821
822
        {
            "id": "codeeWTtU4",
            "type": "code",
            "evaluator": "IPython",
            "input": {
                "body": [
                    "embed_params = {'learning_rate': 20}",
                    "",
                    "calc_embedding(embed_method=beaker.embed_method, embed_params=embed_params,",
                    "              desc_type='atomic_features',",
823
824
                    "              energy_unit=energy_unit,",
                    "              length_unit=length_unit,",
ankit kariryaa's avatar
ankit kariryaa committed
825
826
827
828
829
830
831
832
833
834
                    "              lookup_file=lookup_file, tmp_folder=tmp_folder,",
                    "              standardize=beaker.standardize)",
                    ""
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "selectedType": "Results",
                "pluginName": "IPython",
835
                "shellId": "D34CAE3B04D54A4F8A1EF670EFBEB2A1",
836
                "height": 78,
837
                "elapsedTime": 427
ankit kariryaa's avatar
ankit kariryaa committed
838
839
            },
            "evaluatorReader": true,
840
            "lineCount": 9,
ankit kariryaa's avatar
ankit kariryaa committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
            "tags": "lasso_cell"
        },
        {
            "id": "lasso_viewer_result",
            "type": "code",
            "evaluator": "IPython",
            "input": {
                "body": [
                    "parameter_list = beaker.selected_feature_list",
                    "parameter_list.append(beaker.embed_method)",
                    "",
                    "name_html_page = hashlib.sha224(str(parameter_list)).hexdigest()[:16]",
                    "",
                    "json_list, frame_list, x_list, y_list, target_list = get_json_list(method='file', data_folder=data_folder,",
                    "    path_to_file=lookup_file, drop_duplicates=True, displace_duplicates=True, predicted_value=False)",
                    "beaker.viewer_result = name_html_page",
                    "",
                    "plot_result = plot(name=name_html_page, json_list=json_list, frames='list', frame_list=frame_list, ",
                    "    file_format='NOMAD', clustering_x_list=x_list, clustering_y_list=y_list, target_list=target_list,",
860
861
862
863
                    "    target_unit=energy_unit, energy_unit=energy_unit, legend_title='Reference E(RS)-E(ZB)', target_name='E(RS)-E(ZB)',",
                    "    plot_title='Two-dimensional embedding',",
                    "    clustering_point_size=12, tmp_folder=tmp_folder, control_file=control_file,",
                    "    op_list=op_list, operations_on_structure=operations_on_structure)",
ankit kariryaa's avatar
ankit kariryaa committed
864
865
866
867
868
869
870
871
                    ""
                ],
                "hidden": true
            },
            "output": {
                "state": {},
                "selectedType": "Results",
                "pluginName": "IPython",
872
                "shellId": "D34CAE3B04D54A4F8A1EF670EFBEB2A1",
873
                "height": 78,
874
                "elapsedTime": 8233
ankit kariryaa's avatar
ankit kariryaa committed
875
876
            },
            "evaluatorReader": true,
877
            "lineCount": 16,
ankit kariryaa's avatar
ankit kariryaa committed
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
            "tags": "lasso_cell"
        },
        {
            "id": "markdownetkGD7",
            "type": "markdown",
            "body": [
                "<!-- <p style=\"font-size: 15px;\"> <b> Note </b>: the default selection will produce an interactive version of  </p>",
                "<div class=\"crop\"   style=\"overflow:hidden;height:346px;width:346px\"> ",
                "<a href=\"http://journals.aps.org/prl/article/10.1103/PhysRevLett.114.105503/figures/2/medium\" target=\"_blank\"> <img style=\"margin: -188px 0 0 0\" src=\"http://journals.aps.org/prl/article/10.1103/PhysRevLett.114.105503/figures/2/medium\"> </a>",
                "</div>",
                "<p  style=\"font-size: 15px;\"> from <a href=\"http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.105503\" target=\"_blank\"> Phys. Rev. Lett. 114, 105503 (2015) </a>. </p> -->"
            ],
            "evaluatorReader": false
        },
        {
            "id": "codeVFrr3c",
            "type": "code",
            "evaluator": "JavaScript",
            "input": {
                "body": [
                    "var result_link = '/user/tmp/' + beaker.viewer_result + '.html';",
                    "beaker.view_result(result_link);"
                ],
                "hidden": true
            },
            "output": {
                "selectedType": "BeakerDisplay",
                "pluginName": "JavaScript",
                "state": {},
                "hidden": true,
908
                "elapsedTime": 88,
909
                "height": 51
ankit kariryaa's avatar
ankit kariryaa committed
910
911
912
913
914
915
916
917
            },
            "evaluatorReader": true,
            "lineCount": 2,
            "tags": "lasso_cell"
        }
    ],
    "namespace": {
        "selected_feature_list": [
918
            "atomic_ionization_potential",
919
920
921
922
            "atomic_electron_affinity",
            "atomic_rs_max",
            "atomic_rp_max",
            "atomic_rd_max"
ankit kariryaa's avatar
ankit kariryaa committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
        ],
        "allowed_operations": [
            "|-|",
            "/",
            "^2",
            "exp"
        ],
        "maxDim": null,
        "max_dim": "2",
        "max_dim2": 18,
        "max_dim3": [
            11
        ],
        "runInfo": "running Lasso",
937
        "viewer_result": "639febbfc57f4bc6",
ankit kariryaa's avatar
ankit kariryaa committed
938
        "embed_method": "pca",
939
        "standardize": "True",
940
        "units": "eV_angstrom"
ankit kariryaa's avatar
ankit kariryaa committed
941
942
943
    },
    "locked": true
}