diff --git a/svm_classification.ipynb b/svm_classification.ipynb index b64ba131bb40c7a5e3f322ffe65a00059f37dd02..98623d62d7df48d4220507113baae9cfddf94090 100644 --- a/svm_classification.ipynb +++ b/svm_classification.ipynb @@ -19,12 +19,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In this tutorial, we introduce the support vector machine (SVM) (or support-vector networks), a well-known supervised learning method for both classification and regression problems. This method is one of the most powerful prediction methods which produces high accuracy with less computational expenses. It was developed by Vladimir Vapnik and his colleagues in the 1990s and nowadays it is extensively used in the scientific community, mostly for data classification. \n", + "In this tutorial, we introduce the support vector machine (SVM) (or support-vector networks), a well-known supervised learning method for both classification and regression problems. This method is one of the most powerful prediction methods which produces high accuracy with less computational expenses. It was developed by Vladimir Vapnik and his colleagues in the 1990s and nowadays it is extensively used in the scientific community, mostly for data classification. This tutorial is inspired by chapter 9 of the book \"An Indtroduction to Statistical Learning\" written by G. James, D. Witten, T. Hastie, R. Tibshirani. Therefore, we especially appreciate the authors of this book. \n", "\n", "<div style=\"padding: 1ex; margin-top: 1ex; margin-bottom: 1ex; border-style: dotted; border-width: 1pt; border-color: blue; border-radius: 3px;\">\n", - "Corinna Cortes, Vladimir Vapnik : <span style=\"font-style: italic;\">Support-vector networks</span>, Mach Learn 20, 273–297 (1995) <a href=\"https://link.springer.com/article/10.1007%2FBF00994018\" target=\"_blank\">[PDF]</a> .\n", + "Cortes, Corinna and Vapnik, Vladimir: <span style=\"font-style: italic;\">Support-vector networks</span>, Mach Learn 20, 273–297 (1995) <a href=\"https://link.springer.com/article/10.1007%2FBF00994018\" target=\"_blank\">[PDF]</a> .\n", "</div>\n", "\n", + "<div style=\"padding: 1ex; margin-top: 1ex; margin-bottom: 1ex; border-style: dotted; border-width: 1pt; border-color: blue; border-radius: 3px;\">\n", + "James, Gareth and Witten, Daniela and Hastie, Trevor and Tibshirani, Robert: <span style=\"font-style: italic;\">An Introduction to Statistical Learning: with Applications in R</span>, Springer New York, 2014, 1461471370, 9781461471370 <a href=\"https://link.springer.com/book/10.1007/978-1-4614-7138-7#authorsandaffiliationsbook\" target=\"_blank\">[PDF]</a> .\n", + "</div>\n", + "\n", + "\n", "\n", "# Intoduction\n", "\n", @@ -48,7 +53,7 @@ "\n", "$\\beta_0+\\beta_1 X_1+\\beta_2 X_2=0$             (1)\n", "\n", - "where $\\beta_0$,$\\beta_1$,$\\beta_2$ are the intercept and slope of the line. Then one can easily extents equation (1) and obtains an equation for a p-dimentional hyperplane:\n", + "where $\\beta_0$,$\\beta_1$,$\\beta_2$ are the intercept and slope of the line and X1 and X2 are the features for each data point. Since we have two features for each point then the points (observations) are located in a two dimensional feature space. Then one can easily extents equation (1) and obtains an equation for a linear p-dimentional hyperplane:\n", "\n", "$\\beta_0+\\beta_1 X_1+\\beta_2 X_2+...+\\beta_p X_n=0$              (2)\n", "\n", @@ -66,7 +71,10 @@ "import numpy as np\n", "import matplotlib.pylab as plt\n", "import random\n", - "from sklearn import svm" + "from sklearn import svm\n", + "from sklearn import metrics\n", + "import pandas as pd\n", + "from itertools import combinations" ] }, { @@ -76,7 +84,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAF6CAYAAAANsLFbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABDHklEQVR4nO2dd5gV5dmH74cFdBE7oIAKii2xJAFiRWM00hQrBnvBRkQ+xcQWjdEYo8ZE7FEU1ORTsYtSxa74GYMFSxQsQUVUEBsb+u7z/fEeZFlO291zdsr+7uua6+yZed9zPzOzu++ZOTO/Y+6OEEIIIZJLi6gLEEIIIUTj0GAuhBBCJBwN5kIIIUTC0WAuhBBCJBwN5kIIIUTC0WAuhBBCJBwN5kKIJsXMZpnZrKjrECJNaDAXooSYmZtZ3vCGzGDmZta1icoSQqQcDeZCCCFEwtFgLoQQQiQcDeZCRIyZrW9mC83sAzOzHG3GZU7N98g875p5foeZbWtmj5jZV2b2XzN7wcx65/EdYWZPm9nXZrbYzN4xswvNbI0sbd3MnjGzjc3sNjP71Myqzez4zPI7Mm22MLOzzOzdzGvONrMRZrZOkdtgXTM728yeyvRdambzzOxRM9slR58VtbUzs5Fm9pmZLTGzt83shDyuPmY2wcy+zLT/wMyuMrP1iqlViDiiwVyIiHH3r4ExwBbAL+ouN7NNgL7AK+7+Sp3FmwP/B2wI3ALcD/QAJprZoCyvNQq4G9gSeAi4EfgKuBSYZGYts5S4AfASsEumzw3AF3XajAB+BzwLXAt8CZwJPGVma+bdAIEfAJcBNcB44GpgCrA38LyZ9c3Rbz1gKrAr8ADwd6ATMNrMjqvb2MwuAiYBO2c81wHvA78Bphb75kOI2OHumjRpKtEEeGa6OM/0TaZN11r9embmPZDlNS/OLDu51ryutVxX1WnfE1gGfA2sU2v+8Zn2DwGVORxn5FifvwMts9R2R2b5l0CXWvNbAA9mlv2uTp9ZwKw689YF2mV5/U2AOcA7ebb1bUBFrfk/BJYD/67T/ueZ9i8C69VZtmLbjIj6d0iTpoZM5q5vTROiVBS6kr0Om7v7rFp9/wX8GNjU3T/PzKsgDH7rAp3cvSozvyvwH+DbTPsFdeq4AzgOON7d78zMew3YHmjv7t/UaV9BONr+0N13qrM+SzOOuVnWd4XnIne/tM6yLYD3gI/dffNa82cBuHvXAttnRfvrgGGENwsf16ltIdDR3b+r0+dZYE/Cm5kFmXkPAwcB27v721k8rwGd3b1DMXUJESeynVITQjQSd8/62Td8P5h1ybLoJmA0MBj4U2Zef8LR6d9WDOR1eLXuQJ7hGcIg+xPgTjNrA/yIzOnvHB/NLyGc7q7LrGwDeR2erTvD3T80s0+Arma2Xt03EHUxs92BMwinzDsAres06Qx8XGfee3UH8gyfZB7XA1Zsn10JZywOM7PDsvRpDbQ3sw3dfX6+WoWIGxrMhYgPY4C/Aieb2RXuXgOcmll2S44+dT+7XsHnmcd1M4/rAwa0B35fz7o+L9wkbx1dMnV8k6uzmR1M+Mx7MeGz8g+A/xI+Q98L+Bmw2gV6eV5zeeaxota8DQn/8wqtf1tAg7lIFBrMhYgJ7r4oc9p6ONDbzN4iXPj2T3efnqPbRjnmb5x5/LbO42vu3r2+pRXRZiNgRhF15OJSwun8nu7+Tu0FZnYLYTBvLN8CLdx9gxK8lhCxQlezCxEv/kYYPE8FTiIcWeY6KgfobmZrZ5m/V+bxNYDMKfq3ge3MrByD2WqDbeYz800Jp+m/KdB/S8IFa3UH8hZArxLV+BKwvpltV6LXEyI2aDAXIka4+3vAk8D+wBDCaeR783RZF7io9gwz6wkcRTgSfbjWoqsJnwuPznZPdeZ+9/oeta/gDDP7/jqAzCB8FeF/zO1F9J8FbGVmnWq9hhFOif+wgTXVZUTm8dbanlq+tXLd0y5E3NFpdiHix02E+803Aq5394V52j4HnGRmOxPut+4IDCIMoqfWvjjM3UdnQmdOAz4ws8mEC8o2INyvvidh4B3SgJqnAq+b2b2ENxF9CBfcvQL8uYj+I4CbgdfM7EHChWq7Ewbyx4ABDahpFdz9STM7D7gceM/MJhDuCGhL+Fz/Z8ALhI82hEgUGsyFiB+PEq46b0f+U+wQBqMhwBWZxzWAV4E/uPvkuo3dfaiZTcy0/QXhau+vCIP6VcD/NrDm4cDBwMmEe+DnE8JjLnL3xYU6u/stZraEEDRzHLAIeB44ATiUEgzmGc+VZjYV+B/C6fsDCW8+PgVGEgJ1hEgcus9ciJiR+az5fWCqu++Ro01XwkB+p7sf33TVrVbHHYTBd5V75oUQTYs+MxcifvyGcBvZDVEXIoRIBjrNLkQMMLPNgCOBrQinlqcTctaFEKIgGsyFiAdbEC7MWkgITflVJjRGCCEKos/MhRBCiISjz8yFEEKIhJPI0+zt2rXzrl27Rl2GqA+ffw6ffgrt28Nmm0VdjRBCJIpXXnnlS3dvn2t5Igfzrl27Mm3atKjLEPXl7LPhL3+BYcPgd7+LuhohhEgMZvZRvuWJHMxFQrnySpg7Fy66KByhD2lI0JgQQoi6aDAXTUeLFnDbbTB/Ppx2GrRrBwMHRl2VEEIknpJcAGdmo81sbuYrG1fM28DMppjZe5nH9XP07WtmM8zs/UxuskgzrVrBfffBrrvCUUfBU09FXZEQQiSeUl3NfgerfznBecCT7r4V4VugVhuozawCuBHoR/hChSPMrFTfkASzH4V/nR4ey9FejoY5vnoCxo2DrbaCAw+EV17J2vzRR+H008NjsdS3jxxyyCFHUhx5cfeSTIQvV3ir1vMZQMfMzx2BGVn67ApMrvX8fOD8Qq4ePXp4QT4Z6z6mjftdhMdPxpa2vRyNd8ye7b7ZZu7t27vPnLlK87Fj3du0cYfwOLYIRX37yCGHHHIkxQFM8zzjYjnvM9/I3T/LvGH4DOiQpU1n4JNaz2dn5q2GmZ1iZtPMbNq8efMK2z97HKoz3xxZvTA8L2V7ORrv6NwZHn8c3KF3b5gz5/vmjz8OCzPNFy4MzwtR3z5yyCGHHElxFCLq0BjLMi9rJJ27j3T3nu7es337nLfaraRjb6hoE36uaBOel7K9HKVxbLMNTJgA8+ZB377wzTdAGNvbZJq3aROeF6K+feSQQw45kuIoSL7D9vpMxO00u3s4lfvy0OJOAzekvRylczz+uHurVu577OG+cKG7h9NOQ4cWd8pqBfXtI4cccsiRBAcFTrOblyibPfP9yuPcffvM86uA+e5+ReYq9Q3c/Zw6fVoCM4F9gE+BfwFHuvvb+Vw9e/Z0hcakkHvvhSOOgAED4MEHoaXunBRCCAAze8Xde+ZaXqpb0+4B/g/Yxsxmm9mJwBXAvmb2HrBv5jlm1snMJgC4+3LgdGAy8A5wX6GBXKSYQYPguuvCpZ2nnho+SxdCCFGQkhz6uPsRORbtk6XtHKB/recTgAmlqEOkgNNPDylxl14KHTrA5ZdHXZEQQsQenccU8eOSS8KAfsUVYUAfPjzqioQQItZoMBfxwwxuvBG+/BLOOivkuB99dNRVCSFEbIn61rTykrbktObkqKiAK4+AHp3hhONh4sSiFHFMbZJDDjnkKFWfnOS71D2uU7NKgJs1xv2eNZO/Hg113Ip7V3Nfs7X7iy/m7dKQ1KbKytC+sjKeyVCVle433eS+YEH5HHFJuJJDjiQ5FixwnzEjPKY9AS5akp6cVrMcpg2DF4+CmsUr+8yZlKz1aKyjDXCOQ7s1Yb/94O3cNzvUJ1Fp+XK48EJYtCg8X7QoPF++PH9ZTZ0MtWgRnHFGuHRg2LDs9aUl4UoOOZLgWL48/C126AA9eoTHCy9UAlz5SHpy2qvD4YPR4NWrzv/vx6WtqSF9mtqxQRsYcxWssQb06QMfZ98G9UlUGj4cZs5cdd7MmYWvtWuqZKjat9gvWxYG9dGjs9eXloQrOeRIgmP48PC3uGgRVFWFx5kzV/7NJj4Brimn1CfALV3gPqYynJKuO42pDMuTsB6ldrz+uvs667hvu637vHlZuxSTqLRgwcrT63Wnysr8p7SLdTSm/YIF7q1b16++NCRcySFH3B35/ne0bu1+8skpSIBrSlKfAPfdTJjUA5ZXrb6sZVvo+wqss3XT1xUHnnsuvIX90Y/gySehbdt6v8TMmeH0WFWWzdu2bfhG1q0j3Lxxr0+I5kqUf5tNkgAnSkxlp9VPr6/Aq8Py5sqee4bY12nTYOBAWLq03i/RqRNU59i81dVheZTEvT4hmitx/tvUYB5HWrWFbieu/Mx4BRVtwvxW9T8aTRUHHggjR8LkyXD88VBTU6/ubdvCiSeu/LxqBW3ahPkNONgvKXGvT4jmSpz/NhUaE1e6jwiPH4wCqwhH5N0Gr5zf3DnxxPC1qeefH0JlrrkmhM0UyYjMZhw1KtzSXl0NgwevnB81ca9PiOZKXP82031kHrcglPq0b9ESel4Ph8yFH/8Zuh4NG+8b5pe6pob0iYPj3HPhzDPDl7NkMtyLDWFo2RKuvx5uvz0c6N9+e3hezBe1NUWYxIQJ4bKa228Pn8PNnZu/vrSEYsghR9wdK/53zJ276t/mhAkKjSnP1exxDkKRo3SO6mr3o45yB39t6MhYhEnIIYcccpTagUJjiF8Qihylc7RoEQ5f+/Vjx5uG0Hvhw0B6AyvkkEOO5ukoRHoH87gHochRuvatWsH99/PN1jtxD0ewJ8+mNrBCDjnkaJ6OguQ7bI/rlPrQGDka1v7LL/27TX7gC1uv40+PeK2oLkkKrJBDDjmarwOFxohmxSefwG67hQzUqVOhW7eoKxJCiEaj0BjRvNh00/Dh07Jl4bzV559HXZEQQpQdDeYiffzgB+E+kc8/h3794Ntvo65ICCHKigZzkU523hkefBDeeivcSL54cdQVCSFE2Uj3YJ7EIBQ5Sufo2xfuvBOefRaOPDJrqHLSAivkkEOO5uvIS76r4+I6KTRGjnr1ueaakMxw8snuNTXfN09LmIQccsiRfgcKjSF5QShylNZxxhnw29/CrbfC7373ffO0hEnIIYcc6XcUIr2DedKDUOQoreOPf4STToLLLgtZ7qQnTEIOOeRIv6Mg+Q7b4zopNEaOBvVZtsz9oIPCea2773b3dIRJyCGHHOl3oNAYIWqxeHG4MG7qVBg3Dvr0iboiIYQoiEJjhKjNmmvC2LGw3XZw6KHw8stRVySEEI1Gg7lofqy7LkyaBBttBP37w7vvRl2REEI0Cg3monmy8cbh8tGKinDlyezZUVckhBANJt2DeRqDUOQoXZ9u3eDO8+Grz2Gf3eCrr4pSxDFMQg455Ei/Iy/5ro5r7ARsA7xea/oOOLNOm72Ab2u1uajQ6yo0Ro6SOn6Le0vce2zjXlWVt0scwyTkkEOO9DuIMjTG3We4+4/d/cdAD2Ah8HCWps+vaOfufyiJPO1BKHKUzrEdcDrw2kw47LDwjWs5iGOYhBxyyJF+RyGa8jT7PsAH7v5Rk9iiDimRI1mOXdrAn34FEyfC4MFQU5O1SxzDJOSQQ470OwqS77C9lBMwGjg9y/y9gPnAdGAisF2O/qcA04Bpm222WeFzGO7Rh5TIkTzHpZeG815nnbVKjntt4hYmIYcccqTfQRxCY8ysNTAnM1B/UWfZOkCNu1eZWX/gWnffKt/rKTRGlA33kOV+/fVw5ZVwzjlRVySEELEJjekHvFp3IAdw9+/cvSrz8wSglZm1a6K6hFgVM7jmGjj8cDj3XBg9OuqKhBCiIC2byHMEcE+2BWa2MfCFu7uZ7UR4gzG/ieoSYnVatAjfg/7VV3DyydCuHRxwQNRVCSFETsp+ZG5mbYB9gYdqzRtiZkMyTwcCb5nZdOA64HBvinP/QuSjdWt48EHo2RMGDYLnn4+6IiGEyEnZB3N3X+juG7r7t7Xm3ezuN2d+vsHdt3P3H7n7Lu7+YsnkcQspkSNZjrZtYfx46NIFBgyAN94A4hkmIYcccqTfkZd8V8fFdVJojBxN6pg1y71zZ/eOHX3KyA9jFyYhhxxypN9BlKExkRLnkBI5kuXo0gUmT4bFi9nx7N6stXAuEJ8wCTnkkCP9jkKkdzCPe0iJHMlybLcdjBvHBos+ZbL1Y22+i02YhBxyyJF+R0HyHbbHdSrqNLt7MkJK5EiWY9w4r25R4e923tsfe2BxUV3SEFghhxxyROsgDqExpUahMSJS/v53OO44GDgQxowJX6MqhBBlJC6hMUKkh2OPhb/+FR54IFyKmsA3xEKIdNFUoTFCpIuzzoIvvoA//xk22gguvjjqioQQzRgN5kI0lCuugHnz4JJLoEMHOO20qCsSQjRT0n2aPWkhJXIky/HpYzByZAiUOf10uO++rM3TElghhxxyROvIS76r4+I6KTRGjlg5/vtf91693Fu1cp8yZZXmaQmskEMOOaJ1oNAYkhdSIkeyHG3ahLfW22wDBx8Mte60SEtghRxyyBGtoxDpHcyTHlIiR7Ic668fUuI23BD69YOZM4H0BFbIIYcc0ToKku+wPa6TQmPkiK1jxgz39u3du3Rx//RTd09HYIUccsgRrQOFxgjRxLzyCuy1F3TtCs89F47ahRCiESg0RoimpkcPeOSRcKp9wICVH4wJIUSZ0GAuRDnYZx/43/+FF1+EQYNg2bKoKxJCpBgN5kKUi8MOgxtvhHHj4JRTFPsqhCgb6R7M0xZSIkfyHL/6FZx1BNxxBwwdWLQijoEVcsghR7SOvOS7Oi6uk0Jj5EiU455K918Q0iEuPKGgIo6BFXLIIUe0DhQaQ/pCSuRIlqNmERwH7Az88fbwFap5iGNghRxyyBGtoxDpHczTHlIiR7IcLYDTK6HXjjB4MIwfn7NLHAMr5JBDjmgdBcl32B7XSaExciTW8d137j16uFdWuk+dmrNL3AIr5JBDjmgdKDRGiJgxdy706hW+PvX552H77aOuSAgRcxQaI0Tc6NAh5LhXVkKfPvDRR1FXJIRIOBrMhYiCzTcPA/rCheHDsnnzoq5ICJFgNJgLERU77ACPPQYffwz9+8OCBVFXJIRIKOkezOMWICKHHHXp1Qvuuw9eew0OOQSWLgXiGVghhxxyROvIS76r4+I6KTRGjtQ5Ro8O6RGDBvnYh6tjF1ghhxxyROtAoTHEK0BEDjmyccIJcOWVcO+9rHvRGSxcGO4yiUtghRxyyBGtoxDpHczjHCAihxzZOPts+PWv+dmbN3Bxq8uA+ARWyCGHHNE6CpLvsL0UEzALeBN4nSynCQADrgPeB94Auhd6TYXGyJFaR3W1+zHHuIPf/bObYxNYIYccckTryDZ+1p7MyxwaY2azgJ7u/mWO5f2BYUB/Qnr1te6+c77XVGiMSDXLlsFBB8GkSeHiuEMPjboiIUTEJCE05kDg75k3Hy8B65lZx6iLEiIyWrWC+++HnXeGI4+Ep5+OuiIhRMxpisHcgcfN7BUzOyXL8s7AJ7Wez87MWwUzO8XMppnZtHkK2BBpp00bGDcOttwSDjww3LomhBA5aIrBfHd37w70A4aa2Z51lluWPqud+3f3ke7e0917tm/fvhx1ChEvNtggpMSttx707Qvvvx91RUKImFL2wdzd52Qe5wIPAzvVaTIb2LTW802AOeWuS4hEsMkm4Z6V6upwuetnn0VdkRAihpR1MDeztcxs7RU/A72Bt+o0exQ41gK7AN+6e2n+YyUtDUwOObL12XZbmDAhfNtav37wzTerNU9LwpUccsjRQPJd6t7YCdgCmJ6Z3gYuyMwfAgzxlbem3Qh8QLiFrWeh11UCnBzN0jF5snurVu577um+cOH3zdOScCWHHHLkhigT4Nz9Q3f/UWbazt0vy8y/2d1vzvzs7j7U3bu5+w7uXpp7zpKcBiaHHNn69O4Nd94ZvgP9iCNg+XIgPQlXcsghR8OJw61p5SHpaWByyJGtzxFHwLXXwtixMGQIuKcm4UoOOeRoBPkO2+M6KQFOjmbvuPDCcH7u/PPdPR0JV3LIIUduiDoBrhwoAU40e9zDkfnIkTBiBJx5ZtQVCSHKSKEEuJZNWYwQokSYwU03wZdfwvDh0L49HHVU1FUJISIivZ+ZC5F2Kirgrrtgr73g+ONDlrsQolmiwVyIJLPmmuFiuO23D1/I8tJLUVckhIiAdA/maQwQkUOOuqyzDoweDhu0hH694Z13ilLEMRRDDjnkaCD5ro6L66TQGDnkyNJ+BO7r4t5xQ/ePP87bJY6hGHLIIUduiDI0JlLSHiAihxx123cAzgG+WxBuWp0/P2eXOIZiyCGHHA0nvYN51OEecsgRhaNbG7j99/Cf/8B++8F//5u1SxxDMeSQQ45GkO+wPa6TQmPkkKNA+4cfdm/Rwr1vX/elS7N2iVsohhxyyJEbFBojRDPlttvg5JPD/ed//zu0SO+JOCHSjkJjhGiunHRS+NrUCy6Adu1CUpxZ1FUJIcqABnMh0sz554cB/dprYaONwnMhROrQYC5EmjGDq6+GefPgt78Nsa8nnRR1VUKIEpPuD9HiFu4hhxxROFq0gNtvhz594NRT4ZFHgHiGYsghhxwNJN/VcXGdFBojhxwNaF9V5b7zzu5rrOHP/+nZ2IViyCGHHLlBoTHEL9xDDjmicKy1FowfD5tvTo+LB7DlwulAfEIx5JBDjoaT3sE87uEecsgRhWPDDWHyZFh7HR6nD5vzYWxCMeSQQ45GkO+wPa6TQmPkkKOR7d9+25esvYHPXaebT7rz86K6pCF4Qw45kupAoTFCiKz83//BL34B22wDzzwTvn1NCBFLCoXGpPc0uxAiP7vuCg88AG++CQcdBIsXR12REKKBaDAXojnTrx/ccQc8/XSIfa2ujroiIUQD0GAuRHPnqKNC1OtDD8HQoZDAj96EaO6kezBPWriHHHJE5TjzTDjvPLjlFvj977M2T0vwhhxyJNWRl3xXx8V1UmiMHHKUwVFT4z54cEixuO66VZqnJXhDDjmS6kChMSQv3EMOOaJwmIUj8wMPhDPOgDFjvm+eluANOeRIqqMQ6R3Mkx7uIYccUThatoR77oFeveDYY2HKFCA9wRtyyJFUR0HyHbbHdVJojBxylNnx9dfuO+7ovtZa7i+/7O7pCN6QQ46kOogyNMbMNgX+DmwM1AAj3f3aOm32AsYC/8nMesjd/5DvdRUaI0QT8NlnsPvu8N138MILsO22UVckRLMl6tCY5cCv3f0HwC7AUDP7YZZ2z7v7jzNT3oFcCNFEdOwYctwrKsLXp86eHXVFQogclHUwd/fP3P3VzM8LgHeAzuV0CiFKyFZbwcSJ8PXX0LcvfPVV1BUJIbLQZBfAmVlX4CfAP7Ms3tXMppvZRDPbrqlqEkIUQffu8Mgj8N57MGDAyktwhRCxoUkGczNrCzwInOnu39VZ/CrQxd1/BFwPPJLjNU4xs2lmNm3evHnFidMY7iGHHFE49t4brh8O//ciHPAzWLasKEUcgzfkkCOpjrzkuzquFBPQCpgMnFVk+1lAu3xtFBojhxwROQYTUi4G/ty9ujpvlzgGb8ghR1IdRBkaY2YGjALecferc7TZONMOM9uJcLZgfqPlaQ73kEOOqBz7AAOBB56Gc8/N2yWOwRtyyJFURyHKfZp9d+AYYG8zez0z9TezIWY2JNNmIPCWmU0HrgMOz7wLaRxpD/eQQ46oHIdWwnH94S9/gauuytkljsEbcsiRVEdB8h22x3VSaIwcckTsqK52HzQonCO8/facXeIWvCGHHEl1EGVoTLlQaIwQMWDJEth///Bd6A8/HK50F0KUhahDY4QQaWWNNcJ3oP/kJ/DLX4aUOCFEJGgwF0I0nLXXhgkTYLPNwpH5m29GXZEQzRIN5kKIxtG+fbgUt02bEPs6a1bUFQnR7Ej3YB634A055Eiro0uXkOO+aFG4LHfuXCCewRtyyJFUR17yXR0X10mhMXLIEVPHCy+4r7mme48ePu6e72IXvCGHHEl1EGVoTKTEOXhDDjnS6th9d7j/fnj9dbqdfTDLFy4B4hO8IYccSXUUIr2DedyDN+SQI62O/feHUaPYdvaT3F1xDC2ojk3whhxyJNVRkHyH7XGdFBojhxwJcFx1lTv4s9uf5mMfqSmqSxrCPeSQoxwOFBojhIiMc84Jka+XXAIXXRR1NUIklkKhMS2bshghRDPjyivDle2//324he1Xv4q6IiFSiQZzIUT5MINbb4X582HoUGjXDg47LOqqhEgd6b0ATggRD1q1gnvvhd12g6OPhiefjLoiIVJHugfzpAVvyCFHWh1fPQGPPQZbbw0HHQSvvJK1eVrCPeSQo1x9cpLv6ri4TgqNkUOOhDpmz3bv0sW9fXv3mTNXaZ6WcA855FBoTClJcvCGHHKk1dG5c0jHcA831s6Z833ztIR7yCGHQmNKSdKDN+SQI62OrbeGiRPhyy+hb1/45hsgPeEecsih0BiFxsghR/NxTJni3qqVe69e7gsXuns6wj3kkKMcDhQaI4SILffdB4cfHiJgH3oIWupuWSGyUSg0Jr2n2YUQ8eeXv4Trrw9Xup9ySvgsXQhRb/Q2WAgRLUOHhpS4P/wBOnSAK66IuiIhEocGcyFE9Fx8cRjQr7wyDOhnnRV1RUIkCg3mQojoMYMbbghXuP/61yHH/Zhjoq5KiMSQ7s/M05aiJYccaXZUVMAVh0PPznDC8TBhQlGKOCZ1ySFHufrkJN+l7nGdlAAnhxwpdtyK++bmvmZr9xdfzNsljkldcsihBLhSkuYULTnkSLOjDXC2Q/tK2G8/ePvtnF3imNQlhxxKgCslaU/RkkOONDs2aANjroI11oA+feDjj7N2iWNSlxxyKAFOCXByyCFH7fbTp7uvu677Ntu4z5uXtUvckrrkkKMcDpQAJ4RINM8/Hw5bdtwxfBd627ZRVyREk6MEOCFEstljD7j3Xpg2DQ49FJYujboiIWJH2QdzM+trZjPM7H0zOy/LcjOz6zLL3zCz7uWuSQiRMA44AG69NVwldPzxUFMTdUVCxIqyhsaYWQVwI7AvMBv4l5k96u7/rtWsH7BVZtoZ+FvmUQghVjJ4cEiJO/98aNcOrr02hM0IIcp+ZL4T8L67f+juS4ExwIF12hwI/D3zGf9LwHpm1rEk9riFYsghhxyNa3/uuTB8ePhylj/9CYhnuIcccpSrT07yXR3X2AkYCNxW6/kxwA112owDetV6/iTQM9/rKjRGDjmasaO62v3oo93BXxs6MnbhHnLIkcbQmGznwOpePl9MG8zsFDObZmbT5s2bV9gc51AMOeSQo+HtW7SA0aOhXz92vGkIfRY+BMQn3EMOOdIYGjMb2LTW802AOQ1og7uPdPee7t6zffv2hc1xD8WQQw45Gt6+VSu4/36+2Xon7uZIfsYzsQn3kEOO1IXGEC6w+xDYHGgNTAe2q9NmP2Ai4Qh9F+DlQq+r0Bg55JDD3d2//NK/2+QHvrDV2v70iFeL6pKGABE5mp+DqENjzKw/cA1QAYx298vMbEjmjcTNZmbADUBfYCFwgrvnTYRRaIwQ4ns++QR23z3cfz51KnTrFnVFQpScQqExZR/My4EGcyHEKrz7LvTqBeuuGwb0jTeOuiIhSooS4IQQ6WfbbWH8ePj8c+jbF779NuqKhGhSNJgLIdLBzjvDQw+Fr0w98EBYvDjqioRoMtI9mCcxFEMOOeRouKNPH7jzTnj2WTjiCFi+fLXmaQkQkaP5OfKS7+q4uE4KjZFDDjny9rn22pDGcdJJ7jU13zdPS4CIHM3PQcShMdGR5FAMOeSQo3GO//kfuOACuO02+N3vvm+elgAROZqfoxDpHcyTHoohhxxyNM5x6aVw8slw2WVw3XVAegJE5Gh+joLkO2yP66TQGDnkkKOoPsuWuR98cDiXeddd7p6OABE5mp+DqENjyoHuMxdCFM3ixeF2talTYdy4cJGcEAlD95kLIZo3a64JY8fCdtvBoYfCP/8ZdUVClBwN5kKI9LPuujBpEmy0Eey3H7zzTtQVCVFSNJgLIZoHG28cLhlu2TKcav/kk6grEqJkpHswT2MohhxyyNHwPt26wR3nwVdfwD67wfz5RSniGCAiR/Nz5CXf1XFxnRQaI4cccjTKcQHurXDvvo17VVXeLnEMEJGj+TlQaAzpDMWQQw45Gu74ITAUeH0mHHYYLFuWs0scA0TkaH6OQqR3MI86sEIOOeSIt2OXNnD5aTBxIgweDDU1WbvEMUBEjubnKEi+w/a4TgqNkUMOOUrm+OMfw7nO4cNXyXGvTdwCRORofg4UGpNwllXBojlQ2QlatY26mvQR9+0b9/rSgDuceWaIfL3iCjj33KgrEgmgqgrmzIFOnaBtE/xpFgqNaVn+EkSDqFkOrw6HD0aBVYBXQ7cTofsIaKHd1mjivn3jXl+aMIMRI2DePDjvPGjfPpx2FyILy5fD8OEwahRUVEB1NZx4YvgVahnhn6b+K8SVV4fDB6OhetHKeR+MDo89r4+mpjQR9+0b9/rSRosWcMcd4Va1k0+Gdu3ggAOirkrEkOHDYfRoWFTrT3N05k/z+gj/NHWaPY4sq4KHOqz6j3wFFZVwyFydcm0Mcd++ca8vzVRVwT77wBtvhMuL99gj6opEjKiqgg4dVh3IV1BZCXPnlu+Ue/POZo9bYEWx7RfNCadWs2EVYXkpa2pInyQ7mnr71rf9ojlAjjfZuepL8v6Ik6NtWxg/Hrp0gQEDwqBOPANE5Gh6x5w54dR6NtxhyBCFxpT+avY4B1YUar90gfuYytCu7nRP67A8CesRV0e+7TumsrTbtyHrMWtM9tpy1Zf0/RFHx0cfuXfu7L7xxj5l5IexCxCRIxrHggXulZVhfq5JoTGlJs6BFYXat2obLnZacT9sbdbeJv8p1jitR1wdK7av1blkxFqG+aXcvg1Zj7nPZ59f0SZ7fUnfH3F0bLZZOM2+ZAk7nt2btRbOBeITICJHNI62bcPFbivuD19B7QvfFBpTauIeWFGoffcR0G0wtGhda2ZL2PGS0tbUkD5pcHQfARvX+V7rjfuE+aWsq6Hr0aJy5fOKNcNn5d0GZ68vDfsjjo4f/hDGj2eDRZ8y2fqxNt/FJkBEjugcI0aEmx0qK8PgXlkZvrensrK861GQfIftcZ2aVWjM0gXuM25yf+nkZK9HXB2zxri/cFR4LJejMesxa4z7tzPyn/pvrCNO+yOOjvHjvbpFhb/beW9/7IHFRXVJQ0iJHPn7LFjgPmNGeCyXozYoNEYIIRrJP/4Bxx4LAwfCmDG5r4ISokw076vZhRCiFBxzDFx9NTzwQLj8OIEHQSLdKDRGCCGKYfhw+OILuPJK2GgjuPjiqCsS4ns0mAshRLFcfnmIfb3kkhD7OnRo1BUJAaT9NHvSAivkkEOOeDs+fQxuuSVEvQ4bBvfdl7V5koJQ5EiOIy/5ro5rzARcBbwLvAE8DKyXo90s4E3gdQpcrbdiSn1ojBxyyBFvx8KF7r16ubdq5T5lyirNkxaEIkcyHIXGx3IemU8Btnf3HYGZwPl52v7c3X/sea7UqzdJDqyQQw454u2orITHHoNtt4WDDoJad9ckLQhFjmQ4ClG2wdzdH3f35ZmnLwGblMuVlaQHVsghhxzxdqy3HkyeHD4779cPZs4EkhmEIkf8HQXJd9heqgl4DDg6x7L/AK8CrwCnFPN6zSo0Rg455Ii3Y+ZM9/bt3bt0cZ89292TG4QiR3wdlDM0xsyeADbOsugCdx+baXMB0BM4xLPIzKyTu88xsw6EU/PD3P25LO1OAU4B2GyzzXp89NFHDa5bCCFKyiuvwF57Qdeu8NxzsP76UVckUkah0JhGDeZFyI8DhgD7uPvCItpfDFS5+1/ytVMCnBAidjz1VDjd/tOfhg9A634bhxCNILIEODPrC5wLHJBrIDeztcxs7RU/A72Bt8pVkxBClI2994a77oIXX4RBg2DZsqgrEs2Icl7NfgOwNjDFzF43s5shnFY3swmZNhsBL5jZdOBlYLy7TypjTUIIUT4GDoSbboJx4+DkkxX7KpqMcl7NvqW7b+rhlrMfu/uQzPw57t4/8/OH7v6jzLSdu19W0iLSFlghhxxyxN8xZAj8+gi480447dCiFXEMKZEjXo685Ls6Lq6TQmPkkEOOWDvuqXTfl5AIcsHxBRVxDCmRI14OIgyNiZY0B1bIIYcc8XbULIJjgZ2By+4IR+l5iGNIiRzxchQivYN52gMr5JBDjng7WgCnV0KvHeHEE8Pn6DmIY0iJHPFyFKKst6aVi6JvTZv9aHiX3LE3bHJA6dvLIYccchRqv+7P4ec/h3//G6ZMgd13z9rl0UfD0Vnv3uF7XApR3/ZyJNsR6X3m5UL3mQshEsW8edCrF8ydC88/D9tvH3VFImFEdp+5EEKIDO3bhxz3Nm2gTx9QgqUoMRrMhRCiKejaFSZNClc79e4djtaFKBEazOPOsir4bmZ4FKUn7ts37vWJ+rHDDuGrUz/+GPr3hwULoq5INJCqqvBFeVUx+dPUYB5XapbDtGHwUAeY1CM8ThsW5ovGE/ftG/f6RMPp1Qvuuw9eew0OOQSWLIm6IlEPli+HYcOgQwfo0SM8DhsW5kdJugfzuCVD1af9q8Phg9FQvQiWV4XH928N80tdU0P6JN2Rbft+MLo827ch6/HsQfDezcXXl/T90dwcAwbAqFHwxBNw3HFQUxPLxDE5Vu8zfDiMHg2LFoWj8kWLwvODDlICnBLg6rJ0gfuYytCu7nRP67A8CesRV0e+7TumsrTbtyHrMWtM9tpy1Zf0/dGcHX/+szv4B/ud7m0qa2KVOCbH6n0WLHCvrAzzc01KgCs1cU2GKqb9ojlgFdmXuYflpaqpIX2S7si3fa2itNu3Iesx+7Hcy7LVl/T90ZwdZ58Nv/kNW4y/gbMW/RGIT+KYHKv3mTMHKnL861iBEuBKTZyToQq1r+wEXp19mVlYXqqaGtIn6Y5829erS7t9G7IemwzIvSxbfUnfH83dceWVfPLzY7mUiziFW2KTOCbH6n06dYLqHP86VqAEuHrQLBLgpg3LfKa7cOW8FmvAlidDz+uTsx5xdWTbvhVtoNvg0m/fhqzH0/vD55PBa11Vk6++pO+P5u5YtozPdzuYDtMm8Mo59/HTKwcW7JKGVLMkOoYNC5+RL6z1r6NNmxDy17WrEuDqRbNIgKtZnrlIa1Q4terV0O1E6D4CWrSMurrkE/ftG/f6ROlZuBD23RemTYOJE2HvvaOuSGRh+fJwEdyoUeGUe3V1iN4fMQJalvFPU4N50llWFT4jrewErdpGXU36iPv2jXt9orR8/TXssUe4D/2ZZ6B796grEjmoqgqfoXfqBG2b4E9Tg7kQQiSJTz+F3XaDxYth6lTYcsuoKxIxQNnsQgiRJDp3Dh+k1tSED1M/+yzqikQCSPdgnsQwCTnkkEOObbaBCRPCt6z17QvffLNa86SFrchRmj45yXcTelyn1IfGyCGHHHK4uz/+uHurVu577um+cOH3zZMWtiJH4/ug0BiSGSYhhxxyyLHvvvCPf4TvQD/iiO8DwJMWtiJHafrkI72DeRrCJOSQQw45Bg2C666DsWPh1FPBPXFhK3KUpk9e8h22x3Uq6jS7ezhV9fLQ4k5zNaS9HHLIIUdTOX73u3BO9vzz3T2clh06tLhTuiuobx854uOgwGl2c92aJoQQ8ccdfvUruOWWkFBy5plRVySakEK3pilKSgghkoAZ3HgjfPlliCBr3x6OOirqqkRM0GAuhBBJoaIC7roLvvoKjj8eNtgA+vWLuioRA9J7AZwQQqSRNdaARx6BHXaAgQPhpZeirkjEgHQP5mkMk5BDDjnkWGcdGHUmbNAS+vWGf/+7KEUcg1DkUGhMftIeJiGHHHLIMQL39XDvuKH7xx/n7RLHIBQ5FBpTmLSHScghhxxydADOBRYsCDcqz5+fs0scg1DkqF+ffJRtMDezi83sUzN7PTP1z9Gur5nNMLP3zey8khUQddCDHHLIIUdTODZvA7dfDP/5D+y3H/z3v1m7xDEIRY769clLvsP2xkzAxcBvCrSpAD4AtgBaA9OBHxZ6bYXGyCGHHHLUaf/II+4tWrj36eO+ZEnWLnELQpEjAaExZnYxUOXuf8nTZlfgYnfvk3l+fuYNxuX5XluhMUIIkYVRo+Ckk+DII0Ome4v0fpLa3Ij6+8xPN7M3zGy0ma2fZXln4JNaz2dn5q2GmZ1iZtPMbNq8efPKUasQQiSbE0+Eyy+Hu++Gs84KqXGiWdCowdzMnjCzt7JMBwJ/A7oBPwY+A/6a7SWyzMv62+fuI929p7v3bN++fWPKFkKI9HLuuSHq9dpr4Yoroq5GNBGNSoBz918U087MbgXGZVk0G9i01vNNgDmNqUkIIZo1ZvDXv8K8efDb34bY15NOiroqUWbKeTV7x1pPDwbeytLsX8BWZra5mbUGDgdKcft8IG5BD3LIIYccTeFo0QJuvz1EvZ56akiMI55BKHLEPDQG+AfwJvAGYYDumJnfCZhQq11/YCbhqvYLinlthcbIIYccchTRvqrKfZdd3NdYw1+47JnYBaHIkYDQGHc/xt13cPcd3f0Ad/8sM3+Ou/ev1W6Cu2/t7t3c/bKSFRDnoAc55JBDjqZwrLUWjBsHW2xB90sOYKuFrwPxCUKRo3598pHe+xbiHvQghxxyyNEUjg03hMmTYe11mExfNufD2AShyFG/Pvko233m5aTo+8xnPxresXbsDZscUPr2csghhxxJcbzzDkt37sW3tj6vXj+VPsduVLDLo4+GI8beveGAIlejvn3kKK5PofvM0z2YCyGEWMk//wl77w1bbw3PPAPrrht1RaJIog6NEUIIERd23hkeegjeegsOOggWL466IlEiNJgLIURzok8fuPPOcGR+1FFQXR11RaIEaDAXQojmxpFHwjXXhKP0005T7GsKSPdgnrSgBznkkEOOpnKccUZIiBs5Ei66KGvztIStpMWRl3w3ocd1UmiMHHLIIUcJHDU17iedFJJLrrtuleZpCVtJi4OoQmMiJ8lBD3LIIYccTeEwg7/9LVwM9z//A/fc833ztIStpMVRiPQO5kkPepBDDjnkaApHy5ZhEP/Zz+C4474fVdIStpIWRyHSfZ95GoIe5JBDDjmawvHtt2FAf/99eOop2GmnVIStpMWh0BghhBDF8fnnsPvuYWB/4QXYdtuoKxIZFBojhBCiODbeOBwqVlSE+9Fnz466IlEkGsyFEEKspFs3mDQJvv46DOhffRV1RaIINJgLIYRYlZ/8BMaODZ+f77//ysuuRWxJ92CexqAHOeSQQ46mcPz853DDWfDPl2DAnrBsWVGKOIatpMWRl3w3ocd1UmiMHHLIIUcTOU4kJJscupd7dXXeLnEMW0mLA4XGkL6gBznkkEOOpnLsDQwEHnwGzj47b457HMNW0uIoRHoH87QHPcghhxxyNJXj0Eo4YT+4+mq46qqcXeIYtpIWR0HyHbbHdSrqNLt7OE308tDiTkE1pL0ccsghR3NxVFe7H354OC88enTOLmPHug8dWtyp5oa0b64OCpxmN1dojBBCiGJYuhQGDIAnnwxfn1ps1JloNAqNEUIIURpat4YHH4QePWDQIHj++agrEhk0mAshhCietm1h/Hjo0iUcpb/xRtQVCTSYCyGEqC/t2sHkyWFg79sX/vOfqCtq9qR7MI9bCIMccsghR1ocXbqEAX3x4hD7OncuEM+wlbQ48pLv6ri4TgqNkUMOOeSIiWPqVPfKSvfu3X38Pd/GLmwlLQ4UGkP8QhjkkEMOOdLi2G03uP9+mD6dbr85mOULlwDxCVtJi6MQ6R3M4x7CIIcccsiRFsd++8Ho0Wzz6VPcU3E0LaiOTdhKWhwFyXfYHtdJoTFyyCGHHDF0/PWv7uDPbv8rH/tITVFd0hDo0hQOFBojhBCiyTj3XPjzn+Hii+H3v4+6mtRQKDSmZRnF9wLbZJ6uB3zj7j/O0m4WsACoBpbnK1YIIUTMueIKmDcvDObt28Npp0VdUbOgbIO5uw9a8bOZ/RX4Nk/zn7v7l+WqRQghRBNhBiNHwpdfhvuu2rWDX/4y6qpST9kvgDMzA34J3FNuVypZVgXfzQyPovTEffvGvT4hstGyJYwZA7vvDkcfDU88EXVFJaeqCmbODI9xoCmuZt8D+MLd38ux3IHHzewVMzsl14uY2SlmNs3Mps2bN684c9JCGGpTsxymDYOHOsDEH8ED68HT+4f5pa6pIX2S7lixfR/cEMZvHx6nDSvP9m3IenzyMIzfMdQ1qUf4PchXX9L3hxzpc3z1REhD2XZbOPhgyHGdU9ICXZYvh2HDoEOHEFHfoUN4/vDDCQ6NAZ4A3soyHVirzd+AX+d5jU6Zxw7AdGDPQt5mERrzr9NXtq09PbVfstYjro5/ne5+zxqrbtt71gjz47Aed7Vcfd+PaZO9vjTsDznS6/j0U/euXd3bt3efMWOV5kkMdDn99JXLVkxrrOHesmWCQ2Pc/Rfuvn2WaSyAmbUEDgHuzfMaczKPc4GHgZ0aU9P3JDmEYVkVfDBqZdvafD4p/ynXOK1HXB0rtm/NklXn1ywJ80u5fRuyHp+OA7IcgVcvzF5f0veHHOl2dOoUYl8h3Ew9Z873zZMW6FJVBaNGrVy2giVLwhF7OdejEOU+zf4L4F13n51toZmtZWZrr/gZ6E04sm88SQ5hWDQHrCL7shatwvJS1dSQPkl35Nu+VlHa7duQ9Vj/J7mXZasv6ftDjvQ7tt4aJk6E+fNDjvvXXwPJC3SZMwcqcvzrWEFUoTFlvc/czO4AXnL3m2vN6wTc5u79zWwLwtE4hCvr73b3ywq9btH3mc9+NLwz7NgbNjmg9O3L5VhWFT4jrV60+rKKSjhkLrRqG//1iKujqbdvfdsvqwqfldcsLb6+JO8POZqP48knoX9/+OlPw6FomzY8+mj4sXdvOKBIRX37lMpRVRU+I1+U5V9H69Zw3HGw//7lWY9C95krNCauTBsGH4xe9VR7RRvoNhh6Xh9dXWkh7ts37vUJ0VDuvx8GDQoRsA8/HK58TxDDhsHo0aueam/TBgYPhuvL+KcZWWiMaCTdR4THD0aFU6teHf6Rr5gvGkfct2/c6xOioRx2WLgH/bTT4OSTw8hoFnVVRTMi8yc4alQ45V5dHQbyERH/aerIPO4sqwqfkVZ2yn/qVzSMuG/fuNcnREO55JKQEnfOOXDllVFXU2+qqsJn6J06Qdsm+NPUkXnSadUWWm0ddRXpJe7bN+71CdFQLroI5s4NOe4dOsCvfx11RfWibdtwXV9c0GAuhBCi6TGD664LOe6/+U3IcT/22KirSizp/T5zSF+ikhxyyCFHmhwVFXD5IPjpJjD4BBg/vihFlAlwUTryki9RJq5Ts0iAk0MOOeRoLo7bcN+ihfuard2nTs3bJeoEuKgclDMBLtakOVFJDjnkkCNNjkrgNzXQvjLcqP322zm7RJkAF6WjEOkdzNOeqCSHHHLIkSbHBm1gzFWw5pohJe6jj7J2iTIBLkpHIdJ9a1rUaUdyyCGHHHLUr/2bb8Kee4Yr3F94IVwYV4eoEuCidCgBTgghRLJ44QXYd1/YYQd46qmmuZE75hQazNN7ml0IIUQy6dUL7rsPXn0VDjkEli6NuqLYo8FcCCFE/BgwAG69FaZMCd9gUlMTdUWxRqExQggh4skJJ4RQmXPPhXbtQshMgnLcm5J0H5nHLSBBDjnkkEOO+rU/++wQ9XrDDXBZ+IbsOAa6KDRGoTFyyCGHHHLka19d7X7MMe7gr//q5tgFuig0ppzEOSBBDjnkkEOO4tu3aBG+c7R/f3a4+TT6LnwQiE+gi0JjykncAxLkkEMOOeQovn2rVnD//Xyz9c7czZHsxdOxCXRRaEwDUWiMHHLIIUczdXz1Fd/9eA9aff4J//zzs+x15k8KdlFoTExRaIwQQjRjZs+G3XaDJUtg6lTYcsuoKyo7Co0RQgiRLjbZJBzSVleHw9rPPou6osjRYC6EECJ5bLstTJgAc+dCv37wzTdRVxQpGsyFEEIkk512gocegn//Gw48EBYtirqiyEj3YJ7EgAQ55JBDDjmK79O7N9x5Jzz/PBx5JCxfvlpzhcbEdFJojBxyyCGHHKv0ue66kMBy4onuNTXfN1doTNJJckCCHHLIIYcc9eszbBhceGEIl7nggu+bKzQm6SQ9IEEOOeSQQ4769fnDH+CUU+Dyy+GaawCFxsQahcbIIYcccsiRtU91Nfzyl+HCuP/9XzjqKIXGxBWFxgghhMjJ4sXhdrUXXoDHHoO+faOuqNEoNEYIIUTzYs01YexY2H57OPRQeOmlqCsqOxrMhRBCpI911oFJk6BjR9hvP3jnnagrKiuNGszN7DAze9vMasysZ51l55vZ+2Y2w8z65Oi/gZlNMbP3Mo/rN6YeIYQQ4ns22ih8KN2qVfhg+pNPoq6obDT2yPwt4BDgudozzeyHwOHAdkBf4CYzq8jS/zzgSXffCngy87x0pDEgQQ455JBDjuL7bLEF3HkefD0X9t4N5s8vStEsQ2OAZ4CetZ6fD5xf6/lkYNcs/WYAHTM/dwRmFONTaIwccsghhxz1clyIeyvcf7K1e1VV3i4KjVlJZ6D2+YzZmXl12cjdPwPIPHbI9YJmdoqZTTOzafPmzStcQdoDEuSQQw455Cje8QPgdGD6ezBwICxblrNLKkNjzOwJM3sry3Rgvm5Z5jXqHjh3H+nuPd29Z/v27Qt3iDq8QA455JBDjng5dm4DV5wWLow74QSoqcnaJYmhMek9ze4eTq+8PLS4UzcNaS+HHHLIIUfyHJddFs5vn3HGKjnutRk71n3o0OJOmTekfX37UOA0u3kJQmPM7BngN+4+LfN8O+BuYCegE+Hitq3cvbpOv6uA+e5+hZmdB2zg7ucU8ik0RgghRINxh+HD4dpr4U9/gvPPj7qigpQ1NMbMDjaz2cCuwHgzmwzg7m8D9wH/BiYBQ1cM5GZ2W63b2K4A9jWz94B9M8+FEEKI8mEGV18dvjL1t7+F226LuqJGU5Ij86ZGR+ZCCCEazdKlIRR9yhR48EE46KCoK8qJ4lyFEEKIbLRuHQbxn/4UDj8cnnuucJ+YosFcCCFE82WttWD8+BAuM2AATJ8edUUNIpGn2c1sHvBRkc3bAV+WsZwo0DolA61TMtA6JYc0rlex69TF3XPel53Iwbw+mNm0fJ8zJBGtUzLQOiUDrVNySON6lWqddJpdCCGESDgazIUQQoiE0xwG85FRF1AGtE7JQOuUDLROySGN61WSdUr9Z+ZCCCFE2mkOR+ZCCCFEqkn8YG5mh5nZ22ZWUysmdsWy883sfTObYWZ9cvTfwMymmNl7mcf1m6by4jGze83s9cw0y8xez9Fulpm9mWkX64g8M7vYzD6ttV79c7Trm9l/72fy+2OLmV1lZu+a2Rtm9rCZrZejXez3U6HtboHrMsvfMLPuUdRZLGa2qZk9bWbvZP5fnJGlzV5m9m2t38mLoqi1PhT6XUrgftqm1vZ/3cy+M7Mz67RJxH4ys9FmNtfM3qo1r6jxpkH/9/J9C0sSJsK31G7D6t/c9kNgOrAGsDnwAVCRpf+fgfMyP58HXBn1OhVY378CF+VYNgtoF3WNRa7HxYQv58nXpiKz37YAWmf25w+jrj1Pvb2Blpmfr8z1uxT3/VTMdgf6AxMJX3e8C/DPqOsusE4dge6Zn9cGZmZZp72AcVHXWs/1yvu7lLT9VKf2CuBzwv3VidtPwJ5Ad+CtWvMKjjcN/b+X+CNzd3/H3WdkWXQgMMbdl7j7f4D3Cd/ilq3dnZmf7wQOKkuhJcDMDPglcE/UtTQROwHvu/uH7r4UGEPYX7HE3R939+WZpy8Bm0RZTyMoZrsfCPzdAy8B65lZx6YutFjc/TN3fzXz8wLgHaBztFU1CYnaT3XYB/jA3YsNCIsV7v4c8FWd2cWMNw36v5f4wTwPnYFPaj2fTfY/3o3c/TMIf/BAhyaoraHsAXzh7u/lWO7A42b2ipmd0oR1NZTTM6f+Ruc43VTsPowjgwlHRNmI+34qZrsndt+YWVfgJ8A/syze1cymm9lEC1/lHHcK/S4ldj8Bh5P7wCVp+2kFxYw3DdpnLUtSXpkxsyeAjbMsusDdx+bqlmVebC/dL3IdjyD/Ufnu7j7HzDoAU8zs3cy7w0jIt07A34BLCfvkUsLHB4PrvkSWvpHuw2L2k5ldACwH7srxMrHaT1koZrvHbt8Ug5m1BR4EznT37+osfpVwSrcqcw3HI8BWTVxifSn0u5TU/dQaOADI9kXjSdxP9aFB+ywRg7m7/6IB3WYDm9Z6vgkwJ0u7L8yso7t/ljn9NLchNTaWQutoZi2BQ4AeeV5jTuZxrpk9TDhdE9kgUex+M7NbgXFZFhW7D5uMIvbTccD+wD6e+QAsy2vEaj9loZjtHrt9Uwgza0UYyO9y94fqLq89uLv7BDO7yczauXtss8CL+F1K3H7K0A941d2/qLsgifupFsWMNw3aZ2k+zf4ocLiZrWFmmxPeub2co91xmZ+PA3Id6UfNL4B33X12toVmtpaZrb3iZ8LFWG9laxsH6nxudzDZa/0XsJWZbZ55p344YX/FEjPrC5wLHODuC3O0ScJ+Kma7Pwocm7laehfg2xWnD+NI5nqTUcA77n51jjYbZ9phZjsR/j/Ob7oq60eRv0uJ2k+1yHkWMmn7qQ7FjDcN+78X9RV/jZ0IA8FsYAnwBTC51rILCFcFzgD61Zp/G5kr34ENgSeB9zKPG0S9TjnW8w5gSJ15nYAJmZ+3IFz1OB14m3DaN/K686zPP4A3gTcyv6gd665T5nl/wpXHHyRgnd4nfNb1ema6Oan7Kdt2B4as+B0knAq8MbP8TWrdSRLHCehFOFX5Rq3907/OOp2e2SfTCRcw7hZ13QXWKevvUpL3U6bmNoTBed1a8xK3nwhvRj4DlmXGqBNzjTel+L+nBDghhBAi4aT5NLsQQgjRLNBgLoQQQiQcDeZCCCFEwtFgLoQQQiQcDeZCCCFEwtFgLoQQQiQcDeZCCCFEwtFgLoQQQiSc/wfsgtW+hhsqUgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAF6CAYAAAANsLFbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABDo0lEQVR4nO2deZhUxdm374cBZHDcAQWMoMQl0ZhE+FyJMUbZDO6KS9xADYq+iolRY2I0xri9CRFjVFRcEhV3UUBxS1zIqwZUXKKiJqiICq5AABlmnu+P6pFx6G1muvss/buv61w9fbqq76o+M1N9quv82twdIYQQQiSXDlE3QAghhBDtQ4O5EEIIkXA0mAshhBAJR4O5EEIIkXA0mAshhBAJR4O5EEIIkXA0mAshKoqZzTWzuVG3Q4g0ocFciBJiZm5mecMbMoOZm1nfCjVLCJFyNJgLIYQQCUeDuRBCCJFwNJgLETFmtp6ZLTWzt8zMcpSZkpma75+53zdz/wYz28rM7jWzT8zsv2b2lJkNyuM71Mz+ZmafmtlyM3vVzH5pZmtkKetm9ncz28jMrjWz98yswcyOzjx+Q6bMZmZ2mpm9lnnOeWY2zszWLvI1WMfMTjezxzJ1V5jZQjO7z8x2zFGnqW3dzGyCmb1vZl+Y2Stmdkwe12Azm2ZmH2XKv2Vml5rZusW0VYg4osFciIhx90+BScBmwB4tHzezjYEhwCx3n9Xi4U2B/wM2AK4G7gD6Aw+Y2Ygsz3UdcAvwdeBu4ArgE+B84EEz65iliesDTwM7Zur8CfiwRZlxwK+Ax4HLgI+AU4HHzKxL3hcg8A3gAqARmAr8AXgY2B140syG5Ki3LjAD2Am4E7gJ6AVMNLOjWhY2s3OAB4EdMp7xwJvAz4AZxb75ECJ2uLs2bdpKtAGe2c7Ns32WKdO3Wb0BmX13ZnnOczOPHddsX99mrktblB8A1AOfAms32390pvzdQG0Oxyk5+nMT0DFL227IPP4R0KfZ/g7AXZnHftWizlxgbot96wDdsjz/xsB84NU8r/W1QE2z/d8EVgL/alH+B5ny/wDWbfFY02szLurfIW3a2rKZu741TYhSUWglews2dfe5zer+E/gO8DV3/yCzr4Yw+K0D9HL3JZn9fYH/AJ9nyi9u0Y4bgKOAo939xsy+54FtgO7u/lmL8jWEs+1/u/v2LfqzIuNYkKW/TZ5z3P38Fo9tBrwBvOPumzbbPxfA3fsWeH2ayo8HTia8WXinRduWAj3dfVGLOo8DuxLezCzO7LsH2BfYxt1fyeJ5Hujt7j2KaZcQcSLblJoQop24e9bPvuHLwaxPlof+DEwERgK/y+wbRjg7vbJpIG/Bcy0H8gx/Jwyy3wVuNLOuwLfJTH/n+Gj+C8J0d0vmZhvIW/B4yx3u/m8zexfoa2brtnwD0RIz2wU4hTBl3gPo3KJIb+CdFvveaDmQZ3g3c7su0PT67ESYsTjIzA7KUqcz0N3MNnD3j/O1VYi4ocFciPgwCfg9cJyZXeTujcBPMo9dnaNOy8+um/ggc7tO5nY9wIDuwK9b2a4PChfJ244+mXZ8lquyme1H+Mx7OeGz8reA/xI+Q98N+D6w2gK9PM+5MnNb02zfBoT/eYX6XwdoMBeJQoO5EDHB3Zdlpq3HAoPM7GXCwrdn3H12jmob5ti/Ueb28xa3z7v7dq1tWhFlNgReL6IduTifMJ0/wN1fbf6AmV1NGMzby+dAB3dfvwTPJUSs0Gp2IeLFlYTB8yfAsYQzy1xn5QDbmdlaWfbvlrl9HiAzRf8KsLWZlWMwW22wzXxm/jXCNP1nBep/nbBgreVA3gEYWKI2Pg2sZ2Zbl+j5hIgNGsyFiBHu/gbwKPAjYDRhGvm2PFXWAc5pvsPMBgCHE85E72n20B8InwtPzHZNdeZ699aetTdxipl9uQ4gMwhfSvgfc30R9ecCm5tZr2bPYYQp8W+2sU0tGZe5vaa5p5lvzVzXtAsRdzTNLkT8+DPhevMNgcvdfWmesk8Ax5rZDoTrrXsCIwiD6E+aLw5z94mZ0JkTgbfMbDphQdn6hOvVdyUMvKPb0OYZwAtmdhvhTcRgwoK7WcAlRdQfB1wFPG9mdxEWqu1CGMjvB4a3oU1fwd0fNbMzgQuBN8xsGuGKgDrC5/rfB54ifLQhRKLQYC5E/LiPsOq8G/mn2CEMRqOBizK3awDPAb9x9+ktC7v7GDN7IFN2D8Jq708Ig/qlwF/b2OaxwH7AcYRr4D8mhMec4+7LC1V296vN7AtC0MxRwDLgSeAY4ABKMJhnPBeb2QzgfwjT9/sQ3ny8B0wgBOoIkTh0nbkQMSPzWfObwAx3/16OMn0JA/mN7n505Vq3WjtuIAy+X7lmXghRWfSZuRDx42eEy8j+FHVDhBDJQNPsQsQAM9sEOAzYnDC1PJuQsy6EEAXRYC5EPNiMsDBrKSE05YRMaIwQQhREn5kLIYQQCUefmQshhBAJJ5HT7N26dfO+fftG3QzRGj74AN57D7p3h002ibo1QgiRKGbNmvWRu3fP9XgiB/O+ffsyc+bMqJshWsvpp8P//i+cfDL86ldRt0YIIRKDmb2d7/FEDuYioVx8MSxYAOecE87QR7claEwIIURLNJiLytGhA1x7LXz8MZx4InTrBgceGHWrhBAi8ZRkAZyZTTSzBZmvbGzat76ZPWxmb2Ru18tRd4iZvW5mb2Zyk0Wa6dQJbr8ddtoJDj8cHnss6hYJIUTiKdVq9htY/csJzgQedffNCd8CtdpAbWY1wBXAUMIXKhxqZqX6hiSYdx/886RwW47ycrTN8ckjMGUKbL457LMPzJqVtfh998FJJ4XbYmltHTnkkEOOpDjy4u4l2QhfrvBys/uvAz0zP/cEXs9SZydgerP7ZwFnFXL179/fC/LuZPdJXd1vJty+O7m05eVov2PePPdNNnHv3t19zpyvFJ882b1rV3cIt5OLULS2jhxyyCFHUhzATM8zLpbzOvMN3f39zBuG94EeWcr0Bt5tdn9eZt9qmNnxZjbTzGYuXLiwsP39h6Ah882RDUvD/VKWl6P9jt694aGHwB0GDYL5878s/tBDsDRTfOnScL8Qra0jhxxyyJEURyGiDo2xLPuyRtK5+wR3H+DuA7p3z3mp3Sp6DoKaruHnmq7hfinLy1Eax5ZbwrRpsHAhDBkCn30GhLG9a6Z4167hfiFaW0cOOeSQIymOguQ7bW/NRtym2d3DVO6zY4qbBm5LeTlK53joIfdOndy/9z33pUvdPUw7jRlT3JRVE62tI4cccsiRBAcFptnNS5TNnvl+5Snuvk3m/qXAx+5+UWaV+vru/vMWdToCc4AfAu8B/wQOc/dX8rkGDBjgCo1JIbfdBoceCsOHw113QUddOSmEEABmNsvdB+R6vFSXpt0K/B+wpZnNM7NRwEXAnmb2BrBn5j5m1svMpgG4+0rgJGA68Cpwe6GBXKSYESNg/PiwtPMnPwmfpQshhChISU593P3QHA/9MEvZ+cCwZvenAdNK0Q6RAk46KaTEnX8+9OgBF14YdYuEECL2aB5TxI/zzgsD+kUXhQF97NioWySEELFGg7mIH2ZwxRXw0Udw2mkhx/3HP466VUIIEVuivjStvKQtOa2aHDU1cPGh0L83HHM0PPBAUYo4pjbJIYcccpSqTk7yLXWP66YEuCpyXIN7X3Pv0tn9H//IWyWOqU1yyCGHHKWoQ4QJcNGS5uS0anJ0BX7u0K0L7LUXvJL7Yoc4pjbJIYcccpSqTj7SO5inPTmtmhzrd4VJl8Iaa8DgwfDOO1mrxDG1SQ455JCjVHXyku+0Pa6bEuCq1PHCC+5rr+2+1VbuCxdmrRK31CY55JBDjlLUoVIJcJVECXBVzBNPhLew3/42PPoo1NVF3SIhhCg7FUmAE6Ji7LpriH2dORMOPBBWrIi6RUIIETkazEXy2GcfmDABpk+Ho4+GxsaoWySEEJGi0BiRTEaNCl+betZZIVTmj38MYTNCCFGFpPvMPG5BKHKU1nHGGXDqqeHLWTIZ7nEMepBDDjnkKFWdnORbHRfXTaExcnxJQ4P74Ye7gz8/ZkLsgh7kkEMOOUpRB4XGEL8gFDlK5+jQAa6/HoYOZds/j2bQ0nuA+AQ9yCGHHHKUqk4+0juYxz0IRY7Sle/UCe64g8+22J5bOZRdeTw2QQ9yyCGHHKWqk5d8p+1x3RQaI0dWPvrIF238DV/aeW3/27jni6qShjAJOeSQI/0OFBojqop334Wdd4b6epgxA/r1i7pFQgjRbhQaI6qLr30tfPhUXx/mrT74IOoWCSFE2dFgLtLHN74B06aFgXzoUPj886hbJIQQZUWDuUgnO+wAd90FL78cEuOWL4+6RUIIUTbSPZgnMQhFjtI5hgyBG2+Exx+Hww6DhobViqclTEIOOeRIvyMv+VbHxXVTaIwcrarzxz+GZIbjjnNvbPyyeFrCJOSQQ470O1BoDMkLQpGjtI5TToFf/AKuuQZ+9asvi6clTEIOOeRIv6MQ6R3Mkx6EIkdpHb/9LRx7LFxwQchyJz1hEnLIIUf6HQXJd9oe102hMXK0qU59vfu++4Z5rVtucfd0hEnIIYcc6Xeg0BghmrF8eVgYN2MGTJkCgwdH3SIhhCiIQmOEaE6XLjB5Mmy9NRxwADz7bNQtEkKIdqPBXFQf66wDDz4IG24Iw4bBa69F3SIhhGgXGsxFdbLRRmH5aE1NWHkyb17ULRJCiDaT7sE8jUEocpSuTr9+cONZ8MkH8MOd4ZNPilLEMUxCDjnkSL8jL/lWx7V3A7YEXmi2LQJObVFmN+DzZmXOKfS8Co2Ro6SOX+DeEff+W7ovWZK3ShzDJOSQQ470O4gyNMbdX3f377j7d4D+wFLgnixFn2wq5+6/KYk87UEocpTOsTVwEvD8HDjooPCNazmIY5iEHHLIkX5HISo5zf5D4C13f7sitqhDSuRIlmPHrvC7E+CBB2DkSGhszFoljmEScsghR/odBcl32l7KDZgInJRl/27Ax8Bs4AFg6xz1jwdmAjM32WSTwnMY7tGHlMiRPMf554d5r9NO+0qOe3PiFiYhhxxypN9BHEJjzKwzMD8zUH/Y4rG1gUZ3X2Jmw4DL3H3zfM+n0BhRNtxDlvvll8PFF8PPfx51i4QQIjahMUOB51oO5ADuvsjdl2R+ngZ0MrNuFWqXEF/FDP74RzjkEDjjDJg4MeoWCSFEQTpWyHMocGu2B8xsI+BDd3cz257wBuPjCrVLiNXp0CF8D/onn8Bxx0G3brD33lG3SgghclL2M3Mz6wrsCdzdbN9oMxuduXsg8LKZzQbGA4d4Jeb+hchH585w110wYACMGAFPPhl1i4QQIidlH8zdfam7b+Dunzfbd5W7X5X5+U/uvrW7f9vdd3T3f5RMHreQEjmS5airg6lToU8fGD4cXnwRiGeYhBxyyJF+R17yrY6L66bQGDkq6pg71713b/eePf3hCf+OXZiEHHLIkX4HUYbGREqcQ0rkSJajTx+YPh2WL2fb0wex5tIFQHzCJOSQQ470OwqR3sE87iElciTLsfXWMGUK6y97j+k2lLVYFJswCTnkkCP9joLkO22P61bUNLt7MkJK5EiWY8oUb+hQ46/13t3vv3N5UVXSEFghhxxyROsgDqExpUahMSJSbroJjjoKDjwQJk0KX6MqhBBlJC6hMUKkhyOPhN//Hu68MyxFTeAbYiFEuqhUaIwQ6eK00+DDD+GSS2DDDeHcc6NukRCiitFgLkRbuegiWLgQzjsPevSAE0+MukVCiCol3dPsSQspkSNZjvfuhwkTQqDMSSfB7bdnLZ6WwAo55JAjWkde8q2Oi+um0Bg5YuX473/dBw5079TJ/eGHv1I8LYEVcsghR7QOFBpD8kJK5EiWo2vX8NZ6yy1hv/2g2ZUWaQmskEMOOaJ1FCK9g3nSQ0rkSJZjvfVCStwGG8DQoTBnDpCewAo55JAjWkdB8p22x3VTaIwcsXW8/rp79+7uffq4v/eeu6cjsEIOOeSI1oFCY4SoMLNmwW67Qd++8MQT4axdCCHagUJjhKg0/fvDvfeGqfbhw1d9MCaEEGVCg7kQ5eCHP4S//hX+8Q8YMQLq66NukRAixWgwF6JcHHQQXHEFTJkCxx+v2FchRNlI92CetpASOZLnOOEEOO1QuOEGGHNg0Yo4BlbIIYcc0Trykm91XFw3hcbIkSjHrbXuexDSIX55TEFFHAMr5JBDjmgdKDSG9IWUyJEsR+MyOArYAfjt9eErVPMQx8AKOeSQI1pHIdI7mKc9pESOZDk6ACfVwsBtYeRImDo1Z5U4BlbIIYcc0ToKku+0Pa6bQmPkSKxj0SL3/v3da2vdZ8zIWSVugRVyyCFHtA4UGiNEzFiwAAYODF+f+uSTsM02UbdICBFzFBojRNzo0SPkuNfWwuDB8PbbUbdICJFwNJgLEQWbbhoG9KVLw4dlCxdG3SIhRILRYC5EVHzrW3D//fDOOzBsGCxeHHWLhBAJJd2DedwCROSQoyUDB8Ltt8Pzz8P++8OKFUA8AyvkkEOOaB15ybc6Lq6bQmPkSJ1j4sSQHjFihE++pyF2gRVyyCFHtA4UGkO8AkTkkCMbxxwDF18Mt93GOuecwtKl4SqTuARWyCGHHNE6CpHewTzOASJyyJGN00+Hn/6U77/0J87tdAEQn8AKOeSQI1pHQfKdtpdiA+YCLwEvkGWaADBgPPAm8CKwXaHnVGiMHKl1NDS4H3GEO/gt378qNoEVcsghR7SObONn8828zKExZjYXGODuH+V4fBhwMjCMkF59mbvvkO85FRojUk19Pey7Lzz4YFgcd8ABUbdICBExSQiN2Qe4KfPm42lgXTPrGXWjhIiMTp3gjjtghx3gsMPgb3+LukVCiJhTicHcgYfMbJaZHZ/l8d7Au83uz8vs+wpmdryZzTSzmQsVsCHSTteuMGUKfP3rsM8+4dI1IYTIQSUG813cfTtgKDDGzHZt8bhlqbPa3L+7T3D3Ae4+oHv37uVopxDxYv31Q0rcuuvCkCHw5ptRt0gIEVPKPpi7+/zM7QLgHmD7FkXmAV9rdn9jYH652yVEIth443DNSkNDWO76/vtRt0gIEUPKOpib2ZpmtlbTz8Ag4OUWxe4DjrTAjsDn7l6a/1hJSwOTQ45sdbbaCqZNC9+2NnQofPbZasXTknAlhxxytJF8S93buwGbAbMz2yvA2Zn9o4HRvurStCuAtwiXsA0o9LxKgJOjKh3Tp7t36uS+667uS5d+WTwtCVdyyCFHbogyAc7d/+3u385sW7v7BZn9V7n7VZmf3d3HuHs/d/+Wu5fmmrMkp4HJIUe2OoMGwY03hu9AP/RQWLkSSE/ClRxyyNF24nBpWnlIehqYHHJkq3PooXDZZTB5MoweDe6pSbiSQw452kG+0/a4bkqAk6PqHb/8ZZifO+ssd09HwpUccsiRG6JOgCsHSoATVY97ODOfMAHGjYNTT426RUKIMlIoAa5jJRsjhCgRZvDnP8NHH8HYsdC9Oxx+eNStEkJERHo/Mxci7dTUwM03w267wdFHhyx3IURVosFciCTTpUtYDLfNNuELWZ5+OuoWCSEiIN2DeRoDROSQoyVrrw0Tx8L6HWHoIHj11aIUcQzFkEMOOdpIvtVxcd0UGiOHHFnKj8N9Hdx7buD+zjt5q8QxFEMOOeTIDVGGxkRK2gNE5JCjZfkewM+BRYvDRasff5yzShxDMeSQQ462k97BPOpwDznkiMLRrytc/2v4z39gr73gv//NWiWOoRhyyCFHO8h32h7XTaExcshRoPw997h36OA+ZIj7ihVZq8QtFEMOOeTIDQqNiZj6JbBsPtT2gk51UbdGVJKoj/2118Jxx4Xrz2+6CTpEMxG3ZAnMnw+9ekFdFf4JVHv/RWkoFBqT3mn2qGlcCTNPhrt7wIP9w+3Mk8N+kW7icuyPPRYuuCBci37aaSE1roKsXAknnww9ekD//uH25JO//H6Y1FPt/ReVRQlw5eK5sfDWRGhYtmrfWxPD7YDLo2mTqAxxOvZnnRW+B/2yy2DDDcP9CjF2LEycCMuavQwTMy/D5VXwJ1Dt/ReVRdPs5aB+STgba/7PvImaWth/gabc00ocj31jIxxxBNxyC1xzTThjLzNLloQz0WVZXoba2vD+Is1TztXef1F6qnuaPapwj2XzwWpyVHB4dnSyQ0rkyF2n0LFfNr887cpXvkMHuP56GDwYfvITuPdeoLyhGPPnh7TZbNTUhMfb62hrnUo4/vKX3NPpufofx37IES9HXvKtjovrFvvQmBWL3SfVhv25tjSElMixep1Cx37upOj6sWSJ+w47uK+xhj/5u8fLGoqxeLF7586hfMuttjY83l5HW+pUylFbm73vufof137IER8HCo2h8uEeneqg36hV1/42Yc2WKKQhpESO1evkOvZNLHiy/Y62ll9zTZg6FTbdlP7nDufrS2cD5QnFqKuDLbdcfX/XrjBqVPYp5rSEezz0UPbpdcjd/7j2Q474OAqR3sE86nCP7cZBv5Hhc9KOdeF2o8HQobZ0jkr0Q47W12l+7Gu6rNrfoTb6fmywAUyfDmutzUMMZlP+XbZQjPPOg47N3r927gwjR4avXy+VI47hHs3Ld+wY+l1XFz4rz9X/uPdDjugdBcl32h7XLVGhMSsWu3/+ergtl6O95eUoj6Pp2M+dFL9+vPKKf7HW+r5g7X7+4I0fFFWlraEYxx3n/uc/Z59aL5UjTuEeLcsvXuz++uuF+x/3fsgRrQOFxgghsvJ//wd77BHmw//+9/Dta0KIWFLdq9mFELnZaSe480546SXYd19YvjzqFgkh2ogGcyGqmaFD4YYb4G9/C7GvDQ1Rt0gI0QY0mAtR7Rx+eFiVdffdMGZMxWNfhRDtJ92DedQBInLIkRTHqafCmWfC1VfDr3+dtXhagjfkkCOpjrzkWx0X1y32oTFyyJFER2Oj+8iRIcVi/PivFE9L8IYcciTVgUJjSHdIiRxylMphFs7M99kHTjkFJk36snhagjfkkCOpjkKkdzCPS4CIHHIkydGxI9x6KwwcCEceCQ8/DKQneEMOOZLqKEi+0/a4bokKjZFDjiQ6Pv3Ufdtt3ddc0/3ZZ909HcEbcsiRVAdRhsaY2deAm4CNgEZggrtf1qLMbsBk4D+ZXXe7+2/yPa9CY4SoAO+/D7vsAosWwVNPwVZbRd0iIaqWqENjVgI/dfdvADsCY8zsm1nKPenu38lseQdyIUSF6Nkz5LjX1ISvT503L+oWCSFyUNbB3N3fd/fnMj8vBl4FepfTKYQoIZtvDg88AJ9+CkOGwCefRN0iIUQWKrYAzsz6At8Fnsny8E5mNtvMHjCzrSvVJiFEEWy3Hdx7L7zxBgwfvmoJrhAiNlRkMDezOuAu4FR3X9Ti4eeAPu7+beBy4N4cz3G8mc00s5kLFy4sTpzGcA855IjCsfvucPlY+L9/wN7fh/r6ohRxDN6QQ46kOvKSb3VcKTagEzAdOK3I8nOBbvnKKDRGDjkicowkpFwc+AP3hoa8VeIYvCGHHEl1EGVojJkZcB3wqrv/IUeZjTLlMLPtCbMFH7dbnuZwDznkiMrxQ+BA4M6/wRln5K0Sx+ANOeRIqqMQ5Z5m3wU4AtjdzF7IbMPMbLSZjc6UORB42cxmA+OBQzLvQtpH2sM95JAjKscBtXDUMPjf/4VLL81ZJY7BG3LIkVRHQfKdtsd1U2iMHHJE7GhocB8xIswRXn99zipxC96QQ46kOogyNKZcKDRGiBjwxRfwox+F70K/556w0l0IURaiDo0RQqSVNdYI34H+3e/CwQeHlDghRCRoMBdCtJ211oJp02CTTcKZ+UsvRd0iIaoSDeZCiPbRvXtYitu1a4h9nTs36hYJUXWkezCPW/CGHHKk1dGnT8hxX7YsLMtdsACIZ/CGHHIk1ZGXfKvj4ropNEYOOWLqeOop9y5d3Pv39ym3Lopd8IYcciTVQZShMZES5+ANOeRIq2OXXeCOO+CFF+h3+n6sXPoFEJ/gDTnkSKqjEOkdzOMevCGHHGl1/OhHcN11bDXvUW6pOYIONMQmeEMOOZLqKEi+0/a4bgqNkUOOBDguvdQd/PFtTvTJ9zYWVSUN4R5yyFEOBwqNEUJExs9/HiJfzzsPzjkn6tYIkVgKhcZ0rGRjhBBVxsUXh5Xtv/51uITthBOibpEQqUSDuRCifJjBNdfAxx/DmDHQrRscdFDUrRIidaR3AZwQIh506gS33QY77ww//jE8+mjULRIidaR7ME9a8IYccqTV8ckjcP/9sMUWsO++MGtW1uJpCfeQQ45y1clJvtVxcd0UGiOHHAl1zJvn3qePe/fu7nPmfKV4WsI95JBDoTGlJMnBG3LIkVZH794hHcM9XFg7f/6XxdMS7iGHHAqNKSVJD96QQ460OrbYAh54AD76CIYMgc8+A9IT7iGHHAqNUWiMHHJUj+Phh907dXIfONB96VJ3T0e4hxxylMOBQmOEELHl9tvhkENCBOzdd0NHXS0rRDYKhcakd5o9LtQvgUVzwq2oLnTsA/leh4MPhssvDyvdjz8+fJaeMpYsgTlzwq0Q5UJvg8tF40p4biy8dR1YDXgD9BsF242DDnrZU42OfaDY12HMmJAS95vfQI8ecNFF0bW5hKxcCWPHwnXXQU0NNDTAqFEwbpwmIETp0a9UuXhuLLw1ERqWrdr31sRwO+DyaNokKoOOfaA1r8O554YB/eKLw4B+2mkVa2a5GDsWJk6EZc26PzHT/cur6NdAVAZ9Zl4O6pfA3T2++k+siZpa2H8BdKqrfLtE+dGxD7TldWhoCJ+f33kn3HQTHHFEZdpaBpYsCe9JlmXpfm1teN9SVwW/BqJ0VPdn5lGlaC2bH6YVs+Lw7Oj4JnXJ0b46hY79svk5Hmtnu+L2WuV7Hawm++tQUwMXHQIDesMxR8O0aUU1K45JXX/5S5hmz0ZNzVcur2+zIy2pZnIoAS4/UaZorVjsPqk27M+1xT2pS4621Sl07OdOSkY/2lt+xWL3Wzvn+N2vDY/nclyD+6bm3qWz+z/+kVcTx6SuyZPda2tD+Wxbba374sWr14ljP+SIjwMlwFH5FK1OdWGhT1NgRhPWbIlC3JO65GhbnVzHvokFT7bf0d7ylXB0qoO1tlx9f03X8Ppk+6ihydEVON2hey3stRe88kpOTRyTuh56KPv0OoRwkFGjVp9ij2s/5IiPoxDpHcyjTtHabhz0Gxk+H+xYF243GgwdakvnqEQ/5Gh9nebHvqbLqv0dapPVj/Y6tj2Pr6yx7dA5vC7bjSvsWL8rTLoU1lgDBg+Gd97JWiWOSV3Ny3fsCJ07h8G7thZGjgyr2ZPWDzmidxQi3Qvg5t0X3u33HAQb71368sXUqV8SPh+s7RXORsrhqEQ/5Gh9naZj/+nz4Yw8qf1or+O9KbDed2HTIwov/mvpePFF2HVX2GgjeOqp8H3oLbjvvnBWM2gQ7F1Es1pbvr2O3XcPn5H36pV/0Vvc+yFHtI5CC+DSPZgLIZLPk0+G/3bbbhu+C13LwEUVUt2r2YUQyed734PbboOZM+GAA2DFiqhbJETsKPtgbmZDzOx1M3vTzM7M8riZ2fjM4y+a2XblbpMQImHsvTdcc02Ykzz6aGhsjLpFQsSKsibAmVkNcAWwJzAP+KeZ3efu/2pWbCiweWbbAbgycyuEEKsYOTKkrZx1Vvjs/LLLwCzqVgkRC8p9Zr498Ka7/9vdVwCTgH1alNkHuClzKd3TwLpm1rMk9qQHb8ghhxxf5YwzQk7q5ZfD734HxDPcQw45ylUnJ/kuQm/vBhwIXNvs/hHAn1qUmQIMbHb/UWBAvueNfWiMHHLIUT5HQ4P7j3/sDv78mAmxC/eQQ440hsZkmwNruXy+mDKY2fFmNtPMZi5cuLCwOQ3BG3LIIcfqdOgQvrFk6FC2/fNoBi+9G4hPuIcccqQxNGYe8LVm9zcG5rehDO4+wd0HuPuA7t27FzanJXhDDjnkWJ1OneCOO/hsi+25hcP4Pn+PTbiHHHJEERpT7mn2jsC/gU2BzsBsYOsWZfYCHiCcoe8IPFvoeYuaZncP03TPjiluSrAt5eWQQ45oHR995Is2/oYv7bSW/23cc0VVmTzZfcyY4qZC21pHDjlKXYcC0+zmZQ6NMbNhwB+BGmCiu19gZqMzbySuMjMD/gQMAZYCx7h73kQYhcYIIb7k3Xdhl13C9eczZkC/flG3SIiSowQ4IUT6ee01GDgQ1lknDOgbbRR1i4QoKUqAE0Kkn622gqlT4YMPYMgQ+PzzqFskREXRYC6ESAc77AB33x2+MnWffWD58qhbJETFSPdgnsRQDDnkkKPtjsGD4cYb4fHH4dBDYeXK1YqnJUBEjupz5CXf6ri4bgqNkUMOOfLWueyykMZx7LHujY1fFk9LgIgc1ecg4tCY6EhyKIYccsjRPsf//A+cfTZcey386ldfFk9LgIgc1ecoRHoH86SHYsghhxztc5x/Phx3HFxwAYwfD6QnQESO6nMUJN9pe1w3hcbIIYccRdWpr3ffb78wl3nzze6ejgAROarPQdShMeVA15kLIYpm+fJwudqMGTBlSlgkJ0TC0HXmQojqpksXmDwZtt4aDjgAnnkm6hYJUXI0mAsh0s8668CDD8KGG8Jee8Grr0bdIiFKigZzIUR1sNFGYclwx45hqv3dd6NukRAlI92DeRpDMeSQQ4621+nXD244Ez75EH64M3z8cVGKOAaIyFF9jrzkWx0X102hMXLIIUe7HGfj3gn37bZ0X7Ikb5U4BojIUX0OFBpDOkMx5JBDjrY7vgmMAV6YAwcdBPX1OavEMUBEjupzFCK9g3nUgRVyyCFHvB07doULT4QHHoCRI6GxMWuVOAaIyFF9joLkO22P66bQGDnkkKNkjt/+Nsx1jh37lRz35sQtQESO6nOg0BghhMiDO5x6aoh8vegiOOOMqFskxGoUCo3pWMnGCCFE7DCDceNg4UI480zo3j1MuwuRIDSYCyFEhw5www3hUrXjjoNu3WDvvaNulRBFk94FcEII0Ro6d4a77oIBA2DECHjyyahbJETRpHswj1tghRxyyBFvR10dTJ0KffrA8OHw4otAPANE5Kg+R17yrY6L66bQGDnkkKOsjrffdu/d232jjfzhCf+OXYCIHNXnQKExxC+wQg455Ii3Y5NNQorHF1+w7emDWHPpAiA+ASJyVJ+jEOkdzOMeWCGHHHLE2/HNb8LUqay/7D2m21DWYlFsAkTkqD5HQfKdtsd1U2iMHHLIUTHH1Kne0KHGX+u9u99/5/KiqqQhpESOeDlQaIwQQrSTv/wFjjwSDjwQJk2CmpqoWySqjEKhMemdZhdCiFJxxBHwhz/AnXeG5ccJPAkS6UahMUIIUQxjx8KHH8LFF8OGG8K550bdIiG+RIO5EEIUy4UXhtjX884Lsa9jxkTdIiGAtE+zxyGwon4JLJoTbsvlaG95OcrjaDr2b9+W7H601/HM8TDnylV/A+VwVOq1eu9+uPrqEPV68slw++1ZizcPA1myBObMCbf5iGNIiRzxcuQl3+q49mzApcBrwIvAPcC6OcrNBV4CXqDAar2mLRGhMQ317v88yX1SrfttdeH2sb3cb62NRyiGHOVzND/2k7qEsjcTjn2S+tFexzt3u9/csVn/O4fXpaE+Wf3IVmfpUveBA907dXJ/+OGvFG8eBtKxo3vnzu51de61te4nneRen6X7cQwpkSNejkLjYznPzB8GtnH3bYE5wFl5yv7A3b/jeVbqtZqoAyueGwtvTYSGZbBySbj9YDo0LiudoxL9kKP1dZof+4blq/Y3LktWP9rrePHXwMpV9xtXhNflubGlc0T1WtXWwv33w1Zbwb77QrOra5qHgaxcCStWhLPyZctg4sTw0XtL4hhSIke8HIUo22Du7g+5e9Nf8tPAxuVyZSXKwIr6JfDWdav+ATThzf6xxSEUQ47SO3Id+yZ6fK/9jvaWr4Sjfgksfn31/Q1Lw+uTbco9jv3IV2fddWH69PDZ+dChYS6dEP5RW5v9qZYuheuuW33KPY4hJXLEy1GIilxnbmb3A7e5+1+zPPYf4FPAgavdfUKh5yv6OvN594V30T0HwcZFfJ1ha8vnqrNoDjzYP5yRt6SmC2x8APQ5uH2OSvRDjtbXKXTsh86GtbeIfz/aWz7f69CxDobMyv46xK0fxdR54w3YZZfwH3nGDOjdmyuvhFNOgfr61Z+qrg5mzYItWnT/vvvC2dmgQcV9+2pry8uRbEeh68zbNZib2SPARlkeOtvdJ2fKnA0MAPb3LDIz6+Xu882sB2Fq/mR3fyJLueOB4wE22WST/m+//Xab21126pfA3T3CNGtLamph/wXQqa7y7RLlR8c+UG2vw6xZsNtu0LcvPPEESzqtR48eYWq9JbW1sGBBGNSFKJayhsa4+x7uvk2WrWkgPwr4EXB4toE88xzzM7cLCAvlts9RboK7D3D3Ad27d29Ps8tPpzroN2rV1FwTNV3D/jT9ExNfRcc+UG2vQ//+MHlymGofPpy6DksZNWrVNGoTXbvCqFEayEXpKdtn5mY2BDgD2Nvds36AaGZrmtlaTT8Dg4CXy9WmirLdOOg3MpyFdKwLt/1Ghv0i3ejYB6rtddh9d7j5ZvjHP2DECMZdUs/IkeFMvK4u3I4cCeNS2n0RLWX7zNzM3gTWAD7O7Hra3UebWS/gWncfZmabEc7GIQTY3OLuFxR67kRls9cvgWXzobZX+s5GRH507APV9jpcdRWccAIcdRRcfz1L/mvMnw+9eumMXLSdyLLZ3f3r7v61zCVn33H30Zn98919WObnf7v7tzPb1sUM5K0iDsEbnerCQp+mf2JxD8WQo3R1mo79h48lux/tdbxwJix6rbiBPM79KLbO6NHw00PhxhvhxAOoqwuL3QoN5HEMKZEjXo685LsIPa5bIkJj5JBDjup13FrrvichEeTsowsq4hhSIke8HEQYGhMtaQnekEMOOZLnaFwGRwI7ABfcEM7S8xDHkBI54uUoRHoH8zQEb8ghhxzJdXQATqqFgduGJexTpuSsEseQEjni5ShERUJjSk3sQ2PkkEMOOZrKr/MD+MEP4F//gocfDgEzWYhbSIkc8XKUNTQmKhK1ml0IIRYuhIEDQ1rMk0/CNttE3SKRMCJbzS6EECJD9+4hx71rVxg8GOKcYCkSiQZzIYSoBH37woMPhtVOgwaFs3UhSoQGcyGEqBTf+lb46tR33oFhw2Dx4qhbJFKCBnMhhKgkAwfC7bfD88/D/vvDF19E3SKRAtI9mMctGUoOOeSQA2D48PDF5o88EmJfGxtjmTgmR7wcecmXKBPXTQlwcsghRyocl1ziDv7WXid519rGWCWOyREvB0qAI17JUHLIIYccTZx+OvzsZ2w29U+ctuy3QHwSx+SIl6MQ6R3M45wMJYcccsjRxMUX8+4PjuR8zuF4ro5N4pgc8XIUJN9pe1y3oqbZ3cP01rNjiptKa0t5OeSQQ45SlF+xwt8fsJc3YP7sz+8oqsrkye5jxhQ3pdvWOnLEx0GBaXZzJcAJIUT0LF0Ke+4JM2fCAw/A7rtH3SIRI5QAJ4QQSaBr1/BlLJtvDvvuC889F3WLRILQYC6EEHFhvfVC7Ot668HQofDmm1G3SCQEDeZCCBEnevcOS5sbG8OqqPffj7pFIgGkezBPYpiEHHLIIceWW8K0aeFb1oYMgc8+W614WoJQ5FBoTH6SHiYhhxxyyPHQQ+6dOrnvuqv70qVfFk9LEIocCo0pTNLDJOSQQw459twT/vKX8B3ohx4KK1cC6QlCkaN1dfKR3sE8DWEScsghhxwjRsD48TB5MvzkJ+CemiAUOVpXJy/5Ttvjuik0Rg455Kg6x69+FeZkzzrL3dMRhCKHQmMUGiOEqC7c4YQT4OqrYdw4OPXUqFskKkih0JiOlWyMEEKINmIGV1wBH30EY8dC9+5w+OFRt0rEBA3mQgiRFGpq4Oab4ZNP4OijYf31Q7iMqHrSuwBOCCHSyBprwL33wre+BQceCE8/HXWLRAxI92CexjAJOeSQQ46114brToX1O8LQQfCvfxWliGMQihwKjclP2sMk5JBDDjnG4b4u7j03cH/nnbxV4hiEIodCYwqT9jAJOeSQQ44ewBnA4sXhQuWPP85ZJY5BKHK0rk4+yjaYm9m5Zvaemb2Q2YblKDfEzF43szfN7MySNSDqoAc55JBDjko4Nu0K158L//kP7LUX/Pe/WavEMQhFjtbVyUu+0/b2bMC5wM8KlKkB3gI2AzoDs4FvFnpuhcbIIYcccrQof++97h06uA8e7P7FF1mrxC0IRY4EhMaY2bnAEnf/3zxldgLOdffBmftnZd5gXJjvuRUaI4QQWbjuOjj2WDjssJDp3iG9n6RWG4VCY8p9pE8ysxfNbKKZrZfl8d7Au83uz8vsWw0zO97MZprZzIULF5ajrUIIkWxGjYILL4RbboHTTgupcaIqaNdgbmaPmNnLWbZ9gCuBfsB3gPeB32d7iiz7sv72ufsEdx/g7gO6d+/enmYLIUR6OeOMEPV62WVw0UVRt0ZUiHYlwLn7HsWUM7NrgClZHpoHfK3Z/Y2B+e1pkxBCVDVm8Pvfw8KF8ItfhNjXY4+NulWizJRzNXvPZnf3A17OUuyfwOZmtqmZdQYOAUpx+XwgbkEPcsghhxyVcHToANdfH6Jef/KTkBhHPINQ5Ih5aAzwF+Al4EXCAN0zs78XMK1ZuWHAHMKq9rOLeW6FxsghhxxyFFF+yRL3HXd0X2MNf+qCv8cuCEWOBITGuPsR7v4td9/W3fd29/cz++e7+7Bm5aa5+xbu3s/dLyhZA+Ic9CCHHHLIUQnHmmvClCmw2WZsd97ebL70BSA+QShytK5OPtJ73ULcgx7kkEMOOSrh2GADmD4d1lqb6QxhU/4dmyAUOVpXJx9lu868nBR9nfm8+8I71p6DYOO9S19eDjnkkCMpjldfZcUOA/nc1uO5y2cw+MgNC1a5775wxjhoEOxdZDdaW0eO4uoUus483YO5EEKIVTzzDOy+O2yxBfz977DOOlG3SBRJ1KExQggh4sIOO8Ddd8PLL8O++8Ly5VG3SJQIDeZCCFFNDB4MN94YzswPPxwaGqJukSgBGsyFEKLaOOww+OMfw1n6iScq9jUFpHswT1rQgxxyyCFHpRynnBIS4iZMgHPOyVo8LWEraXHkJd9F6HHdFBojhxxyyFECR2Oj+7HHhuSS8eO/UjwtYStpcRBVaEzkJDnoQQ455JCjEg4zuPLKsBjuf/4Hbr31y+JpCVtJi6MQ6R3Mkx70IIcccshRCUfHjmEQ//734aijvhxV0hK2khZHIdJ9nXkagh7kkEMOOSrh+PzzMKC/+SY89hhsv30qwlbS4lBojBBCiOL44APYZZcwsD/1FGy1VdQtEhkUGiOEEKI4NtoonCrW1ITr0efNi7pFokg0mAshhFhFv37w4IPw6adhQP/kk6hbJIpAg7kQQoiv8t3vwuTJ4fPzH/1o1bJrEVvSPZinMehBDjnkkKMSjh/8AP50GjzzNAzfFerri1LEMWwlLY685LsIPa6bQmPkkEMOOSrkGEVINjlgN/eGhrxV4hi2khYHCo0hfUEPcsghhxyVcuwOHAjc9Xc4/fS8Oe5xDFtJi6MQ6R3M0x70IIcccshRKccBtXDMXvCHP8Cll+asEsewlbQ4CpLvtD2uW1HT7O5hmujZMcVNQbWlvBxyyCFHtTgaGtwPOSTMC0+cmLPK5MnuY8YUN9XclvLV6qDANLu5QmOEEEIUw4oVMHw4PPpo+PrUYqPORLtRaIwQQojS0Lkz3HUX9O8PI0bAk09G3SKRQYO5EEKI4qmrg6lToU+fcJb+4otRt0igwVwIIURr6dYNpk8PA/uQIfCf/0Tdoqon3YN53EIY5JBDDjnS4ujTJwzoy5eH2NcFC4B4hq2kxZGXfKvj4ropNEYOOeSQIyaOGTPca2vdt9vOp976eezCVtLiQKExxC+EQQ455JAjLY6dd4Y77oDZs+n3s/1YufQLID5hK2lxFCK9g3ncQxjkkEMOOdLi2GsvmDiRLd97jFtrfkwHGmITtpIWR0HynbbHdVNojBxyyCFHDB2//707+OPbnOCT720sqkoaAl0q4UChMUIIISrGGWfAJZfAuefCr38ddWtSQ6HQmI5lFN8GbJm5uy7wmbt/J0u5ucBioAFYma+xQgghYs5FF8HChWEw794dTjwx6hZVBWUbzN19RNPPZvZ74PM8xX/g7h+Vqy1CCCEqhBlMmAAffRSuu+rWDQ4+OOpWpZ6yL4AzMwMOBm4tt0sIIUQM6NgRJk2CXXaBH/8YHnkk6halnkqsZv8e8KG7v5HjcQceMrNZZnZ8ricxs+PNbKaZzVy4cGFx5qSFMMghhxxypMXxySMhDWWrrWC//SDHOqe0BLokOjQGeAR4Ocu2T7MyVwI/zfMcvTK3PYDZwK6FvAqNkUMOOeRIiOO999z79nXv3t399de/UjwtgS6JD41x9z3cfZss22QAM+sI7A/cluc55mduFwD3ANu3p01fkuQQBjnkkEOOtDh69QqxrxAupp4//8viaQl0qYbQmD2A19x9XrYHzWxNM1ur6WdgEOHMvv0kPYRBDjnkkCMtji22gAcegI8/Djnun34KpCfQJfWhMcANwOgW+3oB0zI/b0aYWp8NvAKcXczzKjRGDjnkkCOBjkcece/c2X2XXdz/+193T0egSyUcKDRGCCFEbLjjDhgxIkTA3nNPWPkuClIoNCa92exCCCHix0EHwRVXwJQpcNxxkMATyjiit0RCCCEqywknhO8/P/dc6NEDLr446hYlHg3mQgghKs8554QB/ZJLwoD+059G3aJEo8FcCCFE5TGD8eNDjvvPfhZy3I88MupWJZZ0f2Yeh0Sl+iWwaE64LZejveXlKI+j6di/fVuy+9FexzPHw5wrV/0NlMMR59eq5f+AcjiKJW6Omhq4cAT8v41h5DEwdWpRijimsyU6AS6qLREJcA317v88yX1SrfttdeH2sb3cb61NRmqTHG2v0/zYT+oSyt5MOPZJ6kd7He/c7X5zx2b97xxel4b6ZPWjPY6bO4Z+N/0PyNX/uPej3I5rcd+sg3uXzu4zZuStEsd0tsQnwMWaqBOVnhsLb02EhmWwckm4/WA6NC4rnaMS/ZCj9XWaH/uG5av2Ny5LVj/a63jx18DKVfcbV4TX5bmxpXPE/bViZeh30/+AXP2Pez/K7agFftYI3WvhRz+CV17JWSWO6WzVkAAXHVGmHdUvgbeua/YHncGb/WNLQmqTHK2vk+vYN9Hje+13tLd8JRz1S2Dx66vvb1gaXp9sU85x7EdbHR1qsz+Wq/9x7UclHet3hUmXQpcuISXu7bezVoljOlscEuDSHRoz777wzq/nINh479KXz1Vn0Rx4sH94N96Smi6w8QHQ5+D2OSrRDzlaX6fQsR86G9beIv79aG/5fK9DxzoYMiv76xC3frS1zpwrYdYp4PWrP5ar/3HsRxSOl16CXXcNK9yfeiosjGvBffeFM9lBg2DvIhStLR9HR6HQmHQP5lFRvwTu7hGm1VpSUwv7L4BOdZVvlyg/OvaBan8dqr3/7eWpp2DPPeFb34LHHoM6vVZKgIuCTnXQb9Sq6aMmarqG/fojTi869oFqfx2qvf/tZeBAuP12eO452H9/WLEi6hbFHg3m5WK7cdBvZHgX3rEu3PYbGfaLdKNjH6j216Ha+99ehg+Ha66Bhx+Go46CxsaoWxRrNM1ebuqXwLL5UNtL78arDR37QLW/DtXe//ZyySVwxhnhguzx40PYTBVS3dPscQhI6FQXFro0/RGnIehBjuLqNB37Dx9Ldj/a63jhTFj0WnEDWZz70VZHy/8B5XAUSxIdp58eol7/9Ce44AIgnoEuCo1Ja2iMHHLIIYccpSnf0OB+xBHu4C+ccFXsAl0UGlNO4hyQIIcccsghR/HlO3SA666DYcP41lUnMmTpXUB8Al0UGlNO4h6QIIcccsghR/HlO3WCO+7gsy124BYOYzf+FptAF4XGtJHYh8bIIYcccshRHscnn7DoO9+j0wfv8swlj7Pbqd8tWEWhMTElUavZhRBClJZ582DnneGLL2DGDPj616NuUdmp7tXsQggh0sfGG4dT2oaGcFr7/vtRtyhyNJgLIYRIHlttBdOmwYIFMHQofPZZ1C2KFA3mQgghksn228Pdd8O//gX77APLsmThVwnpHsyTGJAghxxyyCFH8XUGDYIbb4Qnn4TDDoOVK1crrtCYmG4KjZFDDjnkkOMrdcaPDwkso0a5NzZ+WVyhMUknyQEJcsghhxxytK7OySfDL38ZwmXOPvvL4gqNSTpJD0iQQw455JCjdXV+8xs4/ni48EL44x8BhcbEGoXGyCGHHHLIkbVOQwMcfHBYGPfXv8Lhhys0Jq4oNEYIIUROli8Pl6s99RTcfz8MGRJ1i9qNQmOEEEJUF126wOTJsM02cMAB8PTTUbeo7GgwF0IIkT7WXhsefBB69oS99oJXX426RWWlXYO5mR1kZq+YWaOZDWjx2Flm9qaZvW5mg3PUX9/MHjazNzK367WnPUIIIcSXbLhh+FC6U6fwwfS770bdorLR3jPzl4H9gSea7zSzbwKHAFsDQ4A/m1lNlvpnAo+6++bAo5n7pSONAQlyyCGHHHIUX2ezzeDGM+HTBbD7zvDxx0UpqjI0Bvg7MKDZ/bOAs5rdnw7slKXe60DPzM89gdeL8Sk0Rg455JBDjlY5fol7J9y/u4X7kiV5qyg0ZhW9gebzGfMy+1qyobu/D5C57ZHrCc3seDObaWYzFy5cWLgFaQ9IkEMOOeSQo3jHN4CTgNlvwIEHQn19ziqpDI0xs0fM7OUs2z75qmXZ165r4Nx9grsPcPcB3bt3L1wh6vACOeSQQw454uXYoStcdGJYGHfMMdDYmLVKEkNj0jvN7h6mV54dU9zUTVvKyyGHHHLIkTzHBReE+e1TTvlKjntzJk92HzOmuCnztpRvbR0KTLOblyA0xsz+DvzM3Wdm7m8N3AJsD/QiLG7b3N0bWtS7FPjY3S8yszOB9d3954V8Co0RQgjRZtxh7Fi47DL43e/grLOiblFByhoaY2b7mdk8YCdgqplNB3D3V4DbgX8BDwJjmgZyM7u22WVsFwF7mtkbwJ6Z+0IIIUT5MIM//CF8ZeovfgHXXht1i9pNSc7MK43OzIUQQrSbFStCKPrDD8Ndd8G++0bdopwozlUIIYTIRufOYRD/f/8PDjkEnniicJ2YosFcCCFE9bLmmjB1agiXGT4cZs+OukVtIpHT7Ga2EHi7yOLdgI/K2JwoUJ+SgfqUDNSn5JDGfhXbpz7unvO67EQO5q3BzGbm+5whiahPyUB9SgbqU3JIY79K1SdNswshhBAJR4O5EEIIkXCqYTCfEHUDyoD6lAzUp2SgPiWHNParJH1K/WfmQgghRNqphjNzIYQQItUkfjA3s4PM7BUza2wWE9v02Flm9qaZvW5mg3PUX9/MHjazNzK361Wm5cVjZreZ2QuZba6ZvZCj3FwzeylTLtYReWZ2rpm916xfw3KUG5I5fm9m8vtji5ldamavmdmLZnaPma2bo1zsj1Oh190C4zOPv2hm20XRzmIxs6+Z2d/M7NXM/4tTspTZzcw+b/Y7eU4UbW0NhX6XEnictmz2+r9gZovM7NQWZRJxnMxsopktMLOXm+0rarxp0/+9fN/CkoSN8C21W7L6N7d9E5gNrAFsCrwF1GSpfwlwZubnM4GLo+5Tgf7+Hjgnx2NzgW5Rt7HIfpxL+HKefGVqMsdtM6Bz5nh+M+q252nvIKBj5ueLc/0uxf04FfO6A8OABwhfd7wj8EzU7S7Qp57Adpmf1wLmZOnTbsCUqNvayn7l/V1K2nFq0fYa4APC9dWJO07ArsB2wMvN9hUcb9r6fy/xZ+bu/qq7v57loX2ASe7+hbv/B3iT8C1u2crdmPn5RmDfsjS0BJiZAQcDt0bdlgqxPfCmu//b3VcAkwjHK5a4+0PuvjJz92lg4yjb0w6Ked33AW7ywNPAumbWs9INLRZ3f9/dn8v8vBh4FegdbasqQqKOUwt+CLzl7sUGhMUKd38C+KTF7mLGmzb930v8YJ6H3sC7ze7PI/sf74bu/j6EP3igRwXa1la+B3zo7m/keNyBh8xslpkdX8F2tZWTMlN/E3NMNxV7DOPISMIZUTbifpyKed0Te2zMrC/wXeCZLA/vZGazzewBC1/lHHcK/S4l9jgBh5D7xCVpx6mJYsabNh2zjiVpXpkxs0eAjbI8dLa7T85VLcu+2C7dL7KPh5L/rHwXd59vZj2Ah83stcy7w0jI1yfgSuB8wjE5n/DxwciWT5GlbqTHsJjjZGZnAyuBm3M8TayOUxaKed1jd2yKwczqgLuAU919UYuHnyNM6S7JrOG4F9i8wk1sLYV+l5J6nDoDewPZvmg8icepNbTpmCViMHf3PdpQbR7wtWb3NwbmZyn3oZn1dPf3M9NPC9rSxvZSqI9m1hHYH+if5znmZ24XmNk9hOmayAaJYo+bmV0DTMnyULHHsGIUcZyOAn4E/NAzH4BleY5YHacsFPO6x+7YFMLMOhEG8pvd/e6Wjzcf3N19mpn92cy6uXtss8CL+F1K3HHKMBR4zt0/bPlAEo9TM4oZb9p0zNI8zX4fcIiZrWFmmxLeuT2bo9xRmZ+PAnKd6UfNHsBr7j4v24NmtqaZrdX0M2Ex1svZysaBFp/b7Uf2tv4T2NzMNs28Uz+EcLxiiZkNAc4A9nb3pTnKJOE4FfO63wccmVktvSPwedP0YRzJrDe5DnjV3f+Qo8xGmXKY2faE/48fV66VraPI36VEHadm5JyFTNpxakEx403b/u9FveKvvRthIJgHfAF8CExv9tjZhFWBrwNDm+2/lszKd2AD4FHgjczt+lH3KUc/bwBGt9jXC5iW+XkzwqrH2cArhGnfyNudpz9/AV4CXsz8ovZs2afM/WGElcdvJaBPbxI+63ohs12V1OOU7XUHRjf9DhKmAq/IPP4Sza4kieMGDCRMVb7Y7PgMa9GnkzLHZDZhAePOUbe7QJ+y/i4l+Thl2tyVMDiv02xf4o4T4c3I+0B9ZowalWu8KcX/PSXACSGEEAknzdPsQgghRFWgwVwIIYRIOBrMhRBCiISjwVwIIYRIOBrMhRBCiISjwVwIIYRIOBrMhRBCiISjwVwIIYRIOP8fqOjv3AD/rLUAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 576x432 with 1 Axes>" ] @@ -137,7 +145,7 @@ "<img style=\"float: center;\" src=\"data/svm_classification/MMC11.png\" width=\"500\"> \n", " \n", "\n", - "Although this method is a simple and useful method, in most of the classification problems in real life there isn't a separating hyperplane and it is not possible to find a maximal margin classifier. A sample of such data set is plotted at the following cell. As you can see for this data set a separating hyperplane can not be defined and considering any line will misclassify some points. In addition, MMC is too much sensitive to support vectors and when these points are close to the hyperplane the margin would not be satisfactory. This may lead to overfitting of the training data and higher error rates in the classification of test data." + "Although this method is a simple and useful method, in most of the classification problems in real life there isn't a separating hyperplane and it is not possible to find a maximal margin classifier. A sample of such data set is plotted at the following cell. " ] }, { @@ -184,7 +192,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "However, MMC can be extended to the non-separable data sets by defining a new separating hyperplane that doesn't perfectly separate the classes. This new classifier is called soft margin or support vector classifier which is the subject of the next section. " + "As you can see for this data set a separating hyperplane can not be defined and considering any line will misclassify some points. In addition, MMC is too much sensitive to support vectors and when these points are close to the hyperplane the margin would not be satisfactory. This may lead to overfitting of the training data and higher error rates in the classification of test data. However, MMC can be extended to the non-separable data sets by defining a new separating hyperplane that doesn't perfectly separate the classes. This new classifier is called soft margin or support vector classifier which is the subject of the next section. " ] }, { @@ -197,11 +205,11 @@ "\n", "Then for $n$ training observations $x_1,...,x_n \\in \\mathbb{R}^{p}$ and associated class labels $y_1,...,y_n$, SVC is an optimization problem and the solution to this problem would be a seperating hyperplane as follows: \n", "<p>\n", - "<center> $\\underset{\\beta_0,\\beta_1,...,\\beta_n,\\varepsilon_0,\\varepsilon_1,...,\\varepsilon_n}{Maximize}$ M\n", + "<center> $\\underset{\\beta_0,\\beta_1,...,\\beta_p,\\varepsilon_0,\\varepsilon_1,...,\\varepsilon_n}{Maximize}$ M\n", "\n", - "<center> subject to $ \\sum\\limits_{j=1}^{n} \\beta_j^2 =1$\n", + "<center> subject to $ \\sum\\limits_{j=1}^{p} \\beta_j^2 =1$\n", "\n", - "<center> $y_i(\\beta_0+\\beta_{1}x_{i1}+\\beta_{2}x_{i2}+,...,+\\beta_{p}x_{ip}) \\geq M(1-\\epsilon_i)$\n", + "<center> $y_i(\\beta_0+\\sum\\limits_{j=1}^{p}\\beta_{j}x_{ij}) \\geq M(1-\\epsilon_i)$\n", "\n", "<center> $\\epsilon_i \\geq 0, \\sum\\limits_{i=1}^{m} \\epsilon_i \\leq C$\n", "\n", @@ -305,11 +313,13 @@ { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "scrolled": false + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAGQCAYAAACtTRl2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABQdklEQVR4nO3dfZQcV3kn/u/T0y2NxvILHg3II7elieMEbIiJEJbiUczkFxIM+YFJNmxw2A0hcPyzRV442UgO64AQLBAksrwES14fY7w5uwsniRJe8gKBbAZH4wiQBQYbQ7A9yC1NjEYykZGlkaann98f3S319HRV3aq6VXWr+vs5hyM83dN9u6arnrr3Pve5oqogIiKi4ill3QAiIiJKBoM8ERFRQTHIExERFRSDPBERUUExyBMRERUUgzwREVFBMcgTFZSIfF9Evp91O4goOwzyRORJRFREJrNuh4k8tZUoLQzyREREBcUgT0REVFAM8kQ5Jk2/LSKPiMiciBwRkY+JyMU9nnuxiGwVkf8rIodF5KyIzIrIZ0VkU9dzf1NE2jWvX9YaCm//711dz9srIk+IyGkReUZEpkTkP3m098dE5G4Reaz1/KdF5FsicpeIDPd4/s0i8k8i8sPW53tURP5IRJaHbStRPxLWrifKLxH5CIDfBfBvAP4SwDyAmwD8EMAaAGdVdV3ruZsA3N/63+Ot51wB4DUAlgN4tap+vvXcFwN4LYDtAA4BuK/jbSdVdbL1vNMAvg3gW602DAN4Veu9/5uqvqOjrZcBeBjARQD+DsB3AAwCGAPw8wA2qurDHc//OIDfAnAYwD8A+HcAmwBcD2ASwC+oat20rUT9iEGeKKdE5HoAU2gG7OtU9enWzwcB/BOaAfFQR5C/GEBFVY91vc7lAL4K4ISqvqDrMQXwZVWd8GjDlar6eNfPlgH4ewA3AFinqkdaP/8dAB8F8DZV/UjX71wAoKGqp1v//ZsAPgHgrwG8of3z1mPvQjOgL3qdoLYS9SMO1xPl15ta/763HeABQFXnALy9+8mqeqI7wLd+fhjNUYDni8gVYRrQHeBbPzsL4E4AZTR76N1Od/9AVZ/tDOQAfg9AHcBvdf0cAN4D4DiAN4RpK1E/KmfdACKKbH3r3y/3eOyf0QySi4jIOJoB9GcAPBfAsq6nrAHwpGkDWjcFt6MZzK8AsKLH67V9FsD7ANwpIq8A8AU0RyK+rR1DiiIyBOBaAMcAvE1Eer31GQAv6PUAEZ3HIE+UX+3kuh90P6CqCyJyvPNnIvLLaPbY5wB8Ec1h/mcBNABMAHgZmnPzRkTkx9Ac5n8OmjcV/wDgBIAFAOsAvLHz9VT1kIhcB+BdAG4E8Cuth2oi8kFV/Wjrv58DQACMoDksT0QRMcgT5deJ1r/PA/BE5wMiMoBmEtyRjh+/B8BZABtU9dGu5/8PNIN8GL/feo83qep9Xa93M5pBfpHW+/6aiJTR7K2/HMDvAPiIiDyrqh/v+FxfV9X13a9BROY4J0+UXwdb//YKzj+LpTfxP47m0Hh3gC8B2OzxHg0AAx6P/Xjr3709HvO9YVDVuqo+qKofAHBz68evbT12EsAjAK4RkUv9XidEW4n6EoM8UX7d1/r3js5g2Mquf3+P538fwFUiMtrxXEFzSPxqj/c4DqDq8dj3W/9OdP6wNd/+lu4ni8h1IvK8Hq/T/tmpjp/9dzTzBe4VkUt6vNZzRKS7l+/XVqK+xOF6opxS1SkR+VM0h7sfFpHudfL/1vUrHwJwF4Cvi8je1nPH0QzwnwPw6h5v848AXi8inwPwIJrJfPer6v0AdqOZ4f8Xrdc7AuCFaM63/zmAX+t6rV8H8FYR+TKAx1ptvLL1vmcAfLjjs90rIi8BsAXA4yLyBTQTAi9Fc139DWgusbvVsK1EfYlBnijffg/AvwJ4K4D/D83e7F8D+K8AHup8oqr+DxE5A+BtaM6Xn0YzYe5NAP4Degf53wOgaGbPvwrN0b8daAbPb4rIzwH4b63Hyq33/BU0C9d0B/lPopmIdz2aKwNWoHlj8CkAf9JZCKfV3reKyN+jGchfDuASAE+jGex3Afhfpm3t8bmI+gKL4RARERUU5+SJiIgKikGeiIiooBjkiYiICopBnoiIqKAyC/Iicq+IHBWRhz0ev1hEPiciD7X2yn5Tr+cRERFRb5ll14vIDQBOAvgzVX1hj8f/K4CLVfV2ERkB8F0Aq1s7XHlatWqVrlu3LokmExEROenBBx88pqoj3T/PbJ28qt4vIuv8ngLgwlZFrpVoro9dsqtWt3Xr1uHAgQN2GklERJQDInKo189dLobzMTS3ppwBcCGAX1PVRrZNIiIiyg+XE+9eAeAbAEYBvBjAx0Tkol5PFJFbROSAiByYnZ1Nr4VEREQOcznIvwnAX2nTYwCmATy/1xNV9W5V3aCqG0ZGlkxJEBER9SWXg/yTaNagRmvnqp9E157ZRERE5C2zOXkR+SSaW1SuEpHDaG53WQEAVb0LwHsA3Cci3wIgAG5X1WMZNZeIiCh3ssyuvzng8RkAv5hSc4iIiArH5eF6IiIiioFBnoiIqKBcXidPBVU/WUdtVw0zu2cwf3weleEKRreMorq1ivJKfiWJiGzhFZVSVT9Zx8FNBzH3+Bwac83aRvPH5lHbWcPs3lms37+egZ6IyBIO11OqartqiwJ8W2OugbnH51DbVcuoZURExcMgT6ma2T2zJMC3NeYamNkzk3KLiIiKi0GeUjV/fD7W40REZI5BnlJVGa7EepyIiMwxyFOqRreMojTY+2tXGixh9LbRlFtERFRcDPKUqurWKgavHFwS6EuDJQxeOYjq1mpGLSMiKh4GeUpVeWUZ6/evR3VbFZWRClACKiMVVLdVuXyOiMgyXlEpdeWVZYztGMPYjrGsm0JEVGjsyRMRERUUgzwREVFBMcgTEREVFIM8ERFRQTHIExERFRSDPBERUUExyBMRERUUgzwREVFBMcgTEREVFIM8ERFRQTHIExERFRSDPBERUUExyBMRERUUgzwREVFBMcgTEREVFIM8ERFRQTHIExERFVQ56wYQEVH+1U/WUdtVw8zuGcwfn0dluILRLaOobq2ivJKhJis88kREFEv9ZB0HNx3E3ONzaMw1AADzx+ZR21nD7N5ZrN+/noE+IxyuJyKiWGq7aosCfFtjroG5x+dQ21XLqGXEIE9EAICT9Tq2T09jZGoKpclJjExNYfv0NE7W61k3jRw3s3tmSYBva8w1MLNnJuUWUVtmQV5E7hWRoyLysM9zJkTkGyLyiIh8Oc32EfWTk/U6Nh08iJ21Go7Nz0MBHJufx85aDZsOHmSgJ1/zx+djPU7JybInfx+AG70eFJFLAOwG8BpVvQbA69JpFlH/2VWr4fG5Ocw1FvfG5hoNPD43h101DreSt8pwJdbjlJzMgryq3g/gaZ+n/DqAv1LVJ1vPP5pKw4j60O6ZmSUBvm2u0cCeGQ63krfRLaMoDfYOJ6XBEkZvG025RdTm8pz8TwB4johMisiDIvIbXk8UkVtE5ICIHJidnU2xiZRXnH9e7Pi8/3Bq0OPU36pbqxi8cnBJoC8NljB45SCqW6sZtYxcDvJlAC8B8EsAXgHgHSLyE72eqKp3q+oGVd0wMjKSZhsphzj/vNRwxX84Nehx6m/llWWs378e1W1VVEYqQAmojFRQ3Vbl8rmMuXzkDwM4pqrPAnhWRO4HcC2Af822WZR3JvPPO8bGMmpdNraMjmJnrdZzyH6wVMJtoxxuJX/llWWM7RjD2I7+Ondc53JP/jMAflZEyiIyBGAjgEczbhMVAOefl9pareLKwUEMlhZfEgZLJVw5OIitVQ63EuVRlkvoPgngXwD8pIgcFpE3i8itInIrAKjqowA+D+CbAL4K4B5V9VxuR2SK889LrSyXsX/9emyrVjFSqaAEYKRSwbZqFfvXr8fKssuDfkTkRVQ16zZYtWHDBj1w4EDWzSCHjUxN4ZhPIB+pVHB0fDzFFhERxSMiD6rqhu6fuzxcT5SILaOjS4al2zj/TERFwiBPS9RP1jG9fRpTI1OYLE1iamQK09unUT9ZjKxzzj8TUb9gkKdF2rtJ1XbWMH9sHtDzu0kd3HSwEIGe889E1C94NaNFTHaTKsISmZXlMnaMjfXdUjki6i/sydMiUXaTKvrwPhFRXrEnT4uE3U2qPbzf2ftvD+/P7p1ltSsiogyxJ0+LhN1NymR4n4iIssEgT4uE3U0qyvA+ERGlg+OohPrJOmq7apjZPdMcji8BGACwcP45XrtJhR3eJyKi9DDI97lec+pYAKQs0AEFGkBlVQWjt42iurW6ZH69MlxpLrXzEDT8T0REyWGQ73Nec+paV5QGS6huq/oumRvdMorazlrPIftew/tElLzu0bnKcAWjW3rfqFOxcU6+z8WdU69urWLwysEl8/hew/tElKx+KGhF5hjk+1zcOfXyyjLW71+P6rYqKiMVoARURiqobqty+RxRBrjihTrxCtznbMypl1eWMbZjrBCV8IjyzmR0judq/2BPvs+FXTJHRG7jihfqxCDvkCzKw3JOnahYwha0omJjkHdEVskynFMnKhaOzlEnUdWs22DVhg0b9MCBA1k3I7Tp7dO+S9GClrIREQEetS9wfnSON+/FJCIPquqG7p+zJ+8I06Vs3PGNiPxwdI46sSfviMnSJOD3pygBm09s5h06EREtwZ6840ySZbj+lYiIwmCQd4RJsgx3fCMiojAY5B1hspSN61+JiCgMBnlHmCTLcP0rERGFwSwthwSVh+WOb0REFAZ78jnC6nRERBQGg3yOcP0rERGFwagQU/1kHbVdNczsnsH88XlUhisY3TKK6tZqIkG3iDu+pX0MiYj6BYvhxMDykfHxGBIRxcdiOAlgcZr4kjqGLP9LRMQgHwuL08SXxDHMakc/IiLXMMjHwOI08SVxDDnCQkTUlFmQF5F7ReSoiDwc8LyXisiCiPxqWm0zxeI08SVxDDnCQkTUlGVP/j4AN/o9QUQGAHwAwBfSaFBYJvXmyV8Sx5AjLERETZkFeVW9H8DTAU/7HQB7ARxNvkXhsThNfEkcw7yOsJys17F9ehojU1MoTU5iZGoK26encbLOHIIiY5IoJcnZOXkRWQPglwHcZfDcW0TkgIgcmJ2dTb5xLSxOE18SxzCPIywn63VsOngQO2s1HJufhwI4Nj+PnbUaNh08yEBfUEwSpaRluk5eRNYB+BtVfWGPx/4CwJ+o6n4Rua/1vL8Mes0018mTm/K49n779DR21mqYayzNJRgslbCtWsWOsewKIJ2s17GrVsPumRkcn5/HcKWCLaOj2FqtYmXZrWOZJ9Pbp333o6huqxaq8BUlx2udvMtBfhqAtP5zFYBTAG5R1U/7vSaDvFuyqmZ37n33dLzvbe5W0RuZmsKxee9cgZFKBUfHxwNfJ4lg3B5leHxubtFNyGCphCsHB7F//XoG+oimRqaaPXgPlZEKxo8G/92JvIK8s2emqp67fe3oyX86swZRaL161O2hyNm9s4n2qPNW/ve4T4A3eRzoHYzbQ/57Z2cjB+NdtdqSAA8Ac40GHp+bw65aLdNRBj+uj0AwSZSSluUSuk8C+BcAPykih0XkzSJyq4jcmlWb8sjlpB2uVzc3XPFPBgx6HDALxlHsnpnpOY3Qfu09M24uScxDnkNek0QpP7LMrr9ZVS9T1YqqXq6qH1fVu1R1SaKdqv6myXx8v3E9aYfr1c1tGR3FYKn36ThYKuG20eBkwaSCsY1RhiwkddNjUx6TRClfnM2up2Cu95Q5FGlua7WKKwcHlwT69rz31mrwUsKkgrGNUYYs5GEEgstwKWkM8hmwNcTuek+ZQ5HmVpbL2L9+PbZVqxipVFBCM9luW7VqPJeeVDC2McqQhTyMQHAZLiWN36CU2UxGc72nPLpl1Hd5kN9QZD/uMb+yXMaOsbHISWxbRkd9l+FFDcZbq1XsnZ31zK43GWXIwnCl4rtiwZURiKySRPvxHOtH7MmnzOYQe2BPWJFpEl7UoUjXcw1cZWPIvxcbowxZyOsIRJLao4j7Vu3Dvgv34dC7D/XlOeZywrJtma6TT4Lr6+Rtrov1K6TRlnUBmCjr1VkgJLr2krE9HUvGbnNoyViauL5/Ma8iUd2Kfo7lsViWCSeL4STB9SA/WZoE/A55CZhYmDB6raKetCwQQrbwpuc8k05BW5HPsaJ2IryCPIfrU2YzGa0zaedcbcAeXEjCC8P1XAPKh85COMfm53FpHwd4wD9Rt1uRzzHXE5ZtY5BPme11se2knSB5OmmZlU9xuVAIx7V53zDXgCKfY/3WiWCQT1lS62KLFBhZIKT4kt5WN+tCOC4mj5peA6KeY67d1Hgp0rXSBIN8ypJaF1ukwMgCIcWWRi8760I4Lhaq8rtGtEU9x1y8qfFSpGulCQb5DLSH2MePjmNiYQLjR8cxtmMsVkZnkQIjC4QUWxq97KwL4bg47+t1jWirrIp+jsW9qUlzFKBI10oTzK4vkLxtr0r9yda2ulm/h18xmX0X7bO2isampK4RcVbEZLGkrYjXSi6hIyInlCYng+IfFiYmYr3H9ulp3+p/26rVWNvjBgWms0+dRf24dy+0aEvU4iwNLuqStrRxCR0lKi9JN5S9NDa8Sar6X1vQ8PQF11zQV/O+cZLZXJzaKBIG+T5kOyDnKemGspdGudmkS/EGBaZnv/1sX837xklm67clbWnL5+QDRWZzg5w2k6QbDrdRuzjNnUeOeA6j29zwJu6GP36CAk/96To2TW8KnPd1YZMYG22obq1idu+s5/SF301NZbjiP59fsCVtaeOcfJ9JYv6LZWgpiFcd+bZV5TK2rFmTm2p0Nr7zLtRQt9mGqMlsnJO3g3PyBCCZ+S8Ot1EQr2VzQLMHv2XNGuwYG8tFgAfsrLV2YS29zTZEXRrcb0va0sYg32eSCMj9VkGq6JKoRpd1cZoo/HJXbAQmFxLO0mqD37FkXYxk8ejlUJw5tCTmv0a3jPoOtxUtk9hFnZuxtHdb2xJhM5Zew+rtanR7Z2cjJ60lUZzG1mfuxSR3Zf3+9bHWWrswApZGG0zzgMZ2jHFYPgHsyedM3Ez2JEo6crgtWzbLxCZVjc72srmkS+OaDGPHrVzpwghYGm1wYVqinzHI50zcEyaJgJzlcBvX59sNzEkNq9teNpd0adw0hrFdqKGeRhtcmJboZwzyORP3hEkqIMft1UQJ1lyf32QzMCdV8912cZqk5/iTHsaun6yjcbaBxnzvKS6bI2BJ5RaYnrMuTEv0M87J54yNE8a1+a+oa/fzvj7f1pyyzcA8XKn41nyPWo2uXZxmV62GPR2f97aIc+hJb0CT5Nrtzu87FroeHADWvG0N1t6x1soIWFK5BWHOWa6DzxZ78jnjwjyebVGnIPI8DGhzTtnmfHeS1ejaxWmOjo9jYWICR8fHIy+bS7o0bpLD2F7fdwAoVUooLStZm+JKKrcgzDnrwrREP2OQz5kinjBRg3WehwFtzinbDMxJ13y3JenSuEkmk6Z5c5rUe4V5XSbmZotBPmeKeMJEDdZ5HtWwOafsF5gvHBjAnUeOGK93T7rmuy1J34wkmUya5s1pUu8V5nW5Dj5bLGubQ0XbCzlqidA8l8O0vd1qe36/Pd99aaUCqOJHCws403GOt4OgSwE7qu7PHGeOP01ploFO6r1Yyto9LGtbIHEz2V0TdQoiz6MatueUu+e7t4yO4mSjsSjAA/aWmLnA5hx/mtKcckvqvYo4bVhUDPKUuajBOs/DgG9ZvRri8ZgAePPq1QCil5jNYxnZfpHmzWlS75XnG+x+wyBPmYsTrG2ParhUXCdOBn7SS8woujRvTpOsi5HXG+x+wzl5opY0t/4cmZryXY8+0ppf3lmree7ctq1a9dwr3eT1j45zzjSKJGvmE0Xl3Jy8iNwrIkdF5GGPx98gIt9s/e8BEbk27TZSf0mzxrZJTzvOkHvSS8z6VdI184lsy3K4/j4AN/o8Pg3gZar6UwDeA+DuNBpF/SvN9csmiXdxhtzzst49b5KumU9kW2ZBXlXvB/C0z+MPqOoPW/+5H8DlqTSMInNpPjuKNNcvm/S042Tg52W9e94woZHyJi9n+psB/H3WjUhCnL3hXRK1/rxL4tbYDjNXu7Vaxd7Z2SW9wu6ett+cfNCQe3uJmde8fdg2ExMaKX+cz64XkZ9DM8jf7vOcW0TkgIgcmJ2dTa9xMRVpF7Ui7BkdZ+1v2Llak5520kPunF8OL+ma+bRU3kcIs+Z0kBeRnwJwD4CbVPW41/NU9W5V3aCqG0ZGRtJrYExFCIxted4spi3O2t8oc7VBxVySHnLn/HJ4TGhMl1dH6NC7D2Hfhfuwb9U+BvwAmS6hE5F1AP5GVV/Y47ErAPxfAL+hqg+YvmaeltAVqTTkZGkSQXVaJxYmUmpNdFFLBruyZC3M8HuYNnNYv6k9+uE1zcJ8B7v8Sle3JbHENY+8ltBlFuRF5JMAJgCsAvADANsBVABAVe8SkXsA/AcAh1q/Uu/1AbrlKcgXJTACxbphiSKoFr0o8M//sZJo3kXYAGRaP5+BbbE81MxPMtcnzTyioOtKm+t7VaTBK8hn9o1U1ZsDHn8LgLek1JxMxE30csnollHfzWKKXst6uFLx7RVffALn/tZJJSSaDL93JuEFtbk9vxz2dYvOJKExaX6BFkBiSbBpJ9iarmhpTwn2c5D34vScfNG5ssmDjcSWfq9l7TdXu+wM8JrPLP5ZEnkXYZd3mc4vc9mYW3wTdq87iG/e+E2ceuRUIrk+aecRheno2FziWiQM8hlyITDayvDv91rWXpnwy84AozPA6z+19HdsJySGXd5lmr3PZWNu8Qu0p75zCs9MPeP5u3G/c2kn2Pp1hLrlaeQzTQzyGXIhMNq8My/aFrhhLMqEL1cgClxyohncd28BVsz1/j2bvY+wy7tMs/e5bMwtfoHWN8miJc53LsmCUb1GFBtnG1i+bnlgoI878lnkZXrcoKbP9UPCXJqJQl6b3HixeXy3T09H3tAmi9elaAITdgPE+c4ldb3w3RxqbBDDNw3jqXue6vnecbPr09yYKknObVBDbkjqztyVO+O0Cw55jYz0YjvvIqniOayD75bSiuiX7bjfuaTyiHxHFKfnUFpWwvjsODb/aDPWvnOt1ZHPItUr6YVBPmdsB8+geawo81wuVfJL+wT2HUrtkETeRVLFc1gH3w5r526MXnzc71xSeUQmc/2LRuSOzaNyqVkNCxvvnWccrs+RJIaV/IpNRF17msRrRpX2dITJUGplxM7FybaoBW/iFMrp/t1Ly2Vcc8EFeOTZZ/F0vV6Yojs2z91JmYzUhotvuBgv+tsX2VsnH7JglJ/A80aAoauHEhlSL0q9EueK4SSlyEE+ieBp4+LTPecNwPekSXOeP+0TOK85DlEL3sQplOP1u93yWHSn+5woDZag8wqtL/0yhj13TQvEdL6+63PLQZ+pNFQCGkik45DXc7Yb5+QLIIlhpbgZ/r2G5oN6svOz86nN0ScxHeEny9oHJ+t1bJ+exsjUFEqTkxiZmsL26WmjjWai1rGPU//e63e75a2Wfq9zonG60TPAA81zt/bBmvEwvt93TJYLLr7h4twtYw06b6C9AzwQf0jdlXolSWFPPkeS7pVGyUI3qS3t2dwUehhpTx14jYxIWaCqwAJQWWU/uz9u6dmotffj1OwP+t0wr+WSOOdEm9+5UZRs8E5Bn+nUI6f8XyDGta8ox5M9+QJIslcaNVnONNGsl87kt6Sy8dMuOLRkZEQADOBcgAeSSUKMu6Nc1II3cQrlhC2ik5eiO3HOiTa/xFAX6mvYFvSZKquSu/YV8Xh2Yk8+pjTXYCfZK4362nHX7AJAeVUZy563LPKddNDfIIlEoSDthLI//V4N/15u4KJngJs+0yyO0y6MY3MkIe4ueOzJ22PjnGjLaj44zeuaCZeSeV3FnnwC0l4qllSvtH6yjtoHvYcX/ea8Au+gxeD9j9UjL3Mz+RukXYmvPXS+s1bDD5c1oCXgxCXAp14PbNkNnB48//lsLc+JW3o26j7pcfZX9/vdsK/lEpt5HlnUY0/juhZ25M6FEuB5xSAfQ9prsJMYVmqf0I1T/sOLXheboKSVte9YGzjUBomeVONiIQuvofOzy4GZ0Wawb4t7EW8n2wUJKj0bteBNnEI5Xr/bLW9Fd3zrrQ+0MsVb525pyP+zZ1GPPelzKspNRNGH1JPE4foY8rj0YsnSnhUlNM40zs0Xe/H6LCZJK7VdtXiJSD5JNS7+DYKGoS/5IfDXv9L8/3HaF2YJmknp2aj7pMfZX73zd4/Nz2NQBPMA6q3r0lCphN9dswZ3rF2bq+VzpolcLg5DJ31OufiZi8C5/eSLIMnNGpLQ6+IT1IMH/JeRtO+wvea8AaBxtoHGfPREJL/ejIt/g6Ch8RMXN/+NuzwnzBK0O48cAQDfwBt1n/Rev2daIKf9u1ur1XM3LPWOz9MA8Lnjx3HH2rWh2pSloHOis9dZ3VrF7N5ZzxuCLIahkz6nTJYCJx3kXcs5SFKxPk3KKsMV/zvelIbaTL+wYeqqd/K72PR8744A376pCBop8BIUCF35G3QarlR8e/IXn7BzEffb573b8XodO2s17J2dTbyoTK8RhmPz877vb7I6IE+b4LTzQIKCVZgbgrSYnlNRA2XWN+a9Ojvt6YLZvbOFG/7nnHwMLhRRCDO/FWVpT2mo5PmlD3rvQ+89FOmm4tx7GwRCF/4G3fwSypadAX75SyUrc4lhl5SlVVQmynI+vxuWuUYDe2byXT/cj2tbNJucU3GS89IuUNXNxTyeJDHIx+BCxmeYL2zYO+TSYAnVP/C+Kw967yMfORItwIt5Uo0Lf4NufsloVz1nCB/9yPVWLuJR9nFPI2BGCdhxVweQPSbnVJxAafPG3C9L3+uxI3d6X5eKsCFNNwb5GFzI+AxT6jbMHbJJkAx678bpaD34yqqKcW/Ghb9Bt7R2bQuzBK1T0gEzSsAOumHxezxOOd8ii1pgyuScilNi29aNue9ownUH8eBLH+z5WP24/+d3LZcqLmbX54TX/Nehdx/y/8WOzHS/rFYpC2SZoDHXMJ4TtFn0w6vN5M00u76bzaIyvRLsTi0s4JRPe3q9//bpaeys1Xp+Dr/VAUHHYLhcxlvXrMnFLnY2k8GSLtUat8S2jQJVQdezziqTYbi4KsoEs+tzzC9RBAPw/SJ39t6DMnnDnvhBCTp+O0cFvS4Fa48YdC9fe8HQEL7yzDM40+MG3mZRGa8EuwE0ayD1igFe77+1WsXe2VnP2vtea+SDVhikmXAYh+1kMJPh9DgZ7HETXk0TE/34jSZ4bQYUpAgb0nSzOlwvIitE5Aqbr+mSpOqrB/E7YUWkGeh76P7C2h7aDppbW/O7a3oOy3m1t1ebyV97CdrR8XEsTEzg6Pg4/vZFL8KPr1gRqUBNGO89dAjfOXVqSYBt33OWZXG5Q7/3jzrFYbLCwDThMKvzG7CfDJbEjpWdXEh4jTus7lIeT5KMhutF5GUAdgF4IYAfALgPwPtV9WzX894A4M9U1ecynqykhuuz3KkocP/oAaBUKVlvl0lN+KBjAmDJsNzqN6/G8c8cx9x0vnd9clmcAjWmr3/Jvn2+o6FDpRIuGBhI5P3bSpOTxjNGftMUWe9EZrsATRo7Vma9c1vgddFHeydIV5Yt2hB5uF5Eng/gC63/fBjAZQC2A7hJRF6lqk9Zbamjkh7+8hN4x9oAqtuqVr+wpsOHJmt8ew3Lrb1jrVNrg4tmZbl8rse8u1VNbncrq91GoN1VqwVOd841Gnj2hhtivU+QoJoEnfwSArM8vwH7a8eTrh/hwvr+0S2jkebkS4MljG4ZjT1dkBeBPXkR+T8AXgFgs6o+KiICYAuADwI4DODnVPVw67mF7clnUT613ZM+9J5DvnflSbw3S0/mW9z95YOY7CCXxq5xfgl7YdqTdXlk2+/fD+ev12gC0NzZsjJcwZlDZ/pmtDDOLnQbAexW1UcBQJvuBPDzAIYBfLnI8/BtaVdp6lwe4hfgk5r/SnpOj5IVd3/5ICbL8NLYNS7MJjd+7fE7f08PAnf/v/OJLtGzPcftYv0I28ory7j2S9eitHLpcVv40QIgwJq3rXFmaW1WTIL8ZQCe6P6hqj4A4BcAPAfApIiss9s0t6RdpcmkBG2SJ2zWpScpniQryJ2s1wMvHANAKrvGdSbsrfJYS2+ScOh1/p4ebG4P/Klfa64cUJwv0bvp4EFrgd52UHaxfoQtnQmS/3LZv6B+bOnfQM8oznz/DErLSs5UEsyKSZD/AYCet5Gq+iCAlwO4CMA/Afgxe01zS9rZpIElaAWJnrBZl56keJKsIBc0ClCCnXl/0yI37RUGs+Pj+NHmzXjn2rWhixB5nd+fen1ze+Czyxf/3HaJ4CSCsmvlcv2YrmxYUgDHB0ccm0zm5D8N4Dmq+jKf5/w0gC8CuKT1moWbk087mzTp7Ngg/TCnV2RBc+Zx5suDXnsAwL9v3hwryCedU9DN6/x+7afP7xrYSxp5B0lyYTc2W1vz9tRHhbXizMn/LYCfFZGf8nqCqn4dzaH7f4/cQselPfwVWEzi0mRPwH6Y0ysyv5K3cQviBI0CNAAr2fteOQWPnDqF5z3wgNV5ca/z+5mL/H8vzzX142wyY1OYGgFhN9niiKNZT345gHUAZlX16YDnXgFgTFW/bK2FIRWlrO309mk8+YEnoWd6/30qIxVsfGKjtZuLXnf0q9+yGgDw1Mef4jK3nEmyJ5zkKIHpewDJ9erDtGOkUsETGzcuKe27JWJNgF5lgqO+VhBXRuvCrCwIU0q730Yc4/Tkr1TV7wYFeABQ1ScBvChKA2mx6tYqBi70nvVY+NGCtS0Rve7oj3z4CI5/7jg2PrEx0Tm9LCuNFVWSm+QkOUrQZtJDTmPr3KDP+ubVq7Hp4EHsrNViJ+a1b8xsvJYJkxU0aZybgUm+HTcApj1zjjieZxLkHxSRra318Z5EZExE/gnAR0zeWETuFZGjIvKwx+MiIh8VkcdE5Jsist7kdYuivLLse8dqM6kky/2VbQwZchey3nqVvN0xNha7R+i3la6tsrmm2+gmvXVu0GcFYG2pYtLLHruZBNc0hvNLK/zDUOfjfgnQbUVZRWCLSZD/KoAPANgnIj/e6wki8tsAvgngZwDcYfje9wG40efxVwK4qvW/WwDsMXzdwqg/nc6WiFmuiY97g5F274fS2Uo3zDa6Sc6LB33We556ytpSxSSXPfYS1CsurSilc/MfYi8Zv1yhoWuGsPlHm51eRZCFwLOolVX/XwC8GMBDIvK77cc6eu8fBfAogPWq+scmb6yq9wPwmwK4Cc3qeaqq+wFcIiKXmbx2UQSehIMlK3fTJnf0SQ2dx73BSLv3Q01JjRK0mRa5Acx7/VH5fVabSxWTXPbYS9CyYFVN5ea/cdo/ka7z8SKv/0+K0a2yqn4IwHo0a9d/SEQmReR2AN/C+d77JlX9tsW2rQHQeYU+3PrZEiJyi4gcEJEDs7OzFpuQraChKT2rVobNAue5FIll28YtupN274fCizKd0tmDHvIJ9AMA3rx6dQKtNhN0gxHmBsTma3XymlcfvW3UewXN2CD0tH8X29ZIYmVVQE2OrsfztP7fBcZbzarqd9EM6HcBuAHA+wB8H8BPq+r7VTXcpuHBeuUA9PzWqerdqrpBVTeMjIxYbkZ22kNTXluzal1x6pFTeOC5D8RKhjGZ55p7fA6H3nvIehJO3KI7afd+KJw40yntHvQPrr8ez1+xoucFoQHgM8ePZzYtEycJsTv4vvp/L2D5Qu/Up6gJjX45Lw+9/CFc+6Vre/aKh28aDnztuMvT2p9/4ZT3VkcmhcaYuOsv7H7yvwXgDQDmATwL4EoArwlKyovoMIDODJ7LAfRVt6w9NFVa7v9napxuxEqGOXcz4fcecw3UdtWsJ+HErSSYVO+H7LAxnbKyXMZrV63CQI/LjAKYznBaJmoSYq/g+7pPNHBZTbHsLEK9lp+gnJeZPTM9e8VP3RO8uejCswuRg2nn52+c6t0/NMmQd2Wtv8uMgryIrBGRvwdwN5p17DeguVRuP4D3A3hARH7Ccts+C+A3Wln2mwCcUNV/s/weziuvLAfOWQHxkmHaNxOBFmA9CSdu0Z00lnNRdLamU+556inUPWp6ZDktEzUJsVfwXTEH7L4NuPkvgEvPlqwkNEbNeTEZim+cit65CNqbozRUMppnz3JlUF6YFMN5I4APAViJZkB/j6rWOx7/XTSH7ksA3gHgv2vQizZ/75MAJgCsQrM+/nYAFQBQ1btaowMfQzMD/xSAN6lqYJWbohTD6RRULKJTnC0xw7yPzfc9V4gnwr7UaZc/pXBKk5NB1ZmxMDER+3UAYFWChWNsS2tr26jlscNcC6IUnbH1+bPeItglcYrhfALNofONqrq9M8ADgKp+FMBPA/g6gF0A/tmkQap6s6pepqoVVb1cVT+uqnep6l2tx1VV36qqV6rqi0wCfFGZzJm3xUmGCfM+Nt83TiJNGsu5KDpb0ykmz8vT0klbuzwGzUdHzXkJcy2Ikmlv6/NHXRnUT/P4Jn/F9wN4Sas+fU+q+j0AmwHcjmYWPlnkNaTdS5xkGL+hc6/kPxvva8LvpEx6OVfW8lzsx9Z0ium6+blGA4+dPu380kkbuzyazEdHzXkJc80Bwt/k29rlMsrKoH6bxzdZJ3+Hqgb+BVs9711gkLeuc21oacj7TxZ3y1u/NajVrdVUt9rt1G8nZae8F/u5bXQUXrN3qmoc5MOsmz+jit1HjoRqZ9psbF1tMh8dNedlybUgQNibfFtbd5uuDOqcm++3efxoY7M+VPU7tl+Tzg9pX/+D6zF0zVBiu8N5DZ2vvWNtZrvSFe2kDNMzz3uxn6CEONOEue5pmSDHHL/5sbHLo0lSXZziMZ3XgrXvXGv1Jt/WLpemK4M6pxOyrPCZhcDEu7wpYuJdtziJanl83yIl14RNFExjx7fOttneAS2p9gcl4gmAhkFCX5bink9Rk+qittV0z/cwr2njelI/Wce+C/f5P6njWKR53NLklXjHIG+o11aso1u47WoaXDgpbQXA7dPT2Fmr9VxWNlgqYVu1ih1j57OUbWSnm7Q9qVUKSWXFy+Sk/+NwP8j7MbnepH3zm9VNvokwx6JInYZOcbLr+14/zwm7wFaSTlQ258XDrhuPm51u2vaw0wKmUw5JZcUPB9wMZF0EKU72tun1xta8timXy8mGORZxj1veMvMZ5A0UbU44jiy+4GlfzLrZnBcPW4Y3bna6X9sfOXUKv/Stb+FkvR7q5iPMTU+YrPgwx/Kta9b4HpctGRZBitspML3e2JrXLoIwxyLOcfP62x569yHsu2QfHn/7484FewZ5A/2WqOEVyM88dSaTEY2sL2Y2N8EJ2zOPu3e7X9sB4P4TJ7Dp4MFQNx9hbnrCZMWHOZZp7GkfVdxOgen1hjuynRfmWMQ5br6V+haAwx887NzoLufkDbgwJ5wWvwSbgQsHUH+mDj2z9GBEqXoVtl1ZzQfaqtoGhJ+TB87Pqe/pmFO/rTWHDcB3vt1kTtxEZ4Jc2GS6zvbPBtxMhDmWfsclyxoJced883S96bdcJZNKgElfC70w8S6GoiZq9DK9fbq5aYRHT8JPkY5DJ5sZ4jYT3Exea+wrX/Ftu4num484Nz1prhaII06iZdwgnZfrTRIZ964L/Nu2ZPE3YuJdDFnPCafJb6gwiK39pV1jcxOcOGV4O5PdZHISz9m3D4+cOuU5bP7eQ4dw9dCQcdt6KYtgrGv4O04yYB42FIqbaBk3UTQv1xu/aYlTj5zCvgv3OZ+UFpZpkq9L10IGeQNZzwmnKc6XM+ks96zYnv+NUoa3O/AAgN9lc67RwK5aDV955plQbeumqksq1sUJ1C7PpbfFTbSMG6Tzcr0x6RAUbRWSaU1/l66FDPIG+inBJeqX06Uehm0ubILjFXj8LKBZ4jWOBQDfO30az3vggXNL5c42Gli3fHmkQO13LL907bXYVatlXqM/bqJl3CDtyvUmaCWNaYfA1iokF5aunauw57OXh2vXQs7J0yJ+c/KlwRJKK0tonGz0zRycK4LmstM0WCphbHAQNw0P4+NPPWUl6c2lLYNtJFq6XDjGhMl8+1fGvhJqa+q421G7Mv9fP1nHofceat60LCx+LMtrodecvPvfNkf0SxZpdWsVR//8KE5/7/TiL/AAsHzdcrz4n16MmT0zgRevfjleaQla4pamuUYD03NzWFYqWUuS8xsi/+7p03juAw9grtGwUmo3yHCl4ntDZVJop104Js0Ma5vnnMkywNEto6GSdONMBZq0J61jXV5ZxpXvvxJr71ibixs59uQNuHQXmbT6yToOXncQp793Glo//92QsmDFVSuw/qvBn7WfjldawvbkB7Ckk7HIqnIZz1u2LPQUQCcB8I61a5cE3CiZ6WE+X9K9+yjLHLNm+5wzyfDf+MTGnu/p9ztRe/J5WXGQJWbXx2Cz4p0L80p+artqmJueWxTgAUDrirlps8/KCoH2mVaOA4AbLr4YW6tV/4pwa9YsmhuXCG1SAO8+dAgX7tuHVfv2Yfv0NJ46cyZSZnqYkYqkd+DLQ3JgN9vnXFCve/74/NLcAZ8vUdx5apP2UG/syRuwdReZZg836tBd4GddVcH4rP9n5V23fV5z1p06e7gAQs1xm7x+kMFSCRcODOCZer1nwp9fLzhKzkGSa+pdLbTjxfY5F+X1kry+8ZoSjD35GGzdRabVw41TOzvwsx6bx75V+3xHH3jXbV93VroAGCqVMFQqQbA02z/sioD289+2Zo1f4rCvuUYDs/Pznhn9fpnpYUYq2pLMU4iyzDFLts+5KMsAO3v25VWt4yTN69vZp86itqsWesSyPfK5cMp78sm1bHbXuPmNdUxluOJ/F2m47MykJrWN5JE4SSpBnxUA6sfrqO2sYXbvbM+7c1vH69z7MYkPwPnAYzofHOX5y0olVEolLETszQfxCsxbq1XsnZ0NNZKQ9U5zLrF9zlW3VjG7d9azV+61DLC8snzudztX4QRdM3rxGhno5FrtABexJ2/AVgWqtHq4cTbUGd1i9ln8Rh9sVuzyGpV48n1PYt8l+zAp7uU1hGW6bWsagja0icsrMPcaeRgqlTxHFVypjucK21XyktjEJeyIpe9mMABKQ6VC1iqxjXPyBmzNNaU1rxSndnb9ZB37Ltxn/F5x5uZMeuimtfTzmrnv0vpwIHiNeBxhM9NdOzYuc2lFi63rHOfhw+GcfAy2KlDFudsOk5Ufp3Z2eWUZ5WHzi0Gv0QeT42WaN2BaSz+vmfs296q3wcYQ+ACA5bI41TpKZroLlQbzwpUqeYC9EUvm9tjBnnyKot5th/29oKp1QdsghtmJLurdtGkbTXd9ituerKS9K1vQGvagNeLXXXghvv3sszjmM5WwXAQbL7oIj546lYvMdLKLPflssCfvgKh322HnuOLWzvb6/W5xslpN8wbCJgzl7e4+KEPcNIPcZF7fZHc1rzXiADDfaOD6iy7C9KZNGPYJ1mdU8eipU7nJTCe7bOUH5GU3PtcxyKesXe5y/Og4JhYmMH50HGM7xnyH04IC4qH3HFo0dB936K7nUpgucbNaTYfiTHd9anNp9ycTYbdt7RXM3/7447jOoACNydSA31K6BQAfPnIEmw4exPGApECXyvBSumztopeX3fhcxyCfA4G9U8WSuewoNxOd2r+/eXYzNv9oM9a+c63VuT7TvAHTUQUgn3f3YbZt9eqJ76rV8B2ffeXb8/qmu6t1LqXr9bzH5+awImBNO5e39S9b+QEu5RnkGY9SDpisXU9yo4YkNtvw29yiM1i3T/RzG0Ecmz9/a7qw+HfyeHfvtT68V6KaV0/cr0Z9O3jvGBsLNTUQdEMwVCphsFTynLvPcnlblNr5eeViDYlebVr95tVonG00d67raicA38+Q9kY/RcPEuxxIIxEubXGW/OR9G89upiVUo243294aNUySX9BSOgFw9dCQc8vbwiy7y/vNgEvL5oLadK6ufceXqjRYwvJ1yyEimJt25zPkFbeazTGv6lO9hE08M+0JBD0vbI9iSQ89RLAu2t29aWW6qPPc7aHzLaOjvpnznb3voO1WAeDVw8MAYG1PeRtM8g52jI31vBlo5zHsnZ3NxRI9l7ZfDWpTrzvGxlwDp793GiKyZEOsLD9D0bAnnxPtIHroPYd8l5SF6cmHKVrj97xrv3QtHnr5Q071KFwVp/cYpSffWYAmTC/Xbymd3+9lzXS0Io/byXYLs8QsrWH9oDaFlZeRSRdwCV3OtXuva9+xNnBZSXfhnH2r9uHrL/s69q3at6iQzqH3HjJamhfUY/j2r32bW8saMFnC5scvSU8AlH0K0LRvLp46exZzjca50dNV5XLP4jJ+S+nasirY48c078A0CdFlpitU4mxYZbtNWb9eP8o0yIvIjSLyXRF5TET+sMfjF4vI50TkIRF5RETelEU7XRK0rGT0ttElJ3T9eB0n7j+B+vH6ohO8tst7nr9zrXrQEr4T/3wicq38fhK3up3fPuc/uWIF/uDyy3tWhgNw7uaivfRNW7/3vGXLeo4idFab89tr3rWAaLok0VZ9giyZrlBJa/dLkzZl/Xr9KLMgLyIDAO4E8EoAVwO4WUSu7nraWwF8W1WvBTAB4E9EZFmqDXVM0LKSmT0zRnP3jbmGf1o2zt9FmyzhM3kdIFx53qKJ23v0K/P6tZe8BO+/8sqeBWii3ly0cwWCuBQQTZckhq1P4CLTYjFxNqyy2aaw8rgk1kVZTqRdB+AxVX0CAETkUwBuAvDtjucogAtFRACsBPA0gOJHgwB+iWemtd5NtO+iA5fwCfzzBFqv02tuvz2qEGYLyryy0XsMu30sYHZz4fd6QUl4LgVE0yWJYZIQXWW6HWyaNeA9k4R7ZNdjAL4djcaZBhpnG6ifrJ+7Lri4ZNB1WQ7XrwHQ2YU43PpZp48BeAGAGQDfAvB7qrrkrBSRW0TkgIgcmJ2dTaq9zqufrFtLeum8iw7qMVz8sxcb9SjSHDZ0UVa9x7g3F2EK9mTNdFMbv6mPsBvpZMW0WEzQkHf50nLo0TWvETkAvdt0exXV2xf/rLQ8IPwocOTDR87lDaSZW1AkmWXXi8jrALxCVd/S+u//DOA6Vf2djuf8KoBxAL8P4EoAXwRwrao+4/W6Rc2uD9I+AU49circLw4ApUoplez6ft9wIquM7rib4BR1y1fT+gR551dnQ5YLyheVsfCjBeOVMbbW55tuPtXesApArI23is7F7PrDADpvly9Hs8fe6U0A/kqbHgMwDeD5KbUvV9q95DBKgyVUt1YDewJBPYblq5cb9Sj6fevIrHqPcXviaWz5arLBjm3tqY+ib6Tjl6w7cOHAkgAP+I+u2RqRM02qa+cNpJlbkISs8pGy7MmXAfwrgJ8HcATA1wD8uqo+0vGcPQB+oKrvEpHnATiIZk/+mNfr9mtPPuz61F699aTnuvqxJ9+9Lv7SchnXXHABHnn2WRyv18+lMwyXy3jrmjWJ9CKz7okH1QbIun1JcmUO2atK5JE7jzRX3XiojFSw8YmNiz4DACu1OsJU8kSp9Z5+4aoETCxMBL9WBtKoTujVk8+0GI6IvArAh9FMwbhXVd8rIrcCgKreJSKjAO4DcBmaqRt/rKr/y+81bQR5V07MMEyGviqrKph/emllubTKY8bd5z5vvILX8tZ6dhFJLahlNTRtEsB31Wq5L0zTi4tlZ7sFXjcEGLp6yGjFzjmGwdazBG4PlZHKuTl4v+e42klI49rnZJBPQtwgn4cTs5c4veS0gm9ej21UJlXjuuU5qPVikoewe2YmVs5AGqJUKszDTW3QdaM0VAIaCLViJ2zVzdquGmofrKFxqvd7FGFOPo1RTBfn5J2U1wxw0zWzvaQ119VvW0f6LV3z4lpxmbhMlu+5XpgmaqXCPMwhB103gHABPuza9vZy4Ot/cD2Grhny3Ts+z/vLZ5mPxCDfJQ8nZi9xToDAL6DFWtRx97nPk6jBKeugZpNJAHe9ME3UYkJ5SDQNum40TocL8FGDrUkHIM+dBNPqhElgkO+ShxOzF78T4NovXYvarppnVmfgF6wErkGNIGpwyjqo2WQSwF1fhx+1UmGWF3ZTQYEzsI0Ca8HWpAOQ105CnJHWuBjku+ThxPTS6wSobq3ioZc/5FtAYvVbVvu/sMDZaQqX+QUvLy4ENZtMArjrhWmiTidkeWEPwy9wBn2Gte9Ym6tgm5UspxoY5LvYOjFdqdFuJcegDmenKVzmFbyWi2C5iLNBzSaTAJ7GOvw4ok4n5HkOua0In8EFWU41MLu+i40McJeyyE2yOoOWpgBweg2qy7yWrt02Ooo9MzOFr7YG5L+yXJxKhV7r011ejtutCJ+hH3AJXQhxv9QuLZ0JXAdrUmQCbq9BJUpSkYv1ZCGPdUjygEE+RWlVdjM5WWz15Ne+c62za1CJkpb30QhXuDTKWTReQZ5HMyK/AJtGhr7ptq2jW0Z9RxXaOQZPfuBJ6JneN3yVkQrn3qivRdnit8ii9sZNcoSS6Ez08+gBe/IRBN2Nnn3qbGA96Lg9edMpAZM7ZwA4uOkgTj92ekmgL68q46XfeimWr14eq715FqXaGWWPf7dkxOmNZ7F/Rb+MHrDinUV+d6Onv3sa9RPeAd7W0hnToj1hikxccfsVi56z9p1rsWl6U98H+CjVzihb/LslJ86KnSzqkOS1iqkt7MlHEHbHtzabd44mCXXMho8vqz3gKR7+3ZITpzeeRU++X3a/ZE/eoih3m6WhktU1kXku2pMnUaudUbb4d0tOnN54FgWC8lrF1BYG+QiiBNCBCwasVoTKSzWtvHN98xTqjX83O3oV9Sqt8A8bftfHLIrr9HuHiEE+Ar8A68X23aKLlahcqfJnk+ubp3g5Wa9j+/Q0RqamUJqcxMjUFLZPT/fNXHRe/24uaSesdZfEbpxpNGvW9xDUwcii8lu/d4gY5CPwCrB+bN8turYjk9cFobNGfh65vnlKL0w6y+ffzQabN9peCWtYaP4j5cWR3rSDkfYmMy52iNLEIB9BrwBbGioBA72fn9Tdoks7MhU1g9X1zVN6ibo1apHk8e8Wl+0bbb8VPFBAlokTHYwgrnWI0sbsekv6ZS2mlyJnsOat2tnI1BSO+cw5j1QqODqezN/Cb206gFTXreft7xaX7XLaXMGTLyxrm4J+3siBFwR3lCYnA7crWJiYsP6+fjXe1y1fDhHBNOu/W9e+7hx6zyHfczDsjXaRb9yLiGVtU9AePu/HGu+V4Yr/BaHgGawuGa5UfHvySSWd+U0TfO/0aYgI6l2dis4pBK5bD69zBDFokynT5N/2TcPCqQXP5/RDwlpRcE6erOj3DFaXZJV05rc2fQFYEuDbuG49Os/kuB5MbrQ75/Ubp3q/Zr8krBUFgzxZ0e8ZrC4JSjq7bXQ0keV1cdaec916NL7JcR1Mb7SDbhpsF/Wi5DHIkxX9nsHqkpXlMvavX49t1SpGKhWU0Ey221at4kvXXouXP/RQIsvr4kwDcN16NCZD8GFutINuGmwX9aLk8S9F1vRzToJrvLZG3T49Hbi8Lurc+JbRUc968QNAzzl5oNjr1pMWlAsDAarbqsbJv3kvAdvPW8p6YU+eqI8kWdPdb5rgqhUrcNWKFX21bj0NQbkwa9+xNlTPO88lYItakCsuBnmiPpJkTXe/aYKvveQl+KrHY1w+t5Rp5TrbuTB5TqAtakGuuLhOPoc4JEVRZVkoh8yELaxlsz5Hnot69fu6fq6TL4heJ2F7SGp276zTJyGZ86scF6fX6zdvzrlxN5j0SDvzXmzmwrQTaPNY1Cvv+QRJYU8+Z2yXriT3+FWOi1sdLsnXJjv6vUcalclx2/jExsKOgnr15DknnzN+S1wacw3M7GFREVdE3REsyQ1m/ObNGeDdwB5pNEH5BKvfvLovE/MY5HOGF4B8iJPpm2QGPHB+ed3R8XEsTEzg6Pg4doyNMcA7Is8Z7lkKSkIE0JeJeQzyOWP7AhC2t2lzv+oii5Ppm2QGPLnB7zzKc4Z7loIKcj11z1N9OQqa6Zy8iNwI4CNo1sq4R1X/uMdzJgB8GEAFwDFVfZnfa3JO3nxOPkoWb14zb9MWdV71ZL2O5z7wAE579OQBZsDnXdB5dO2XrsVDL38o0fOsH1foFH2nTOfm5EVkAMCdAF4J4GoAN4vI1V3PuQTAbgCvUdVrALwu7Xa6xua62LC9Ta5DNRdlWqWdFDfvc+PNDPj8CzqPZvbMhC4RHWaErV+LxvTrNEiWw/XXAXhMVZ9Q1bMAPgXgpq7n/DqAv1LVJwFAVY+m3Ebn2KwRHzaJj0l/5qJcUNoJd167tQ0ArA5XACbnUXtZ3PjRcUwsTGD86Lhn5bqwQbtfb9b7dRokyyC/BkDnt+lw62edfgLAc0RkUkQeFJHfSK11DgtzAfATtrcZN+mvn+bzo1xQ/BLuAGB5qcQM+AKwnTwbNmj36816v+6UmWWQlx4/6+7ClAG8BMAvAXgFgHeIyE8seSGRW0TkgIgcmJ2dtd/Sggrb24wz3OXV23jyA09i/9h+7Fu1r1CBP8oFJSihbq7RYIAvANvDxmGDdr+u0OnXnTKzDPKHAXRe6S4H0H0LeRjA51X1WVU9BuB+ANd2v5Cq3q2qG1R1w8jISGINLpqwvc04w11evQ09o6gfq6N+vF6oucEoF5Sg7Va5HWsx+J1HADA/Ox/qZjds0O7XuWnA3ihonmQZ5L8G4CoRGRORZQBeD+CzXc/5DICfFZGyiAwB2Ajg0ZTbmQgXhq7D9jbjDHcF7VPdqShzg2EvKFtGR5fs0tbGhLvi8DqPOoW52Q0btPt1brpfZRbkVbUO4LcBfAHNwP3nqvqIiNwqIre2nvMogM8D+CaAr6K5zO7hrNpsiyvZrWF7m3GGu8IOARZ5btCL31atTLgrjiXnkQfTm92wQbtf56b7FWvXZ6Af688HrRvvKefrVqNob0yzp2NjmtssbExD7opbqz5K/QqbO9eRG7zWyTPIZ6AfN6Dwu7HxUsTjQNTNRpEWBm3iVrMO6cfs1urWKmb3zvZMvuuFc4MUVVLb9CalMlzxv+k3SISzud0sFYt73/g+YOOkNtFdurK0ogQo0DjdQGVVumUse+1TXb60DBHBwo8Weg4zcm6Qwuq1le6x+XnsrNWwd3bWyToDo1tGfafveLNLcXCDmgykkd3aK7mvcaqBxunmhSSJRL+gFQPd2eabZzdj4xMb+27dKiUnyW16k8JEOEoS5+QzkMZGL6Zz4LYS/Wx/pn7cQIPiG5mawjGfokKubu7jwpw6z7l8Y+KdY5I+qcNks9tIcMtydzyittLkZFAOGxYmJlJqTX7wnMs/53ah63dJV14Kk7xnI9HPZj3sft1AI6qT9Tq2T09jZGoKpclJjExNYfv0NE7W3asYmHRbWTUwGp5zxcUgX1BhkvdsJPrZXDHQrxtoRNFONNtZq+HY/DwU5xPNNh086FSgT6OtrBoYTZ7POReqh7qMQb6ggupjt9lK9LNZD7sflxhGladEszTayqqB0eT1nHOleqjLGOQLyqQ+ts3sXZsrBvp5A42w/LannWs0sGfGnR5YGm1dWS5j//r12FatYqRSQQnNZLtt1aqTy+dckddzjtMMwRjkC2pJfWwBSkMllIZKgNhfqmZzGRA30DAXtD1t0ONtaczr22prkJXlMnaMjeHo+DgWJiZwdHwcO8bGGOB95PWcy/M0Q1r4rS+wNKtg9Sp2E3XFgFd1PK4bXmq4UvFdMmaSaJZWARkbbaVwTJfF5fWcy+s0Q5rYkydrbK0YiLPbXb+xkWiW1rw+k+LSFWa+Oq/nXF6nGdLEdfJEOdarFw6cTzQz6YWnVUDGRlspWLv3XttVO1fhsltRdrvsxx09vXCdPFEB2Ug0S3OunElxyersvXsFeKA489W2SwIXcTkee/JEfS6vpWD7UdAce6gtnQ22sM0DW9VD8171j1vNElFPW0ZHsbNW67m8jXPl7ugVhNpz7LN7Z7F+/3rfbPNuRZmvtpVgbLIcL49D/xyuJ+pzLCCTDyZByDSb3OVlcVkp6nI8BnmiPse58nwwCUImvXPXl8VlpajL8Xj2EtG5AjI7xvI3HNkvTILQ2j9a6zsnXxoqofoHVW4f20NluOK7c2depzfYk7eoiJmZROQGkzXhftnmQ9cM4fofXG91t8siyWvVvyAM8pZwowQiSpJJEMprURsX2F6O5wouobOERRmIKEl5X+KVB7aW42XBawkdg7wlUyNT/vM5IxWMH+VaYyKKLs9BqBfT2voUjEE+YZOlScDvUBak8AQRkQ0cmbCLZW0Txo0SiIjMcS/4dDDIW1LUzEyibmnsPU/FV9TiM67hWIgled2PmSiMtPaep2LpNfful8ME5Lf4jGvYk7eES1eoH6S19zwVh9fy4iCc4rSDkcciWxslELlq98xMz41sgGag3zMzw6p5tIjX3LsfTnHaw548ERlLa+95Ko4wO+MBnOK0jUGeiIwNV/yHUIMep/4TOLcu4BRngngUiVJwsl7HrloNu2dmcHx+HsOVCraMjmJrtZqrRDXuPU9hBW78soqFwpKUaU9eRG4Uke+KyGMi8oc+z3upiCyIyK+m2T4iG9oZ6TtrNRybn4fifEb6poMHc7X0jHvPU1hcXpytzIK8iAwAuBPAKwFcDeBmEbna43kfAPCFdFtIZEeRMtK59zyFVdSNX/Iis7K2IvIzAN6lqq9o/ffbAUBV39/1vLcBmAfwUgB/o6p/6fe6WZW1JfIyMjWFYz4JaSOVCo6Oc7iSiqtoNfdd5FXWNsujuwZAZxfmMICNnU8QkTUAfhnA/4NmkO9JRG4BcAsAXHHFFdYbShQHM9Kp33F5cXaynJOXHj/rHlb4MIDbVXXB74VU9W5V3aCqG0ZGRmy1jzzUT9YxvX0aUyNTmCxNYmpkCtPbp1E/mZ+55TQxI52IspJlkD8MoHMy5nIA3cWKNwD4lIh8H8CvAtgtIq9NpXXUk1f1qtrOGg5uOshA38OW0dEliWptzEgnoiRlGeS/BuAqERkTkWUAXg/gs51PUNUxVV2nqusA/CWALar66dRbSudw56jwmJFORFnJLMirah3Ab6OZNf8ogD9X1UdE5FYRuTWrdpE/7hwVHjPSiSgrmWXXJ4XZ9cmaLE0uzZzoVAImFiZSag0REQHe2fUsa0uhBO0MxZ2jiIjcwSBPobB6FRFRfjDIUyisXkVElB8M8hRKeWUZ6/evR3VblTtHERE5jldkCo3Vq4iI8oE9eSIiooJikCciIiooBnkiIqKCYpAnIiIqKCbeUSTn9ofe3bE/9BbuD01E5BJejSm09k50nRvVtHeim907y6V0RESO4HA9hcad6IiI8oFBnkLjTnRERPnAIE+hzR+fj/U4ERGlg0GeQuNOdERE+cAgT6FxJzoionxgkKfQuBMdEVE+MMhTaNyJjogoH3g1pki4Ex0RkfvYkyciIiooBnkiIqKCYpAnIiIqKAZ5IiKigmKQJyIiKigGeSIiooJikCciIiooBnkiIqKCYpAnIiIqKFHVrNtglYjMAjhk8SVXAThm8fXyiMegiceBx6CNx4HHoM2V47BWVUe6f1i4IG+biBxQ1Q1ZtyNLPAZNPA48Bm08DjwGba4fBw7XExERFRSDPBERUUExyAe7O+sGOIDHoInHgcegjceBx6DN6ePAOXkiIqKCYk+eiIiooBjkO4jI60TkERFpiIhntqSIfF9EviUi3xCRA2m2MQ0hjsONIvJdEXlMRP4wzTamQUQuFZEvisj3Wv8+x+N5hfs+BP1tpemjrce/KSLrs2hnkgyOwYSInGj93b8hIu/Mop1JEpF7ReSoiDzs8XjhvweA0XFw9rvAIL/YwwB+BcD9Bs/9OVV9sctLJ2IIPA4iMgDgTgCvBHA1gJtF5Op0mpeaPwTwj6p6FYB/bP23l8J8Hwz/tq8EcFXrf7cA2JNqIxMW4vv9z62/+4tV9d2pNjId9wG40efxQn8POtwH/+MAOPpdYJDvoKqPqup3s25H1gyPw3UAHlPVJ1T1LIBPAbgp+dal6iYA/7P1//8ngNdm15RUmfxtbwLwZ9q0H8AlInJZ2g1NUD98vwOp6v0AnvZ5StG/BwCMjoOzGOSjUQD/ICIPisgtWTcmI2sA1Dr++3DrZ0XyPFX9NwBo/ftcj+cV7ftg8rct+t/f9PP9jIg8JCJ/LyLXpNM0pxT9exCGk9+FctYNSJuIfAnA6h4P3aGqnzF8mXFVnRGR5wL4ooh8p3WnlxsWjoP0+Fnulmr4HYcQL5P770MXk79tIf7+Pkw+30E0S4meFJFXAfg0msPW/aTo3wNTzn4X+i7Iq+rLLbzGTOvfoyLy12gO7eXqom7hOBwGUO3478sBzMR8zdT5HQcR+YGIXKaq/9Yagjzq8Rq5/z50MfnbFuLv7yPw86nqMx3//+9EZLeIrFJVF+qYp6Xo3wMjLn8XOFwfkohcICIXtv8/gF9EM1Gt33wNwFUiMiYiywC8HsBnM26TbZ8F8MbW/38jgCUjHAX9Ppj8bT8L4Dda2dWbAJxoT20UROAxEJHVIiKt/38dmtfT46m3NFtF/x4Ycfm70Hc9eT8i8ssA/hTACIC/FZFvqOorRGQUwD2q+ioAzwPw162/ZxnA/1HVz2fW6ASYHAdVrYvIbwP4AoABAPeq6iMZNjsJfwzgz0XkzQCeBPA6ACj698Hrbysit7YevwvA3wF4FYDHAJwC8Kas2psEw2PwqwBuE5E6gNMAXq8Fqy4mIp8EMAFglYgcBrAdQAXoj+9Bm8FxcPa7wIp3REREBcXheiIiooJikCciIiooBnkiIqKCYpAnIiIqKAZ5IiKigmKQJyIiKigGeSLyJSLvExEVkSVroFtFUL4sImdE5IWtn/2CiNwlIl8TkbnW706k3W4iYpAnomDvQrOK34dEpNr12NsA3ABgu6q2K/29AcBvoVlE5tGU2khEPTDIE5Gv1larbwRwAYB72j8XkZ8E8F4AXwGwq+NX7gBwoaquB/C/U2wqEXVhkCeiQKp6EMD7AfyiiNwiIgMA/gzNXcjeqKoLHc89oqpnMmoqEXVg7XoiMvUeAK8G8EEAL0Zzt73fV9XvZtkoIvLGnjwRGVHVeTSH7QcB3AZgH4CPZNooIvLFIE9EYTwDoD0U/3eq2siyMUTkj0GeiIy09sv+BIBlaGbN/5GIXJltq4jID4M8EZn6HTT31N4B4HVo5vTc2wr+ROQgBnkiCiQiV6GZXf81AB9Q1UfQDPY3oBn8ichBDPJE5EtESgDuQ7O4TedyuQ8AOADg/Ry2J3ITl9ARUZD/AuB6ALer6rkKdqq6ICK/CeAgmsP2E6qqIvJTAF7Tetp469//LCKbW///T1X1REptJ+proqpZt4GIHCUiL0AziH8DwObOojcdz3k7gPcB+D1V/Wgr8H/C52XHVPX79ltLRN0Y5ImIiAqKc/JEREQFxSBPRERUUAzyREREBcUgT0REVFAM8kRERAXFIE9ERFRQDPJEREQFxSBPRERUUAzyREREBcUgT0REVFD/P+ULH1zylSLVAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAGQCAYAAACtTRl2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABRnUlEQVR4nO3dfXhcV30v+u9vNBPJih1DbIGRM5GFCS+GEK4xiRs5QRxoCXBKaG/7AOWc8vrkxgZKTg9O4KbEOJTmJOacBkpsmpumOTz3lNBTlwIFSktvhYmoQxw3kMS8xVGcsYXx2KFOFMmyRrPuH3vGHo32y9qz39Ze8/08Tx7HmvHMmtHe+7fXWr/1W6KUAhEREdmnkHUDiIiIKBkM8kRERJZikCciIrIUgzwREZGlGOSJiIgsxSBPRERkKQZ5IkuJyBMi8kTW7SCi7DDIE5EnEVEiMpZ1O3Tkqa1EaWGQJyIishSDPBERkaUY5IlyTBwfEpFHReSUiBwRkc+LyHKX5y4Xka0i8v+JyGEROS0iVRH5mohsbHvue0SkWfP6tY2h8OZ/n2x73m4ReVxEZkTkaREZF5H/5NHeF4rInSLyWOP5T4nIwyLyBRFZ4fL8d4rIv4jIrxqf78ci8kci0hu2rUTdSFi7nii/ROSzAP4AwC8A/A2AOQBXA/gVgNUATiul1jSeuxHAnsZ/BxvPuRDAWwH0AvhNpdQ/NJ77KgBvA7ANwCEA97S87ZhSaqzxvBkABwA83GjDCgBvbrz3HyulPtHS1hcAeATAeQC+CeAnAPoADAN4PYDLlFKPtDz/LwC8D8BhAP8I4N8BbARwOYAxAL+ulKrptpWoGzHIE+WUiFwOYBxOwL5UKfVU4+d9AP4FTkA81BLklwMoKaWOt73OBQB+AOCkUuplbY8pAN9VSo16tGGtUupg28/OAfAtAFcCWKOUOtL4+YcBfA7AdUqpz7b9m3MB1JVSM42/vwfAXwL4CoB3NX/eeOyTcAL6gtcJaitRN+JwPVF+vbfx56ebAR4AlFKnAHy8/clKqZPtAb7x88NwRgFeKiIXhmlAe4Bv/Ow0gDsAFOH00NvNtP9AKfVsayAH8BEANQDva/s5AHwKwAkA7wrTVqJuVMy6AUTUsfWNP7/r8tj34ATJBURkBE4A/TUAzwNwTttTVgN4UrcBjZuCG+AE8wsBLHF5vaavAfgTAHeIyBsBfBvOSMQB1TKkKCL9AC4BcBzAdSLi9tazAF7m9gARncUgT5RfzeS6X7Y/oJSaF5ETrT8Tkd+C02M/BeCf4AzzPwugDmAUwGvhzM1rEZEXwhnmfy6cm4p/BHASwDyANQDe3fp6SqlDInIpgE8CuArAbzceqojIZ5RSn2v8/bkABMAAnGF5IuoQgzxRfp1s/Pl8AI+3PiAiPXCS4I60/PhTAE4D2KCU+nHb8/8cTpAP4w8b7/FepdQ9ba/3TjhBfoHG+75dRIpweutvAPBhAJ8VkWeVUn/R8rn+TSm1vv01iEgf5+SJ8mt/40+34HwFFt/EvwjO0Hh7gC8A2OTxHnUAPR6Pvajx526Xx3xvGJRSNaXUg0qpWwG8s/HjtzUemwLwKICXi8j5fq8Toq1EXYlBnii/7mn8eWNrMGxk19/i8vwnAFwkIoMtzxU4Q+LrPN7jBICyx2NPNP4cbf1hY779A+1PFpFLReT5Lq/T/Nl0y8/+B5x8gbtF5Dkur/VcEWnv5fu1lagrcbieKKeUUuMi8mdwhrsfEZH2dfK/aPsnfwrgCwD+TUR2N547AifAfx3Ab7q8zT8DeIeIfB3Ag3CS+fYopfYA2Aknw/9/N17vCIBXwJlv/2sAb297rd8D8EER+S6AxxptXNt431kAt7d8trtF5NUAtgA4KCLfhpMQeD6cdfVXwllid61mW4m6EoM8Ub59BMDPAHwQwP8Fpzf7FQD/N4Aftj5RKfXnIjIL4Do48+UzcBLm3gvg/4R7kP8IAAUne/7NcEb/tsMJnj8SkdcB+OPGY8XGe/42nMI17UH+S3AS8S6HszJgCZwbg3sB/PfWQjiN9n5QRL4FJ5C/AcBzADwFJ9jvAPD/6rbV5XMRdQUWwyEiIrIU5+SJiIgsxSBPRERkKQZ5IiIiSzHIExERWYpBnoiIyFLWLaFbuXKlWrNmTdbNICIiSs2DDz54XCk10P5z64L8mjVrsG/fvqybQURElBoROeT2cw7XExERWYpBnoiIyFIM8kRERJZikCciIrIUgzwREZGlGOSJiIgsxSBPRERkKQZ5IiIiS1lXDIeIzpqq1bCjUsHOyUmcmJvDilIJWwYHsbVcxtIiT38i2/EsJ7LUVK2Gjfv34+CpUzhVrwMAjs/N4bZKBburVexdv56BnshyHK4nstSOSmVBgG86Va/j4KlT2FGpZNQyIkoLgzyRpXZOTi4K8E2n6nXsmpxMuUVElDYGeSJLnZibi/Q4EeUfgzyRpVaUSpEeJ6L8Y5AnstSWwUH0FdxP8b5CAZsHB1NuERGljUGeyFJby2Ws7etbFOj7CgWs7evD1nI5o5YRUVoY5IkstbRYxN7163F9uYyBUgkFAAOlEq4vl7l8jqhL8CwnstjSYhHbh4exfXg466YQUQbYkyciIrIUgzwREZGlGOSJiIgsxSBPRERkqcyCvIjcLSLHROQRn+eMishDIvKoiHw3zfYRERHlXZbZ9fcA+DyAL7o9KCLPAbATwFVKqSdF5HnpNY2I4sQtb4mykdnZpZTaIyJrfJ7yewD+Vin1ZOP5x1JpGBHFilveEmXH5Dn5FwN4roiMiciDIvL7Xk8UkWtEZJ+I7KtWqyk2kYiCcMtbouyYHOSLAF4N4C0A3gjgEyLyYrcnKqXuVEptUEptGBgYSLONRBSAW94SZcfkMbLDAI4rpZ4F8KyI7AFwCYCfZdssIgqDW94SZcfknvxXAVwhIkUR6QdwGYAfZ9wmo9WmapjYNoHxgXGMFcYwPjCOiW0TqE3Vsm4adTFueUuUnSyX0H0JwL8CeImIHBaR94vItSJyLQAopX4M4B8A/AjADwDcpZTyXG7X7WpTNezfuB+V2yqYOz4HKGDu+Bwqt1Wwf+N+BnrKDLe8JcpOltn179R4zg4AO1JoTu5VdlRw6uAp1E8tnPusn6rj1MFTqOyoYHg7Nymh9G0tl7G7Wl2UfMctb4mSZ/JwPYUwuXNyUYBvqp+qY3IXk5soG9zylig7PLssMXfCP3kp6HGiJHHLW6JssCdvidIK/+SloMeJiMg+DPKWGNwyiEKf+6+z0FfA4GYmNxERdRsGeUuUt5bRt7ZvUaAv9BXQt7YP5a1MbiIi6jYM8pYoLi1i/d71KF9fRmmgBBSA0kAJ5evLWL93PYpLmX5BRNRteOW3SHFpEcPbh7lUjoiIALAnT0REZC325DNWm6qhsqOCyZ2TmDsxh9KKEga3DKK8tcwhdiLKDK9NdhClVNZtiNWGDRvUvn37sm6GlmYp2vZKdc1kOc6lE1EWeG3KHxF5UCm1of3nHK7PkE4pWiKitPHaZA8G+QyxFC0RmYjXJntwvCVDcZai5fwZEcWFZbLtwat/hkorSs62sD6P63CbP2tuM1vdXU10/ow3F0T2ievaRNnjcH2G4ipFm9X8GfewJ7ITy2Tbg0E+Q3GVos1q/ozJOUR2YplsezDIZyiuUrRZzZ8xOYfITiyTbQ/+pjIWRynarObPmJxDZJY4c2RYJtsO7MlbIKv5M+5hT2QO5siQGwZ5C2Q1f8bkHCJzMEeG3DDIWyCr+TMm5xCZgzky5IZz8pbIYv6seXNR2VHB5K6WOcDNXCdPlDbmyJAbXoUpEibn2GmqVsOOSgU7JydxYm4OK0olbBkcxNZyGUuLvGyYiAVsyA2H64logalaDRv378dtlQqOz81BATg+N4fbKhVs3L8fUzUmcJmIOTLR1aZqmNg2gfGBcYwVxjA+MI6JbRO5TlpkkCeiBXZUKjh46hRO1RfO756q13Hw1CnsqDCBy0TMkYnG1tUJDPJEtMDOyclFAb7pVL2OXZNM4DIRC9hEY+vqBP7WiWiBE3P+CVpBj1N2mCPTOZ3VCXn8Xhnkuxx3kaN2K0olHPcJ5CtKTOAi+9i6OoHD9QkzOZHD1jkoimbL4CD6Cu6Xhr5CAZsHmcBF9rG1gieDfIJMD6K2zkFRNFvLZazt61sU6PsKBazt68PWcjYJXFO1GrZNTGBgfByFsTEMjI9j28QEs/0pFrauTmCQT5DpQZQVssjN0mIRe9evx/XlMgZKJRQADJRKuL5cxt716zNZJ5/ksj7ePBBg7+oEUUpl3YZYbdiwQe3bty/rZgAAxgfG/YtTDJQwcmwkxRYtNFYYA/x+/QVgdH409Otynp/itm1iArdVKq5Z/32FAq4vl7F9OHxSVPPmoX3JYHPUIqubGsrGmWtXDit4isiDSqkN7T83u9U5Z3oiRxIVsppTFK0jGM0piuruKpfyUEd0lvV1EuR1agJ08rqUTzauTuBwfYJMT+RIYg7K9CkKyk6UYfGklvWxJgDZjkE+QaYnciQxB8V5fnITdU49aNle0ONeNxh+SwUB1gSg/GOQT5DpiRxJVMgyfYqCshG1VG6UZX1+Nxg9Ae1mTQDKOwb5BOWhzGRzDmrk2AhG50cxcmwEw9uHO26b6VMUlI2ow+JRlvX53WCIiGegZ00AskH2UcZyNiZy+BncMojKbRXXIXsTpigoG1Hn1JvL+nZUKtjVsv3tZo3tb/1uMGpKoQdOQHfLrs+qJgBRXBjkKVblrWVUd1cXJd+ZMkVB2YijVO7SYhHbh4dDZ7sH3UDUAVxfLoe+eaBkcSluPDIbrheRu0XkmIg8EvC814jIvIj8Tlpto87lYYqC0pdlqdygG4iVpRK2Dw/j2MgI5kdHcWxkBNuHhxngM2R6tdA8yXJO/h4AV/k9QUR6ANwK4NtpNIjiEfc8P+VflqVyWYs/f7gUNz6ZBXml1B4ATwU87cMAdgM4lnyLiCgpWZbKNbUWP3njUtz4GNu1EpHVAH4LwH8A8JqA514D4BoAuPDCC5NvHBGF1umcehzv22nSHmWDS3HjY/LRfTuAG5RS8yLi+0Sl1J0A7gSc2vXJN42I8iSrGwzqTBIlt7uVyUF+A4B7GwF+JYA3i0hNKfV3mbaKqANTtRp2VCrY2dKT3MKeJL8XcsWluPHJdBc6EVkD4O+VUq8IeN49jef9TdBrmrQLHaXL1CU33OnMHb8X8uK20RVwdikuV+os5rULXZZL6L4E4F8BvEREDovI+0XkWhG5Nqs2UX6ZvOQmaklXW/F7sUNtqoaJbRMYHxjHWGEM4wPjmNg2Eemc41Lc+HA/ebLCxLYJ3+G98vXlzKoODoyP+xaCGSiVcGxkJMUWJSPs0Hu3fC82Y4/bHMb15IniZPKSm6S2STVJJ7vMdcP3YjuuZzcfgzxZweQlN1G3Sc2DTobes/5eouxvTw6Tb67JwSBPVjB597tuqLjWyS5zWX4vUfe3J4fJN9fkYJA3RBLJK92g+b3NPzvv+Zysl9x0Q8W1Tobes/xemPQXD5NvrsnBIG8AkzPDTdb6vdVn3HuRJux+l2VJ17R0MvSe5fcSdX97cgxuGUShzz2MZH1zTY78X10soJO80i370Yfh9b2dUQRQAKYPTOP+4fszXTNve8W1LYODuK1ScQ2cfkPvWX0vTPpzRK0twa2lzceevAHykrxi2pSC3/cGAKgB9ek6R0ZSEGbo3YSEt6yT/kwQxwgi17Obj0HeAHlIXjFxSiHs98JlPcnRHXo3JeGtG5Ihg8S1/I1bS5uNQd4AeUheMXE9bCffi0kjI7ZpDr0fGxnB/Ogojo2MYPvw8IK5dVMS3rohGTJIXkYQKRoGeQPkIXnFxAuC3/fmx4SRkTiYMOwdlikJb92QDBkkDyOIFJ39R3IO5CF5xcQLgtf3FsSEkZGo3DZ3aQ57765WjQ1UJiW82Z4MGYTbuXYH9uQNkIfkFROnFLy+t+VXLjd+ZCQqU4a9w2LCmznyMIJI0XGDGtJi8gYw7bph04y8bu6ybWLCd6nd9eVy1/as0+Z1nqCn8WcdxmzXTMG4QQ1FUt5aRt/avkV3/iZNKTTlYWQkqqBh7ercnJHz87oJb3nMN8ibReeJAOgBRASYhxEraCg69uRJ25nCGbtaCmds5l1+FoJ68sDZwGna/HxzS9pdLVvSbm7ZktYt3wAw9/PYIk+jdbSYV0+eQZ5yL2rVrjzyG/ZulcchcA7pZ2N8YNw/EW+ghJFj5k0BkYPD9WQlE4v0pMFr2Ltd+7K0PAyDm7LMziY61SpNXEFD0THIU66ZWKQnDa3rvIM05+9NqTYXxKRldjbQvRE2cQUNRccgT6mKu/69iUV60tJc571Sc1laXpbdcZldvHRvhLmkzk4M8pSaJIbWOcSoX4c9L8PgrCsfL90b4SxW0KS96ZVpm2ylgUGeUpPE0DqHGPWXpeVlGJx15eOleyOc9tLTtPNpujV/h0HeYqbdtSYxtB52iNG07yQOunXY8zIMzrry8QpzI5zmjnJp59N0a/4Ol9BZysSqb2OFMcDvcCsAo/OjoV4zzOc08TtJSnMt+s6Wtejr+vtx/9NPY9blnA+7NM3t9be0rHUnc5i6/j3tJXu2LxHkErouY+JdaxJD62GGGE38TpLglUX/g2eeAQD0iix4fthh8Lxk6ZMjjrn2JEbA0s6n6db8HQZ5S5mYdZ5U9q7uEKOJ30kS/LLoAeCy886LNAyelyx9ckSda09qLjvtfJpuzd/huJqlAu9aq3MYK4x1VB2u0wpzWW+p2y138nccOeKZRT+rFA5MT6Pa4eY1U7UaPuNTaa+Zpc+KdMno9Nxr3gh3MizvNwI2/eg07lt2H0orw19HBrcM+k4jxL1kL+33MwXn5C0VNP/UKsycdNR57Szr39s+J9ckY2P+jwOoj46Gft3mMP2j09O+zysAmO/g9cmf17knvYKeZT2AAmpP1WIv66x7LQmb25J2joztOTmck+8yfkPj7cLMSUed19YdWk9iDrBbin1I8FM60hymD2JKlr5tvM49NatQO15D7UQtkWVhuiNcYXNb0l6y1w27U7phT95SnntF+9DpyabRG07qjtv2O/mmoJ48AKgOetq6O99xA5lkhBmdA+LLnA/7vraMiOUNe/Jdxu2uNYjOHXsa89pJZcF3y538ioAEupUhl7g1N7UJCvAAWKwmQWHPrbiSScOMCgL25LbYwo6rGrlqT7YJ7IVrZJeWVpQiv0YQnSz4TnsnURKQ2pm6xe0HV6/GrU8+6boevlcEW1av1n6t1r3dg/QXCixWk6Cgc89NHAHXK2HWi61Z6nnFnnwXiWNOOo157TxkwZtcInNruYwXLVniWhb2RUuWhOppey2Xa9dXKOCjhhfCycM2u37C9qiBeALuohEwn6QPm3JbbMEgn7Isy6rGURQjjU0s8rCe1eTCOnGWhfXb1KYpDzXlbSjg43XueYkz4LYmzG56ehP6X96f6kY21Dkm3qXIhMSvOJawJb0MztQynK3yvhxPtyxtYWzMtxIxANw0NGR8OdttExO4zWN9f56SBdvPveL5RYgI5p+Zj3RNCTv1lOVSWHLnlXjHIJ+iPAQvE5hwMxQkiTr8aWmdZ28Nes0eeWtvPyijfqBUwrEOC+ukyZbP4SZqwM3D+UbBmF1vgG4pqxpVlCz42lQNBz9+EHvO3YMxGcOYjGFP/x4c/PjBWKdE8jCl4CVMWVpb9nbPyza7nYi6c5zJU08UHYN8ivKQUGaKTi5ctaka9l+6H5VbK6hPn71g1WfqqNxawYOveTC2QJ/nwjp+8+zNsrRNpuztHjVpLi/b7GaBnQ+7McinyPTeX1ZJgXG9b2VHBTM/n3EfRlfAzM9ncOjTh2J5rzQSEJMSpldrwt7ucSTN2TIikYTAzkfIZXtklszm5EXkbgD/EcAxpdQrXB5/F4AbGn+dArBZKfXDoNflnHxnspqXi/N9tSpz9QCFUiGWz5jX5KMk56eT2Gc+jqS5MHkI3UbrvBEYUweC3Jk4J38PgKt8Hp8A8Fql1CsBfArAnWk0Kkkm9/6ympeL8321pjvmEdtnjDoXmpWkerVJLVMLM73gxYQRCVMNbhmEFAN2PDCoDgSFk1mQV0rtAfCUz+PfV0r9qvHXvQAuSKVhCTK5rGpW83Jxvm+U6Y5umntMap49qX3mg6YXqnNzWvPzS4tFbB8exrGREcyPjuLYyAi2Dw93dYAHnM6H7oguk/HyJy9z8u8H8K2sGxEHU3t/WSUFxvm+Wj2SmN4rz5Lq1cbR43ajkxSXp6I2pikuLQLz+s/vphtiGxgf5EXkdXCC/A0+z7lGRPaJyL5qtZpe4yySVVJgnO9b3lrGkouWuJfdFAQe7VknPqYpiV5tUsvU/KYXmqKOFnSz2lQNhSXhQkG33BDbwOggLyKvBHAXgKuVUie8nqeUulMptUEptWFgYCC9BlokqyVhcb5vcWkR63+wHuUbyij0n33NQn8B5RvKKF9fzu2ytzxIapma1/RCuyijBd2qmfiq5sIlYBfP7+4pjjwx9jclIhcC+FsA/1kp9bM039vU3cWS5LXTVNJJgXG/b3FpEWtvWYu1t6xd9FhtqoYTXz+R+mfsFlsGB32z4DtN6GtOL+yoVHDzoUO+z81zUZssNBNfVS1ckD933bkJtYjilllPXkS+BOBfAbxERA6LyPtF5FoRubbxlJsArACwU0QeEpFU1sWZvLtYktJOCmyujb9/+H5MPzoNiNPjhiT3viYnPtogycI5zemFlZqjBXnfcS4tfomvfqYPTCfQGkoCa9e3MXktuy1YK9s8ca1vb77OrpbX2RxxnXwrnTXzW8tlronXFLgHgxeD92boViaukzcSSzzGw6+KHWtlmyXO9e1JL1PTGS1IaimfjTpNNu2mJNW8Y5Bvw/ry0QVNeRy54whvpAySp6Cos/wvqaV8NvJLfPWSRJJqViW1uwHHrNqUVpT89wnnHWygoJ560Bwgb6TSpRMUTdprvTla4NUmm3eci5tX4qv0OutQRSTxJFW36bu543M4dPMhTO6axIYfbUDvqt7Y3q/bsCffJs+7i5kiaMrDdR17C95Ipcu2oMgd5/R5JaNeeMOF2PjExlSSVL06BQAwV53DAxc/wB59BOzJt8lqKZlNdHrihb6CZ3Jj1BupblwCGcWKUsl3w5q0guLR2Vm8/cABfO/kSSg494JXLF+OL69bh1W9+j25pJby2apZhdMtodjr53EKyvCvHXfO57Dt4HXAwZ58Gy6zik6nil1SG/V06xLIKEzYhvXo7CzW7N2LPY0ADzhJ33tOnsSavXtxdHZW+7WSXMpH8dPpFITN0+F14CwGeRem1pfPi8Apjy2Did1IMXM/PBOC4tsPHMCsx3LeWaXw9gMHtF+LO87li870XNg8HV4HzuI6eYpdluvgg/bGLg2UMHKss73SbZb0+vYghbEx3+XaAqA+Opp4Oyh9E9smcOhm/0qGYc/bbrwOeK2T5y0txa455VHZUcHkrpb5sM3Jz4dxCWRngjLWkxbU1bCrK0KtylvLznWi6nFu9gDzz85jrDCmPa8e13XAhnn9fLSSIsniQPVL5tHVSbu5BDI5cVXFcyPwD+RhNhBOsp0Uv+LSIjb8aIOTRX+8ba5cANSB+vTZpXWV2yqo7q76jgjGcR3wWtqn8/4m4Zy85fKagNJpu7kEciG/Gu5h6rvHWRXPzRXLl0d6PK12UjJ6V/Vi48RGDN00dCZPp9BfgPTIors/nXn1OK4Dtszrc07ecnmtxe/XbikKpOQU6Wjv3bMu/lnNgOdWw324rw9KKTwxO6tV392vZnyvCC477zwcmJ7uuOfczK53S77rFcETGzdqLaPTqW1vUmEf8hZlXj2O60De5vVZu75LdVqLP+syk37tVjWF+kzdtXfPJZBn+ZWr/fnMDH4+M6NdytavKt6sUthz8mSknvOq3l48sXEjrly+/MzQvAC4cvly7QAf1E6WtM2XKPPqcVwHbMnvYU/ecoG7TLnsJpVWb9hvzv2+8+4LlW1l8qhEVgbGx32L3Pj+21IJx0bO9lKCst/dZNFzZpa+PbLuSWf9/mGxJ9+lghJMCn2FRb31Q58+lPhcVNCce/H8cDcR3NhmsSjlaNv/bSdV79p7zro5AFH2gg9qZ6Hx+mS22lQN/ev6PR9PI7/GlvweBnnL+e4yJUB9tr4oyFZ2uM+FA/EF06CklnNffm7o3bGaw2dZTzWYIko52vZ/61cVz0/zZkE3IS5q4tyWwUEUxT8X36Rd9WixZgfg6fufdn08rRLj5a3lxCpzpolB3nJeB6oUGxfC+YXPr5+qL/pZu9a5qE4DalCuwLMHnnVtt5/SilJHWfm23hT4BeaiCHo8/p1bKVuvqnhBmjcLutvZRt32dmu5DL8pyHmA8/KGa3YA1Kz773HZpctSya+xJb+Hc/Jd4Mzcd0thmvmpeSd5rQPNuagoc/c6uQKbTm5a0O5CXwH1WfebkOacPADfrPwLPnoB1t6y9szPbM7GjzO7vvl67VXxXtbfjx8880xgNntQfkAzB0D3eX5kbMz38QKAec7LG8EtL2d+ev7Mung3ps2Fm4Jz8l3MrRZ/0J7uXlrnoqKsI9XZxKa4tIjy1jIGNw+idH7p7E1JWxe0dfgsKCu/sqOyoIduy1pYN3413H+wfj0eePWrQ9V3b1bFOzYygvnRURwbGcE3Lr5Yq+697na2Qc+rzs0FztGv7OKtZvM0KuU16uYX4IH8ZLWbgkG+SwVWfOpB4FxUp8vzAL2kFreLAOYBEXECvSwePgu8AMxjQeCO8hnywC0wbx8extJi0fexMK+vsxmM7h7vOgE4aI7ehF31spC3wld++8j7ybpqZZ5upAAG+djk7RcfFGTLW8uBc1FR1pH6JbX0rulF/XQd33/+9zH96PSii4CqKRRKBQx9YmjRDoE6F4DWwB34GapzufmdZkXnZkE38Oom+PnN0Zuwq14WgkalHn7Lw0Ydy0H7yLvJOqs9bzdSAOfkY5H2vG4ctehNqAjlliuw6v2rcOKrJ3BqIvgO3+31dXa0aq0NEPQZFv1TC+bqdcVZA94vP6A1B8DreV685uiz3lUvC3k7lgPzctpk3V7A7AqinJNPUJrzunHdScaRORp1HalbrkDhnIJWgAfce+HlreVFc/btWnv7vksMXdgwV68j7hrwusP67c8L4jWHH8dURN6EnavO+lgOO+xuQlZ7Hqf3GORjkOYvPs4bCrcg2zr0HSSJdaRhhvDcLhLNZD2vQN9+8+H1GfyYejLHKepSNje6gbf1ed2cRBdWJ3PVWR7LYW6wSwOlUNempOSx1C2DfAzS/MWbdCeZxDpS3e/Kb6Rg6MYh9L+0X+vmw+szxNXOvDKlBvwHVq3y3GZWALx/1apU2pEHYUelmrI6lnVvsLOeh2+lsyrINAzyMUjzF2/snaRq+S8Cne8qaKTAK3Cvvm41VvzmCtw/fP+C5CMAi0Y0SivzdzLHSXfJG5mjk1EpILtjufU8La507xCYVl0uj6VuYw3yIrJERC6M8zXzIM1fvEl3kklkmgb1Rgr9Ba2RgvapiMsevwwnvn4CR24/otXWPJ7McQoaBj+/WMTHDx7EuXv2QMbGIGNj6N+zBx8/eDDW2vB3HT3qed+oAPzF0aOxvVfeed3cLr9yOaTXfTwk62O5eZ5uqm7Cpmc2LdhP3sTqcnksdasV5EXktSLyAxGZFpEJEdkmIue4PPW3AUzE20TzpfmLNyn4JJFw6Pdd9r+8H5f/8vKO5ubCtjXrkznrJZl+S9l6G7Xhb61UMN0ypD9Tr+PWSgWvefDB2AI9RxTCccuzufgbF2PJi5ZoHctZHndRc4TSkMdSt4FL6ETkpQAeavz1EQAvaPz3EIA3K6WOtjz3XQC+qJQKyG9OTlZlbd2Wgw1uDresTfd9TCnDmtRWjEl8l520Na3faTsTfsd+S96WFgr491oNXpf9HgA3Dg3FssVsJ2Vu41z6l8TrZUHnWDbhuKPOeS2h0wnyfwXgjQA2KaV+LCICYAuAzwA4DOB1SqnDjed2bZBPU9AJq7OOPo619p3sVZ+VPLXVlLW4XmvN7zhyBCcCeuo6NeZ1bJuYwG2VSmBt/NY266zH1xX365ks6LhbdukyTB+Y7uh6EXS9ieN61O2iBPmDAP5KKfWJtp9fDuDvAfwKTqB/kkE+ezp34wBiuWNPqiefhKC2FvoLuPyXlxtxQTH9ey2MjQXmV0bZBKa95wwsvj/rFcGLlixZFGTD3hQEvb/fKILu6+VFUsV0gq5Jl3znEvzwDT/kCEJEUYrhvADA4+0/VEp9H8CvA3gugDERWRO1kRSdztxzXHPpJuUHBFn1gVXwXIsFoD5bN6YspbErKBp01qZ3un7drQiP2w3FecUivnPJJYt60VGX/rW/v580lxImpXUOPkyAB/SvF0HXmwNvP2DtJlEm0AnyvwTgerVWSj0I4A0AzgPwLwBeGF/TqBM66+jjWmufdXJarOZhzAXFpBUUTVO1GrZNTATOkQPOnHynm8B4FeFp98z8vGuAjZqop/v+uq9nkvakuvtW3of7X3j/2dUxHdC5XgRdb05+76QxtT9spBPkfwjgN7weVErth9OjXwZgW0ztog7p9ALj6inmKdP06F1HA9fwm3JBMW2EJEzvVgBctGRJx5vA+PXEW3n1onV3u4v6/rqvZwq35a61EzXMVec63na6qbmJk1cWfuD1JOC8zHrkKu90rsLfAPDnIvJKpdSP3J6glPo3Efl1AP8EZ/ieMlJaUfKfz11ROrNG3Pc5mprLXrLalEGX7oXChAtKeWsZ1d1VzznKtEdIdHu3/YUC/mD1atw4NNRxMlqYnrHbc7cMDvrOyQeNMIR5f1O3rXVLYutf14+Zx2agZpPZkKxZc6K6u7roBj/omgSBb6C3vfBU0nR68l8E8DI4mfSelFL/BmA9gP8QQ7u6QhJrUnV6gab1FNOge6Ew4YJi2ghJUO92oFSCGh3Fs1deiVvWro2UbR6mZ+z23KjbzOq+v6nb1noVqDq552RHAT6omE6r+qk6Zh6bWTTlFXS9WX7F8tSuR1nXn8iCTpBfq5T6qVLqqaAnKqWeBHBx9GbZz+tkPHTzIdy37D7ct/K+jg4+nXlyq+bSNenU9TbpBsekwiBBvdugIfwwdPeT9+pF6+52F+X9w7xe2ryS3DrRXMXhVUzHjZpVOLLzyIKfBV1v1n15XSrXozzuBR8HnSD/oIhsbayP9yQiwyLyLwA+G0/T7BZ0MtZO1Do6+HR6gab1FNMwuHkQfstFpVesvcGJKqh3WwBiq3Dn1RNvFdSLjrLNrN9IwMv7+/HMpk1Gb1sbZhdHP603vIuuFwFqxxceC0HXm95Vvalcj9LcEtwkOuvkvwvgCgD/CuDdSqnHXJ7zIQC3ACgB+KRS6r8l0FYteVknr7tkJc3iJzab2DaBJ2990nPIcvmVy3HxNy7O/AbHhOpq7W1YUihgpl73nDaNs8Jd6/vvaqxTX9IIuDP1OlY2CvIk+X14FQHKQ4W7wKJPGoLWp4/JWOBrjKrRaI1IgOn1J6LquBhO4x//FwB/3Pjrx5VSn2v8fBjA3QBeC2AfgPcopQ5oNuhuAP8RwDGl1CtcHhc4owJvBjDdeO39Qa+blyAf5mTM+8Fngjyc4CZUV/NqQ5C4KtxRNGHXu0uvoLC0ADWtUJ9xft+F/gJW/8FqDN04tCjI16ZquG/ZfYGva2KQz1PVy05EKYYDpdSfwkmqewTAn4rImIjcAOBhAL8G4EYAG3UDfMM9AK7yefxNAC5q/HcNgF0hXtt4YRK8TMj4zjvTC8wA3lnsp+p1HDx1CjsqyQ8nhl0n3hQ0b9+6zr4wNoaB8XFsm5iIdcc60khyu3L5giHxC/7LBeh9Xu+C4FefruPI7Udcpwq1hrSDc/Rip5NQZ2L9iTRobzWrlPopnID+BQBXAvgTAE8A+D+UUrcopUJdFZRSewD4JfNdDadErlJK7QXwHBF5QZj3MJlOIliTrQdfmvJwgket1pZ0G/z4zdu7VbE7PjeH2yoVbNy/n4E+RkFJbhd/4+IFyZyFcwo4NaE/Tz25M/s6Eu10E+q6cVUREH4/+fcBeBeAOQDPAlgL4K1BSXkdWg2g9Qg73PiZFbxOxnY2H3xpysMJbsK2qp28R9B6cRNGKLpF2KTasNUvdUa80r5h1k2o68ZVRYD+fvKrReRbAO6EU8d+A5ylcnvhJNx9X0ReHHPb3G4cXGdUROQaEdknIvuq1WrMzUjGgpNxpftJEfXg68Y1oYD7566frqN3Ta/RJ3jUam1ptKGdznpxE0YoukmY5Zdhp7F0AvjglnRvmHVvVLpxVRGgEeRF5N1w5t5fD+BTAC5VSj2slDqklHodgOvgBPyHROS/xtirPwyg9cpxAQDXq4FS6k6l1Aal1IaBgYGY3j55Z07G6gg2PbMJQzcNxXbwdeuaUK/PfeT2IxARrL5u9aLv+JLvXILKjkrmN0N+a7TTqq4W1IYrly8Pvf7chBGKvEnrBj3sNNbglkHfwjilgVLqN8xhblRMqj+RFp0ldHU4CXfvblS1c3vORXAS6X4NwPeVUpu03tzZue7vPbLr3wLgQ3Cy6y8D8Dml1KVBr5mX7Pqkpb0nuSn7QYf93Dpb86bVfpOz66O0IWhTGxMz87M8ntM8JoPOl9XXrUbhnMKZ76F4fhEQoPZ0DTi98PnFlUW85uHXoHdVbyxt05WHlTNpiJJdfwuAV3sFeABQSv0cwCYAN8DJwtdp0JfgrL1/iYgcFpH3i8i1InJt4ynfhDM18BiA/wfAFp3XJUdcO83pMGnUIOznNqlARtRqbaa2wYQRijCyPp7TPCb95ql71/TixFdPLNrUpj5VR2l5CcWVxTMjYkM3DWHjxMbUAzyQj3ybLGmtkw/1giIvVUr9JNYXDYE9eUeaa0LTHjXwE/ZzsxeQPBNGKMLI+nhO+5g8M2qxq2XUYvMg6qedpXRJfw9RR03iGPkwZSQyikjFcPKEQd6R5oXCpEAZti22F8gwRZ6qyGV9PJtyTKbxPcQ1NeF1o6ITpE2asovCK8ib33LqyOCWQd/eSJxDWCYVmgn7ubW25qWOmFCitxNZH89pHpN+PdjA7+H4HCa2TUTq/epMTeiMFkTZ8jquNpgq7Dp5yok014SaVGgm7OfmfF4y/ArgXLp/Pz5+8OCi6ndHZ2eNqIqX9fGc1jEZlHtQPD8gUBcQOW8hzdwhk9uQJAZ5S6W5JjTpi1KY5URhP3e3FshIml8BnJ9MT2NHW/C/9cknsWbvXiOq4mV945fWMenXg53+yTT6X9rv+T1IUc48t/3fhkkOzHrUxJQ2JIlz8qTFb1gPQGJzWmnMl0WZzyN3QcvmwugrFHB9uRzbLnet3KYUrl25Cq9/53EUfjyb2RxtGsdk4GY2BaD/Jf2Lyt4W+gqoz9WBee9/qjtfn3X+gyltiAMT76hjOoEWQCIXpawznakzhbGxqDueLpDEWnq/rP8XntOHL//jCpz8/NFMb/ySzPrW2Qmz/LGys06+7bw+dPMh/3/okhzo9ln61/XjmR88k+n5bcs1hkGeOpblSRB4l73SuejleemLjeLsyQPOvOL86GhsrwcA2yYmcFul4lpyN8nRA11Jj2LpbEvr1YsN2/v1+izN6nkikumoic3Z9ZyTp0BZJqboZPiaUISHFvIrgNOJJOr2m15TP+miODo15r3Ov7B5C16fRc06ncxlly7TyqFJotyv7TXt2ZOnQFmu291z7h7Up8NvfZqnYTYbeQ2FF0Uwr1SoofyketVBUwpJjB6EkfRccW2qhvuec19Hc+the79xfBZbetxJYU+eOpbpkqIO70G9Rhi6dWe+tHmVx/3oBRfgJUuWLOrl94qgV2TRz3V2uQtjqlY7s0wv6NBKY9c/P0lnfReXFlHeWj6TKd/ObyVB2N5vHJ/FpBLUedK9tz2kLc3COu3qM+F78U3tFw63nkBzeL+6u9r1PYG4LS0WsX14eFEP/MahIdfqd5sHB7FrcjKxqnheowtuTKipn0ZRnKEbh3Di6yc8e8d+y/XCFKCJ47PoTBty5G4xXtEoUHlrGdXd1Y4uBFEVVxRRO9FZL7v9wmF7Zau88Ar+ADx/HgevtfvtdEcPkq7ol8bNdbNHnvRyvTg+i+3r2ZPC4XoKlGViyrkvP9f/CR5bW7tdOGyvbNWudWg6ywpypvBLtGvS3XHPr6JfXMV70iqKk/Qe67WpGuqn687a+jZhPkvUacNunapjT560RKkNHcWzjz7r/4QCUCgVtEYYuqkn4DY03QxCu6vVxHZ+M7le/YmAJX0FQHstvl9Fv4OnTmFHpRJ5RCKtXnaSWqfIFiX49QCrr1uNoRuHtD5LlNGAbp6qY0+eUtHpXXTtqYC77Dq0RxiyrkmeJp0gFLejs7MY3rsXNx86tKhkbdqlad0EJdKFSbRLa/ld0r3spHlNkQHOzXnhnIL2Z4kystHNSXsM8l0ujSGs2aOz2Du8F4duPrRgPfuTtz4ZuJ49MDCvLGlfBKPWJM/TcF/aa8CnajW8ct8+HHcJ5LNK4bGZmURuLMLwW7sfNtEuaFQg6PFuEecUWZRpw26bqmvFIG+wpINK0C5UYd7Hq62zR2ex75X7UDu++LXUrMLMYzO+d9FxbhYSpScQ53eVhjBBKI65+x2VCqo+7zmrVObFZbaWy1jb1xfLMr04RwVsFmaKTOd61+nIRjdN1bVjkDdUGkElriEsv7Y+cPEDmKt6n0BqVvneRceZfBSlJ5C34T7dIBRXAtlOjQCede/Wa+2+TqJduzhHBaIKCo5ZjkDpTpElfb3rpqm6dgzyhkojqMQ1hOXXVrcefDu/u+i4M/s77QnkbbhPNwjFNXevE8Dj6t3qjDx4PQdwlukdGxnB/Ogojo2MYPvwcOikwDhHBaIICo6zR2cTH63zew3dkbg0SvhmuX1wlljW1lBpbH8YV7lanY0u/ORhK8csS/t2wm+HtbV9fWd6rkEbyeju/qazIc1NQ0ORM851PhcArc8eVXMlQVLFe3QEbR617NJlsezyFqakbPtuc2e6ki3Z9e3/Lo0SvraXxGVZ25xJYw4priGsqG3Jw1103ob7dIem40og+8CqVV4lCwAAK4rFWHq3OiMPQc95y8MPx1I7oFnUJ+qoQBRBI0wnv3cy8dG61p6228gC5p1d5tADQNxH4tIo4WvzJjR+7P1kORemDGTQntNej6/6wCocuf1I5IpaQW31U1xZTLRiXlzSLu0bx3pzv8pyTStKJd8eeJxD7Ofdd1/kdfM6qwZU4/+9nrPn5Mkzf0+jdkCSAoNfwECtbvDULSnrudtcTfmOHKRRwjerWh9ZY0/eULpzSFHm5E589QR61/RGTmrza6v0CkoDJdfHSwMlvObh1+TiLjqt6mNAOtXUmuJKILvr6FHfeDILhPocXnPqOiMPYRP8kqwdkLTA4Oc3vAIAClrz67o97U5zV7p5zjxpDPKG0g0qQcNoB95+wPvxiVNY+baVzhDWypJzQRDnsdNHT6Oyo6KVmOPX1iUvWoINP9qwaJhs6KYhXPb4Zehd1dvBt5O+NIf70ixkEyWBrDUQB83Htwr6HH43OUEXrBWlUkejD53UDjChbHBQcFx+xXLPxwE4d14ayXi601WdDruneRPdbZh4Z7Azw+w+JS0Dk94EvkN2pYESLnv8sshJKTpt9fw3bdMIg5sHMblr0nP6wSZuw/LT8/OY9qmx7pUM1+kQfycJZGF2dAv7ObZNTOC2SsX1dXvgzO/WXK5bzX3nAXj+ez9h9o/XTWxMWlBC2SXfuQQ/fMMPPavOtfMaUg9K8Gv+m6DrUaG/gJ7+Hv9pxZyW8M2aV+Idg3zOBWZ9ayh/rOw7N6+bgdtKJ0/A7eIkvc74oohYmwXb1GmgdAtGaQcdv0CsyyuoBo0M9AAoFQqhs+uD6K4kAPw/f/NmI6nd9NoFBcf2x5u9dy9umey62el+NwMQQHoEqqY8/z11jtn1loo8JwdnyD/ONeA6hS08E3RmFdSsyk3RmSh0tz5t5zYcnXatep0d3YJ4DasHzanXAd9VA14rC65cvhy94n5ChC1gk3bZYD9BtR/aHw/iNqSuO13lNeyOHueP1gAP2Hlee8mqKBF78jkXZZ2stpBrwHWG9iZ3TnaUkZ+HNfW6ws5lA969xLjWu+sqjI0FDiD1FwqYrdcXbT4G+Pd2k/oscY52BH3+MEP/aUtjTXr7yML8s/OoT3tfg2w6r92ksU6fPXlLBSWsrPvyOvSt7Yv0HmGXr+hk2Ha67tWmGtNhs8D9kuHS3jAlKLltoFTCLy+/HC/t7w+d1JdUydg4y9qaXrver9eYdCa728hCfca/kzFXnTN6w6eosiyLzSCfc0HDaL2rerF+7/qOX7+Tk14nw7bTda+mFZ2JIigQ9BcK2sEo7aCjE4h1g2p7lvodR45gWU9PIiVj4ypgY1Lt+nZB02WDmwdTz2TXOW9N3vApqizLYjPTwQJBRR6KS4sorQwoWNPj7O/sNpQU9qTXKWwxuNm7uIwX3e1g/RL+TLJlcNA3eeujIZK3gl4r7qCztVzG7mrVc+i7GYiDCvK4DaGfqNXQK4JlPT1Y2tODpzIqGetH9/NnIajXOLlrEuv3rk81k92vmJRbGys7KlYVrclyFzzOyXeJoHny1detRuGcQiwnvc6cfHlrOfbs+rzVp45zjjiLJV1x1G43KUs9LBNq17tJY98LL37LYsMs5WtvY55u3t2k8TvhEroul2YA9HqvpuKKIlZ/cPXZ9fBtNxZePw86oXXX8pokzkBhatDxk3bCYDfIajMlnTX7Z85rn+2n29uYt5t3N2lcmxjkKdViEwvuvF3uYJM4QbPswVBnxXjynKVuqqzOgzCBLEwb83jz3o7Z9ZSKTvdSj/JeXpm8SWSVZjnv1e06rbdvepZ6HmVVBz5MclmYNmaZtBaXLHfBY5CnRKV5guZtO1ibdFqMx+Qs9XYm1KrXkVUd+DA32WHaaMvNe5qdrFYM8pSoOE5Q3UpR3MkqO51WgIuyQU6a0twZMKqseo1hbrLDtJE379GYna1AuRd1n2i3uazmetrq7uqikprV3VXPeS/uZOUvyh72nRbjaa6lNz1hUGekonUVwJnv8sgRnJir4bxngKu/Avyn7xTxovetTjwrPIu90/2WybndZOu0sTZVw5KXLPG8hvDmPRgT73IqL0tKoibNhP333MmqM1GX4NmeJR/m8535LmdO4ZQ6+12eMwsMTgK7/lBw/uolRmaFR7muxJ1cVpuqYf+l+zH9k2nP1QJLXroEr37g1cZ9j1kwMvFORK4SkZ+KyGMi8jGXx5eLyNdF5Ici8qiIvDeLdppGZwMYU0SdHww7p5/0vFdWm0wkLeoGN2nMrWc5Jx5mpOLMd6kWfpene4HJQeBLb1NGbsoS9boS9zRBZUcFMz+f8V4OKMDKt61kgA+QWZAXkR4AdwB4E4B1AN4pIuvanvZBAAeUUpcAGAXw30XknFQbaqAs6yCHFfXENynpJk83V2FF3VUtybn1qVoNHz94EM+57z7cfOhQJnPiYVYB+H2Xp3uBr73VzKzwOK4rcd5kT+6cXLRr3QIKOPoXR0O/brfJsid/KYDHlFKPK6VOA7gXwNVtz1EAlomIAFgK4CkA+b2SxiRvS0qinPgmJd3k6eYqrKgb3MS5+Uur5tD3Zw4fdt3NLqmtdNuFGakI+q5OLnf+NC0rPMp1JYkRLp3vJ87EXVtlGeRXA2g9Mw83ftbq8wBeBmASwMMAPqKUWnQUisg1IrJPRPZVq9Wk2msMk3q3STMpYz5vN1dhBPVUzy+VAofK49r8pVVz6LvmkzuUxv7tYUYqgr7L5SedP03LCu/0upLUCJfO96ObuGvj6JuuLIO8uPys/Ux+I4CHAAwCeBWAz4vIeYv+kVJ3KqU2KKU2DAwMxN1O45jUu01SbaqG+uk66nPuSXdpZ8zbfHMV1FOFUpksH/Mb+m4V91a67cKMVGwZHETvvNvlzUm+e+vXAPTAuKzwTq8rSY1wrfrAKv8IpfEdxtW2PI8GZBnkDwNovUJfAKfH3uq9AP5WOR4DMAHgpSm1zzjNA21+2m3g0mHLkpLmHfiR249g0ThtD7D6utWpZyfbfHPl11Nd1tODZ+bnO07Ki0I3eKdRGU93pGJruYzBIwrnzC78983s+nfc6/zdtCWdnY6aJTHCVZuq4fjfHfdNulty0ZLYE3e92pLn0YAsg/wDAC4SkeFGMt07AHyt7TlPAng9AIjI8wG8BMDjqbbSEK0HWn3a/aC1aT241x044GyJWzinkHpWrUlTB3Hz66nWlcKsx3B50kPlOsHbtMp4S4tF3HGtE8yf8ytA6s6f77gX2LkFWHIKQB3GZYV3uhImiRGuyo4KZp+Y9Qzy511+ntbSuTjalvdcnMyOMqVUTUQ+BODbAHoA3K2UelRErm08/gUAnwJwj4g8DGd4/wal1PGs2pwlv6AHAIX+AsofLYdaD+62JnbVB1YBAI7edTTT9fc6d+Bpb0phe7Edr73fP3XokO+/i3uovLUoj9/adMC5cJhUGa/pvHNLeO89c3jvPe6Pl1aaN+rTXAkTts5E1IJXbvzOfwCY+dmMduJu1LaZeC0KI9NbSaXUNwF8s+1nX2j5/0kAv5F2u0wUdND3nNsT6kDzrCR3a+OutHEH7VVdLmkmzn93ehEMy7RCRytKJd9gG+dQuVdRHjc9cIbGbxwaMqYyXlPY6m+m6KRSXhKfNa7zP462mXgtCoO163Mi7gPNc2RAYdEQWRbDUqbOf6dRbMe0+b80N5HxKsrTJHCmEW4aGsK/b9qEW9auNS7AA9ltEpOFJD5rXOd/HG0z9Vqki0E+J+I+0IJGBtqlvUTM5vlvP0Hzfz/5H4dSr/qW5iYyQdn0KxvlY6MuzYsqqPpelluLpq2TzxqUrR7X+R/H7yHv1yLWrs+JqDXg240VxrwzV70UgNH50ZD/yJvfsDQA1zrYAIAe5w596MYhqy6WADA+MO45hzjTB3zwz4FfrCl0VF8+iuY8edKbyBTGxnwPywKA+dHR2N6vE1Hr/HejBef68TmgBxCRBRXtWmvcA+7nf6d18KO23ZS2+DGydj3pi3tIrJMhpjiHpYKGpQFg/d71WH3damfytdU8cOT2I7lYvhKW37TLve8AjjwfmSxlS6LQjZsw5WOzErXOf7dZdK4DwDwWlaxtnRbstAeexHr2vI/KMMjnRNwHmt8QlJu4h6V0lqUUlxZROKeAQmlxO/OyfCUsvxupr17t1D53k0bVtzSkOf/vx284Pmqd/24TtDKoVeu0YNj8lyTzWZLOxUkSg3yOxHmgeY0MQLCoFmESyUK6RSpsLiXrxu/m6+lFtR4XSrrqWxrSnP/30hyO96rwF7Ssz4bfQ5zC5v90mq2e5Xp2kyviMch3Kc+RgRvKKN+Q7LBUbarmu3YVOHui5335io7WXuPa1x3C1X9dxz0fcObgmwp9BSx/1v91ogxlZ7mNa6ukNroJI2g4fonHSEOTCVMKJgl7jnY6LZhVh8DEFTGtzB9roMT4rYlde8vaRN6zeUIEaZ7oSRTaMIlbEte/LwPufYdgzxUKd2x2CqsMbh7Eh15cx2d+ecR1qDjKULZbG5o9193VauqJZF5FedISNBzfXyigr1CI/fdgq6BzuFWUacGsOgQ6IwhZFsthT55S1Twh/LSe6HlfvhLEq9c426PwizUF7H1k6My0zA1rhxIZyg7quX76UPrL9rIUNNw+U69nPqWQJ7r5P1GnBbNaz276lCKDPKVKZ36u9US3vahImCSupIayg9qwo1LJZAe6rAQNt68slTKfUsgTz/yfnsZ/Es+0YFYdAtOnFHk0Uqp0DvjWEz2tUrJZCeo1tj+exFB2UBvmAcz7LBfLalg9KVsGB3FbpeI7HJ/1lEKepHUOZ7W3hOlTiiyGQ6nyK/YCOHf0I8dGUmxRtgbGx32ztQcaFd6ybIPvv02hfWljsZv8OlN0J8UOQdyFyjrFYjgWMXm5RhDb59jDMmFduF8bgti4XKx9WkQA9BcKEACPTk9j+P77rc5JyLMs1rObPqXInnzO5KXEope8tz9uJvQa/dowV69j3uff2tiTb2XC78cGpu2sGLcsRhDasSdviSwLPsQh7yUi42bCunC/NmwtlzMfacgSS9hGZ/o68ji0jyBc9vhlAID7h+/PfLSVPfmc4Zw2panbe7Im5EzknSlz1mnJarSSPXlLmL5cg+xiwkhDlsKufqDFTF9HHjfTRlvtPkMtZPpyjahsn7vLo25eLraiVPLtyXdbCdtOzs9u65jo3NSkOXLBnnzO2Jyd3g1zd5QvJqx+MEWn52dWleiyYtpNDYN8zpi+XCMK04a5iEzYFS8tQUtzOz0/be6YuDHtpoZBPmdszk7vtrk7iiaNnfO6JSdBp5fe6flpc8fEjWk3Ncyup0R0Mnc3VhgD/A7HAjA6P5pEcylnuj3rP246GfCHPnWo4/PThHXkaTEtu55BnmLX6UHO5YHdZapWw45KBTsnJ3Fibg4rSiVsGRzE1nI5MEBvm5jwrS9/fbnclYmCQbxuvo/ccQS1E94jIKWB0pnevd9zeH46sripYZCn1HS6Lrbb1tN2s6g98TytX49yMxMnv5vvoJ0hUQCG/miI56fBuE6eUsO5OwoStZJcXtavN29mTNiq1y9xLkhpRYnnZ04xyFPsOl1CYnNSIS0UtIf9rkn/JMug9emmrF83qSyu3823n0JfAavevwqVHRWcPnraeQ1xHiuuLPL8NBx/KxS7KAV7mjWgOexnt6g9cZ09302gczOTVu6Azvrs9qH7Ql8BfcN9OP53xzH7xOzZx5Tz2DnPP8fK5DmbsCdPsUtqCUnQOt4Fj8sY9vTvwZ5z92S+QQQtFrUnnpf16yZNKwSu315Zch1FW3H1ioUBvoH1K/KBQZ5il8TcXdA63tmjswsfB1CfqaM+XWflPE1BN1FxilpJLi/r102aVgi8+d4y6LoX+9G7jrJ+RY4xyFPskphbD6q2deDtB1wfd3suex6LpV1SOI6eeLOm/rGREcyPjuLYyAi2Dw8bE+ABs8ridnrzbVqZVgqHQZ4S0b6/crNX0OncXVDG/snvndRKKmLPw13aJYXz0hOPyqRphU5vvk0r00rhcJ085UJgNbwwWDlvERYiSk5znfyulnXymzNYJ+/Hr0JlZUeF6+NzwGudvBlHGFGAoIx9CLRvAtjzWIxDsskxfave2aOz2PfKfZirnv0dN6dqqruruOQ7l6C6u+pZwZLr483G4XrKhaCkoeVXLPd8vP25tu16FQcOyXan2lQND1z8wIIA39ScqpncNcn6FTnGIE+5EJQ0tO7L61wfd3suex6LmbZzFqWjsqOC2nHvpMpmDkvcOTaUHgZ5yoWgpKHeVb0LHxeg0F9Aob8ACHseQViytDtN7gxOQp07MZfq8kqKFxPviAhAd20HSg6dhNbSyhJKzy+lvnUqhcPEOyLLRd3tjCWFu09gQiuA/nX9eOYHz/gur4x6zPhl9/MGIhr25IksEHXr1jSYsuUqnTWxbQJP3vok1Kx7HCgNlKDqyneveQgw9ImhjgOy3xa4HCnQZ+RWsyJylYj8VEQeE5GPeTxnVEQeEpFHReS7abeRKA9M2u3MjUlbrtJZ5a1lLHnREkivLHqsuLKIDT/agNpTAb8bhUiVEdMuxNRtMgvyItID4A4AbwKwDsA7RWRd23OeA2AngLcqpV4O4HfTbidRHkTdujVppt+EdKtmQuuFN1y4IKF16KYhbJzYiN5VvVrLJ6ME5KBqlnmqUGligmKWPflLATymlHpcKXUawL0Arm57zu8B+Ful1JMAoJQ6lnIbiXLBpN3O3Jh+E9LNgpbH+S2vbNVpQLalEFPa+z/oyjLIrwbQett3uPGzVi8G8FwRGRORB0Xk991eSESuEZF9IrKvWq0m1Fwic5m025kb029CkmBir64TXssr3XQSkG0pxGTqtEOWQX7xJNDixRxFAK8G8BYAbwTwCRF58aJ/pNSdSqkNSqkNAwMD8beUyHAm7XbmJq6bkKlaDdsmJjAwPo7C2BgGxsexbWLCuDl9U3t1nWitUeF61W7RSUC2pRCTqdMOWQb5wwBaK2xcAKD9WzgM4B+UUs8qpY4D2APgkpTaR5QbJu125iaOm5A8Je+Z2qvrVHNIf+gTQ7EHZFsKMZk67ZBlkH8AwEUiMiwi5wB4B4CvtT3nqwCuEJGiiPQDuAzAj1NuJ5HxTN+6NY6bkDwl75naq4sqiYDc6Ra4pjF12iHTdfIi8mYAtwPoAXC3UurTInItACilvtB4zlYA7wVQB3CXUup2v9fkOnmi7PithQcQacvVgfFxHPeZux8olXBsxIztcAMryeV4u+OkKyPmtTDOxLaJTLfk9Vonz2I4RBSLpAvyFMbGguIm5kdHO379OI0PjPtWkisNlDByzIwbEpPkuTBO1m03shgOEenJQ8JZ0sPppq8gaGVLMlna8pzLYOq0A3vyRIbLQ8laIPnh9G0TE7itUnFdb99XKOD6chnbh82ou591ry6vOALSOfbkiXIqLwlnSa+FN30FQStTe3WmMzVDPc94pBEZTqdanAk92BWlkm9PPupwenMFQZTkvTRxV7/wgnbFy0thHJOYdVZQZHnNTCVveakWt2Vw0Hc4PY6CPEuLRWwfHjbipobiN7hl0DdDnbkM4XG43iI2Vdmis/KScJan4XQyky2FcUzCIG+RPGemkjfTS9Y2mV6Qh8zHXIb4MbveIsxMtVNesuuJKDvMru8CzEy1E3vIZAtbdubLE14dLMLMVHsx4Yzyzq12QDNnqLq7yuH4hLAnbxFW2SIiUzFnKBsM8hZhZqp98lDOlkiHrTvzmY5B3iLMTLVLnvZPJwrCnKFs8KpvGVbZsodOOVvO0VNeMGcoG+zJExlKp5wtUV4wZygbDPJEhspLOVtbMP8hWcwZygaDPJGh8lLO1gbMf0gec4aywW+VyFBpbPhCDuY/pIM5Q+ljT57IUNzwJT3MfyBbMchTR1ieMnksZ5se5j+QrXiVoNBYnjI9LGebjhWlEo77BHLmP1BesSdPobE8JdkmL9v52oSjgelgkKfQWJ6SbMP8B39xB+TmaGDltopTIEedHQ3cv3E/A32MGOQpNJanJNsw/8FbEgGZo4Hp6d4jlzrG8pRkI+Y/uNMJyGGXxOmMBnKZXTzYk6fQWJ6SqHskMT3H0cD0MMhTaCxPSdQ9kgjIQaN9HA2MD4M8hcbylETdI4mAzNHA9PBqTB1heUqi7jC4ZRCV2yquQ/adBuTy1jKqu6uL5vo5Ghg/9uSJiMhTEtNzHA1Mjyilsm5DrDZs2KD27duXdTOIiKxRm6qhsqOCyV2TmDsxh9KKEgY3D6K8tcyAbAgReVAptaH95/ztEBGRL07P5ReH64mIiCzFIE9ERGQpBnkiIiJLcU6eiIh8nUm829mSeLeFiXd5wN8OERF5am5Q07qmvblBTXV3lUveDMfheiIi8sQd4/It0yAvIleJyE9F5DER+ZjP814jIvMi8jtpto+IqNslsUENpSezIC8iPQDuAPAmAOsAvFNE1nk871YA3063hURExB3j8i3LnvylAB5TSj2ulDoN4F4AV7s878MAdgM4lmbjiIiIO8blXZZBfjWA1smcw42fnSEiqwH8FoAvpNguIiJq4I5x+ZZlkBeXn7UX0r8dwA1KqXnfFxK5RkT2ici+arUaV/uIiLpeEhvUUHqyDPKHAbQeHRcAaM/g2ADgXhF5AsDvANgpIm9rfyGl1J1KqQ1KqQ0DAwMJNZeIqPtwx7h8y2wXOhEpAvgZgNcDOALgAQC/p5R61OP59wD4e6XU3/i9LnehIyKibmPcLnRKqZqIfAhO1nwPgLuVUo+KyLWNxzkPT0REFEGm4yxKqW8C+Gbbz1yDu1LqPWm0iYiIyBaseEdERGQpBnkiIiJLMcgTERFZikGeiIjIUgzyRERElmKQJyIishSDPBERkaUyq3iXFBGpAjiUwVuvBHA8g/c1Db8HB78HB7+Hs/hdOPg9OOL+HoaUUovqulsX5LMiIvvcSgp2G34PDn4PDn4PZ/G7cPB7cKT1PXC4noiIyFIM8kRERJZikI/PnVk3wBD8Hhz8Hhz8Hs7id+Hg9+BI5XvgnDwREZGl2JMnIiKyFIN8B0Tkd0XkURGpi4hndqSIPCEiD4vIQyKyL802piXEd3GViPxURB4TkY+l2cY0iMj5IvJPIvLzxp/P9XielcdE0O9XHJ9rPP4jEVmfRTuTpvE9jIrIycbv/yERuSmLdiZNRO4WkWMi8ojH491yPAR9D4kfDwzynXkEwG8D2KPx3NcppV5l8ZKRwO9CRHoA3AHgTQDWAXiniKxLp3mp+RiAf1ZKXQTgnxt/92LVMaH5+30TgIsa/10DYFeqjUxBiOP8e43f/6uUUjen2sj03APgKp/HrT8eGu6B//cAJHw8MMh3QCn1Y6XUT7Nuhwk0v4tLATymlHpcKXUawL0Ark6+dam6GsD/bPz//wTwtuyakjqd3+/VAL6oHHsBPEdEXpB2QxPWDce5FqXUHgBP+TylG44Hne8hcQzyyVIA/lFEHhSRa7JuTIZWA6i0/P1w42c2eb5S6hcA0PjzeR7Ps/GY0Pn9dsMxoPsZf01Efigi3xKRl6fTNON0w/GgK9HjoRj3C9pCRL4DYJXLQzcqpb6q+TIjSqlJEXkegH8SkZ807uxyJYbvQlx+lrtlHX7fQ4iXseKYaKPz+7XiGAig8xn3wyk/OiUibwbwd3CGrLtNNxwPOhI/HhjkPSil3hDDa0w2/jwmIl+BM5yXuwt6DN/FYQDllr9fAGAy4mumzu97EJFfisgLlFK/aAw7HvN4DSuOiTY6v18rjoEAgZ9RKfV0y/9/U0R2ishKpVS31XLvhuMhUBrHA4frEyIi54rIsub/A/gNOElq3egBABeJyLCInAPgHQC+lnGb4vY1AO9u/P+7ASwa4bD4mND5/X4NwO83sqo3AjjZnN6wSOD3ICKrREQa/38pnGvwidRbmr1uOB4CpXE8sCffARH5LQB/BmAAwDdE5CGl1BtFZBDAXUqpNwN4PoCvNH5/RQB/pZT6h8wanRCd70IpVRORDwH4NoAeAHcrpR7NsNlJ+G8A/lpE3g/gSQC/CwDdcEx4/X5F5NrG418A8E0AbwbwGIBpAO/Nqr1J0fwefgfAZhGpAZgB8A5lYUUyEfkSgFEAK0XkMIBtAEpA9xwPgNb3kPjxwIp3REREluJwPRERkaUY5ImIiCzFIE9ERGQpBnkiIiJLMcgTERFZikGeiIjIUgzyRORLRP5ERJSILFrL3Chm8l0RmRWRVzR+9usi8gUReUBETjX+7Wja7SYiBnkiCvZJOJX5/lREym2PXQfgSgDblFLN6n3vAvA+OAVhfpxSG4nIBYM8EflqbJv6bgDnArir+XMReQmATwO4H8COln9yI4BlSqn1AP5Xik0lojYM8kQUSCm1H8AtAH5DRK4RkR4AX4Szm9i7lVLzLc89opSazaipRNSCteuJSNenAPwmgM8AeBWcHfT+UCn10ywbRUTe2JMnIi1KqTk4w/Z9ADYDuA/AZzNtFBH5YpAnojCeBtAciv+mUqqeZWOIyB+DPBFpaex7/ZcAzoGTNf9HIrI221YRkR8GeSLS9WE4e2NvB/C7cHJ67m4EfyIyEIM8EQUSkYvgZNc/AOBWpdSjcIL9lXCCPxEZiEGeiHyJSAHAPXCK27Qul7sVwD4At3DYnshMXEJHREH+K4DLAdyglDpTwU4pNS8i7wGwH86w/ahSSonIKwG8tfG0kcaf/1lENjX+/8+UUidTajtRVxOlVNZtICJDicjL4ATxhwBsai160/KcjwP4EwAfUUp9rhH4/9LnZYeVUk/E31oiascgT0REZCnOyRMREVmKQZ6IiMhSDPJERESWYpAnIiKyFIM8ERGRpRjkiYiILMUgT0REZCkGeSIiIksxyBMREVmKQZ6IiMhS/z/OZsFc6XL70wAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 576x432 with 1 Axes>" ] @@ -343,7 +353,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As you can see, SVC fails to provide a correct classification for this data set. However, occasionally we face such datasets in which the class boundaries are not linear and for them, support vector classifier is not a good choice." + "As you can see, SVC fails to provide a correct classification for this data set. However, occasionally we face such datasets in which the class boundaries are not linear and for them, support vector classifier is not a good choice. For these data sets, we should further extend the support vector calssifier to come up with a new elegent way to deal with this nonlinearity. " ] }, { @@ -352,9 +362,9 @@ "source": [ "# Support vector machines\n", "\n", - "For non-linear datasets, we need to tackle the nonlinearity of the boundaries by extending the features space ($X_1, X_2,..., X_p$) using a nonlinear function such as the cubic and quadratic functions. In this higher dimensional feature space the data points become separable and the new hyperplane function would be linear.\n", + "For non-linear datasets, we need to tackle the nonlinearity of the boundaries by extending the features space ($X_1, X_2,..., X_p$) using a nonlinear function such as the cubic and quadratic functions. For instance, instead of using p features $X_{1}, X_{2},..., X_{p}$, we can use 2p features $X_{1}, X_{1}^{2}, X_{2}, X_{2}^{2},..., X_{p}, X_{P}^{2}$ to fit a support vector classifier. In this higher dimensional feature space the data points become separable and the new hyperplane function would be linear.\n", "\n", - "In practice, this can be done through the kernels. For explaining the kernel, we need to go back to the SVC concept. For solving the SVC problem we only need to calculate the inner products of the data points (observations) and then the classifier can be rewritten as follows:\n", + "In practice, this can be done through kernels. For explaining the kernel, we need to go back to the SVC concept. We did not explain how we solve the SVC algorithm becuase it is a bit tachnical and out of the scope of this tutorial but the point is that for solving the SVC problem we only need to calculate the inner products of the data points (observations) and then the classifier can be rewritten as follows:\n", "\n", "$f(x)=\\beta_0+ \\sum\\limits_{i=1}^{n} \\alpha_i<x,x_{i}>$\n", "\n", @@ -362,21 +372,23 @@ "\n", "$K(x,x^{'})=exp(-\\frac{\\lVert x-x^{'} \\rVert^2}{2\\sigma^2})$\n", "\n", - "and the classifier with this Kernel is written as:\n", + "and the classifier with this Kernel or any other kernal is written as:\n", "\n", "$f(x)=\\beta_0+ \\sum\\limits_{i=1}^{n} \\alpha_i K(x,x_{i})$\n", "\n", - "In the next cell, we use the radial basis function (RBF) to classifiy the previous data set. " + "In the next cell, we use the radial basis function (RBF) to classifiy the previous data set. As you can see, applying the kernal to new datset and incearsing the dimention " ] }, { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "scrolled": false + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAGQCAYAAACtTRl2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACqs0lEQVR4nOydd3wUZf7H389mN5uekEJJASKKijQRAQkiFhAbdgVPPSznKed5NqynKJwNPD1PRX6cYj0VFRU59WwICBwgoqigdEIglCSE9Gy2zO+PsDFly8zszO4med738sWxO/PMs8vOfJ/nWz5foSgKEolEIpFIOh6WSE9AIpFIJBKJOUgjL5FIJBJJB0UaeYlEIpFIOijSyEskEolE0kGRRl4ikUgkkg6KNPISiUQikXRQpJGXSDooQoidQoidkZ6HRCKJHNLISyQSvwghFCHEkkjPQw3taa4SSbiQRl4ikUgkkg6KNPISiUQikXRQpJGXSNoxopGbhRAbhBD1Qog9QojnhBCpPo5NFUJMFUIsFkLsFkI0CCFKhBAfCSFGtDp2shDCq3l9ymFXuPe/h1odt0AIsV0IUSeEqBRCrBBCXOlnvkcIIeYKIbYePv6gEOInIcQcIUSGj+MnCSG+FkKUH/58vwgh/iqEsGudq0TSGRFSu14iab8IIZ4BbgH2Au8BTuB8oBzIARoURel9+NgRwLLD/207fExPYAJgB85TFOW/h48dDFwATAMKgVeaXXaJoihLDh9XB2wEfjo8hwzg7MPX/puiKA80m2sP4GcgBfgE+BWIA/KB04HhiqL83Oz4l4Brgd3A58AhYAQwElgCjFUUxaV2rhJJZ0QaeYmknSKEGAmsoNFgD1MU5eDh1+OAr2k0iIXNjHwqYFMUpbTVOLnAGqBCUZRjW72nAEsVRRnjZw59FEXZ1uq1WOBTYDTQW1GUPYdf/zPwT+BWRVGeaXVOIuBRFKXu8N8nAy8DHwC/875++L2HaDToLcYJNleJpDMi3fUSSfvlmsN/PuI18ACKotQD97Y+WFGUitYG/vDru2n0AhwjhOipZQKtDfzh1xqA5wErjTv01tS1fkFRlJrmhhz4C+ACrm31OsAMoAz4nZa5SiSdEWukJyCRSHQz5PCfS3289w2NRrIFQogCGg3oSUBXILbVITnALrUTOLwouJtGY94TiPcxnpePgEeB54UQZwKf0eiJ2Kg0cykKIRKAQUApcKsQwtelHcCxvt6QSCS/IY28RNJ+8SbX7W/9hqIobiFEWfPXhBAX0rhjrwe+oNHNXwN4gDHAKTTG5lUhhDiCRjd/FxoXFZ8DFYAb6A38vvl4iqIUCiGGAQ8B44GLDr9VJIR4UlGUfx7+exdAAFk0uuUlEolOpJGXSNovFYf/7AZsb/6GECKGxiS4Pc1engE0AEMVRfml1fH/R6OR18Lth69xjaIor7QabxKNRr4Fh697uRDCSuNu/Qzgz8AzQogaRVFeava5vlcUZUjrMSQSiXpkTF4iab+sO/ynL+N8Mm0X8UfS6BpvbeAtwCg/1/AAMX7eO/Lwnwt8vBdwwaAoiktRlO8URXkCmHT45QsOv1cNbACOE0KkBxpHw1wlkk6JNPISSfvllcN/3t/cGB7Orn/Mx/E7gaOEENnNjhU0usT7+blGGZDn572dh/8c0/zFw/H261sfLIQYJoTo5mMc72u1zV57isZ8gXlCiDQfY3URQrTe5Qeaq0TSKZHueomknaIoygohxLM0urt/FkK0rpPf2+qUp4E5wPdCiAWHjy2g0cAvAs7zcZmvgIlCiEXAdzQm8y1TFGUZMJvGDP93D4+3B+hPY7z9HeDyVmNdAfxJCLEU2Hp4jn0OX9cB/KPZZ5snhDgBmAJsE0J8RmNCYDqNdfWjaSyxu1HlXCWSTok08hJJ++YvwGbgT8AfadzNfgDcB6xvfqCiKP8nhHAAt9IYL6+jMWHuGuBifBv5vwAKjdnzZ9Po/XuYRuP5oxDiVOBvh9+zHr7mRTQK17Q28m/RmIg3ksbKgHgaFwZvA39vLoRzeL5/EkJ8SqMhPwNIAw7SaOxnAW+onauPzyWRdAqkGI5EIpFIJB0UGZOXSCQSiaSDIo28RCKRSCQdFGnkJRKJRCLpoEgjL5FIJBJJB0UaeYlEIpFIOigdroQuMzNT6d27d6SnIYlCioqKaGhooE+fPqaM7/F42Lp1KwkJCeTm5ppyjVCpra2lrKyM6upqAOLi4khJSSEjI0PzWC6XC6vViqIobNmyhdjYWNLT00lJSTF62iFTWVnJnj176NWrFwkJCYaPX1FRQVxcHHa7aul/icRQvvvuu1JFUbJav97hjHzv3r1Zu3ZtpKchiTIURWH8+PEMHz6c6dOnm3KN9957j8cff5wXX3yRwYMHm3INvSiKghCCV155hTfffJMLLriA8847j7y80AXiHA4HH3zwAe+88w67du0iPz+fm2++mdGjR+Ong1zYqaurY9y4cYwfP577778/0tORSAxHCFHo63Xprpd0Cvbv309ZWRn9+/c3ZXxFUZg/fz7HHnssgwYNMuUaeigsLOSWW27h888/B2DixIn85z//YcqUKYYYeAC73c7EiRN57733eOyxx/B4PNxxxx388ssvwU8OE/Hx8Zxyyil89dVXuFxtOvCGzIEDB1i61FfHX4kkskgjL+kUbNiwAcA0I7927Vp27NjB5ZdfHhW7V5fLxYsvvsjEiRP58ccfcTqdQKN7Pja2dQt5Y7BYLIwdO5Z33nmHp556in79GuXwf/31V6JBdGvcuHFUVlayZs0aw8f+4osvuOOOO6isrDR8bIkkFKSRl3QKNm3ahNVq5cgjjwx+sA7effddUlJSGDt2rCnja2HXrl1ce+21zJkzh1NPPZX333+fc889N2zXj4mJYfTo0U1zmTx5clQYwBEjRpCQkMCXX35p+Ng5OTkA7N692/CxJZJQkEZe0im48cYb+fDDD03ZxZaVlbF06VLOP//8qEi8+uWXX9i9ezczZ87k0UcfJT1dS7dWY8nLy+PWW29l5cqV/P73v2fHjh0Rm0tsbCyjR49myZIlhrvsvUZ+z549ho4rkYSKNPKSToHFYqF79+6mjP3RRx/hdru58MILTRlfDR6Ph02bNgFw5pln8uGHH3LaaadFbD5ehBBMnDiRuXPnUlNTw7XXXsu6desiNp/TTjuNyspKvv/+e0PHlUZeEq1IIy/p8Bw4cIAZM2awfft2w8f2eDwsXLiQIUOG0LNnT8PHV0NDQwP33Xcf11xzTZORibYytoEDB/Lqq6+SmZnJqlWrIjaPk046idjYWJYsWWLouAkJCaSlpVFcXGzouBJJqEgjL+nwbNiwgYULF1JXV2f42D/88AO7d+/mggsuMHxsNdTW1vLnP/+ZL7/8kilTppCdnR2ReaihR48evPrqq9x0001A4+Ik3MTHxzNixAiWLl1qeDLg3//+d6655hpDx5RIQkUaeUmHZ/PmzVgsFlNEcBYtWkRCQoIu1/iBAwd4/PHHGT9+PGPHjuWuu+5i27Ztqs+vrq5mypQp/PDDD8yYMYMrr7wyKjL7A5GQkIAQgl27dnHRRRfxv//9L+xzGD16NPv27WPr1q2Gjjto0CB69Ohh6JgSSahIIy/p8GzevJm8vDzi4uIMHbeuro6vvvqKsWPHah57wYIFHNPrGDbdu4mbv7yZ+768j5GzRvK3I//GEw89oWqM999/n19//ZUnnniCs846S89HiBhdunQhJSWFqVOnsnHjRqAxE3/16tVs2bLF1JK7UaNGAfDNN98YOu727dt55513oqJcUCLxIo28pMOzZcsW+vbta/i4S5cupba2lnPOOUfTeatWrWLy5ZOZLWbze/vvSXInIRCkkcbvLL+j68NdeeWFV4KOc+WVV/Laa68xZswYfR8ggiQnJ/Pcc8+Rnp7O73//ewoKCujVqxcjRoygb9++DB06lAULFphy7czMTI455hhWrFhh6Lhr1qxh5syZlJeXGzquRBIK0shLOjROpxOr1WqKkf/000/p1q2bZgnbxx9/nKvtV9ND6QGOlu9ZPVZyRS7r71uPx+Npc67H4+Gpp55i9+7dWCwWUz5XuEhPT+fcc89l7dq1fP/rr5zy8sukLF4Mixez/qGHuOQ//2Hms8+acu2CggJ++uknQ2v3vdUb+/btM2xMiSRUpJGXdGhsNhvvv/8+kydPNnTcQ4cOsWrVKs4880wsFvW3UVVVFYsWLeJ85XyUet9uXZtiY/Sh0axevbrNe88++yxvvvlmRGLZRlNdXc1dd93F0YMHEzdvHqvz86kUAoTAnZyM5YoruDspiR+3bDH82gUFBXg8Hp/fsV6kkZdEI9LISzoFRiekLV68GLfbzZlnnqnpvPLycjweD7Y6W8DjUkmltLS0xWsfffQRr7/+OpdddhmXXHKJ5jlHG//+97+pqKig4J//pK5LF+pbxbI9NhtkZ3OjweVuAMcddxxJSUmGlvN169YNaOyTIJFEC9LISzo08+bN46677jJ83C+//JKePXtqdpenp6djtVppiAtcPlZBRQvxno0bN/LYY48xbNgw7rjjjqjJoq92uZi2YwdZK1ZgWbKErBUrmLZjB9UqFOVWrVpFjx49+Mhiod5HaAIAu51vTchYj4mJ4cQTT2T16tWGJcqlpaURGxvLgQMHDBlPIjECaeQlHZrvv//ecBWy8vJy1q5dyxlnnKHZ2CYlJXHRRRfxgfIBwu773AbRwIqMFQwdOrTptXnz5pGZmcljjz1GTExMSPM3imqXixHr1jGzqIhSpxMFKHU6mVlUxIh161QZekVRKDvcPMcfLhP6vwMMHz6cffv2UVRUZMh4Qgjefvtt/vCHPxgynkRiBNLISzo0O3bs4IgjjjB0zGXLluHxeDj99NN1nX/vvfcyn/nsYQ+0ktJ3WpzsUfYw/KnhLRYQjz76KLNnzyY1NTWUqRvKrKIittXXt9mF13s8bKuvZ1YQ43nSSSexb98+gmnzxQdZBOhl2LBhAIZ2pevZsycJJi1KJBI9SCMv6bDU1dWxb98+evfubei4ixcvJjs7W3dm++DBg3n3P+9yZ/ydvNrwKpWWSjx4KKec+cyn4ekGLr36UgBWr15NdXU1sbGxhvV/N4rZxcV+3ez1Hg8vBJF4veKKK0hNTSXh88+J8+cRcTi4Pisr1Kn6JC8vj65du7J27VrDxly1ahWvvvqqYeNJJKEijbykw7Jr1y4A8vPzDRuztraWNWvWMGbMmJDi4meccQZbdm9h5NyRvH3528y5dA6bH9/Mo3sf5Y+3/hGAnTt3ctttt/H0008bNX1DCeZmD/Z+UlISr7/+OiXPPYdr1y6sbnfLAxwOeigKjw4cGOpUfSKEYOjQoXz33XeGxeXXrFnDnDlzpCCOJGqImJEXQswTQhwQQvwc4JgxQogfhBAbhBBLwzk/SfvH7XYzZMgQQ931//vf/3A6nYYI0CQmJvKHP/yBN998k3feeYe7776brl27Ao1zf+ihh4iPj2/Seo82MmyBKwSCvQ9w3nnnseTTTzn57bdxvfEGlJeDx0NMVRUXO51sPuMMkqxWo6bchqFDh1JeXm5YC9ysrCycTicVFRWGjCeRhIp5d09wXgGeA17z9aYQIg2YDYxXFGWXEKJr+KYm6Qj069ePuXPnGjrmsmXLSElJYdCgQYaO25q33nqLn3/+mUceeYTMzExTr6WXKdnZzCwq8umyj7NYuElls5yCggIWf/wxe/bsYe/evaSnpzctzBoaGqipqSExMdHQuXsZMmQIAOvWrTNkMZh1OLRQUlJCWlpayONJJKESsZ28oijLgIMBDrkCeF9RlF2Hj5d1KRJNGO0y9Xg8rFy5kpEjR5qa4V5cXMycOXMYPXo048aNM+06oTI1L48+cXHEtRIDirNY6BMXx1SNOQQ5OTkMHTq0hYG/4ooreOaZZwybs69rZmVlGdbjvrmRl0iigWiOyfcFugghlgghvhNCXO3vQCHEDUKItUKItfLmknj54x//yIwZMwwbb+PGjZSXlzc1ODELi8XCyJEjufvuu6OmHt4XSVYrq4YM4a68PLJsNixAls3GXXl5rBoyJGQ3e2xsLCNGjODDDz9k+/btxky6FUIIBg8ezA8//GDIeF6vy8GDgfYvEkn4iGYjbwVOAM4BzgQeEEL4TGdWFGWuoihDFUUZmmVSJq6k/bF161asBsZzV65cicVi4aSTTjJsTF90796dmTNnNimoRTNJVisP5+dzoKAA95gxHCgo4OH8fMPi6Ndffz3x8fE899xzhozni8GDB3PgwAFD5Gh79OjBsmXLOPfccw2YmUQSOtFs5HcD/1UUpUZRlFJgGWBuIFTSYaisrKSyspLc3FzDxly5ciX9+vUzrVa9oaGBxx57jN27d5syfnskLS2N3//+9yxbtowff/zRlGt48yuMGN9iscg6eUlUEc1GfiFwshDCKoRIAIYDv0R4TpJ2glflzigjX1lZycaNG03dxb/99tssWLDAcIW+9s6kSZNIT0/nk08+MWX8o446ivj4eNavX2/IeK+//jrz5883ZCyJJFQill0vhHgLGANkCiF2A9MAG4CiKHMURflFCPFf4EfAA7yoKIrfcjuJpDleQ5mTk2PIeGvXrsXj8TBixAhDxmvNoUOHeOmllxg1ahTDhw835Rrtlfj4eObNm0e2ymx9rcTExNCvXz9++uknQ8b75ptvUBSFyy+/3JDxJJJQiJiRVxRlkopjZgGzwjAdSQcjMzOTs88+27Cd/OrVq0lISOC4444zZLzWzJs3j7q6Om655RZTxm/veP8d6+vriYuLM3z8/v3788Ybb+BwOLDb7SGNlZGRwaZNmwyamUQSGtHsrpdIdDN48GCmT59uWHz022+/ZciQIYYm8nnZv38/7777Lueee67hOvsdiXXr1jF+/Hh++cX4qF3//v1xu92GGOf09HTKysoMmJVEEjrSyEs6JLW1tYbVyR84cIBdu3Zx4oknGjJea+Li4rjssstk97Ig9O3bF0VReP311w0fu3///gBs2LAh5LEyMjKoqamhoSFwO2GJJBxIIy/pkFx99dXcf//9hozlbWDSvPWrkaSmpnLbbbfRw4S+6R0Jb5veL7/8kuIgzW+0kpWVRVZWFhs3bgx5rPT0dBITE6W0rSQqkEZe0uFQFIV9+/YZJge7bt06kpOTOeqoowwZrznz5883tNVpR2fixIkApmSv9+vXz5Cd/Pnnn8/SpUuRmh2SaEAaeUnE8Hg8fPTRR5x99tnk5OTQu3dvrrvuOr7//vuQxq2srKS+vp7u3bsbMs9169YxePBgLBZjb5fS0lKeeeYZvvjiC0PH7ch069aNM844g4ULF+JwOAwd+9hjj2XXrl3U1NSENE40qxRKOh/SyEsigsvlYuLEiZx/+eUsP/JIyl56icKXX2behAkM+ec/efL553WP7VUuM8LIHzx4kF27dnH88ceHPFZr3n77bVwuF1df7VexWeKDP/zhD8yePTvkLPjW9OvXDyDk5LuKigruu+8+Vq1aZcS0JJKQkEZeEhGmTZvGu4sW0W3BApyXXIIjLg6EgNRULFdcwdSEBBZ9+aWusffv3w9giCysV9N88ODBIY/VnNraWt577z1OPfVU8jQ2cuns5OfnNxlkIzn66KMB+PXXX0Max2q18vnnn7NlyxYjpiWRhIQ08pKwU1NTw/PPP0+/6dOpSEpq06rUY7NBTg63rV6ta/zc3FyuvfZaQ4zn+vXriY2N5dhjjw15rOZ89NFHVFdXy128TkpLS5k+fbohiXJeMjIyyMjICNnIJyQkYLPZKC8vN2hmEol+ItlPXtJJWbp0aWPm8dChPnuRAxAby7Z+/airqyM+Pl7T+EcccQRTpkwxYKbw008/ceyxx2Kz2QwZz0tCQgJjx441TVynoxMfH8/nn3+OxWIxdFd/9NFHs3nz5pDGEEKQlpbGoUOHjJlUEFzVLopmFVE8uxhnmRNbho3sKdnkTc3DmiQf8Z0duZOXhJ2qqioAKoMlKKWmUltbq3n8AwcOUFlZqWdqLWhoaOCXX35h4MCBIY/VmgkTJvDYY48ZPm5nITExkbFjx/L5559TV1dn2LhHH300O3bsCLnGPVxG3lXtYt2IdRTNLMJZ6gQFnKVOimYWsW7EOlzVLtPnIIlupJGXhJ0+ffoAkOgK/AASVVWkpaVpHv+hhx4yRB528+bNOJ1OBgwYEPJYzVm7dq0USjGACRMmUFtby+LFiw0b86ijjsLtdrNz586QxunZs6dmD5QeimYVUb+tHk99q5BXvYf6bfUUzSoyfQ6S6EYaeUnYOeGEExg0aBCx//0vcf528w4Hw/ftIyYmRvP4paWlhtTIe2umjXSpFxcXc9NNN5mi2tbZGDx4MDk5OXz88ceGjenVQgg1ae6JJ57gkUceMWJKASmeXdzGwHvx1HsofsFY0SBJ+0MaeUnYEULw5JNPcmjOHCguJra1/KzDgfXAAV475xxd45eWlhoiRLJhwwYyMjLo2rVryGN5+fDDDxFCcI7Ozyb5DSEEEydO5MgjjzRMwrhnz57Exsa2m8x4Z5kzpPclHR9p5CUR4YwzzmDh22+Tet99NLz2GpSXg8cD5eX0WLqUtcOHc5SODnINDQ1UVlYatpM/7rjjDBM38Xg8LFq0iJNOOskwoZ7OzqRJk7j99tsN+zeKiYmhd+/ebN26NaRxPvvsM2644QY8/hJLDcKWETghNNj7ko6PNPKSiHHuuedStHkzC847jwe+/54ZK1fyvx492PPIIwzq21fXmN7uXxkZGSHNraamhsLCQkNL51atWkVJSQnnn3++YWNKGhdPRnamO/LII9m+fXtIY5SVlbFu3Tqqq6sNmpVvsqdkY4nz/Ri3xFnIvinb1OtLoh9ZXyGJKDabjYsuuoiLLrpI03n+yobS/pjGfffdx5AhQ0Kal1f1zEgjv2LFClJTUzn55JNDGqfa5WJWURGzi4spczrJsNmYkp3N1Lw8kkxohRvtvPfee8ycOZOFCxeSk5MT8nhHHnkkn3zyCVVVVSQnJ+saw5sweujQIVJSUkKekz/ypuZRsqCkTfKdJc5CXJ848qZKoaXOjtzJS6IWV7WLHdN2sCJrBUssS1iRtYId03bg2OfwWza0ZdwWJoybQM+ePUO6tlcQxUgjf+edd/Lvf/87pJr7apeLEevWMbOoiFKnEwUodTqZWVTEiHXrqA5SsdARGTVqFABf6lRIbE1+fj5ASLt5r2E3opQzENYkK0NWDSHvrjxsWTawgC3LRt5deQxZNUTWyUukkZdEJ4Hqf78d8K3fsqG6rXX8cM8PIcdCN2/e3KSAZhRCiJBj8bOKithWX99GRKje42FbfT2zijpfyVR2djb9+vXjq6++MmS8I444AmgfRh4aDX3+w/kUHChgjHsMBQcKyH84v4WB97dglnX0HR9p5CVRSaD6X1epy2/ZkOJQ2Pd/+3CFuKPdtGlTk5a5Edxzzz3861//Cnmc2cXFflUC6z0eXjC4z3p74fTTT2fjxo1NzYlCoUePHtjtdnbs2KF7jPT0dPr27Ys1CsInUjCncyONvCQqCVT/G4wEVwKxsbG6r+10OtmxYwd9dSb/tebgwYMsXrw45IUHQJkzcElUsPc7KqeeeioAy5YtC3ksi8VCr169QhLEyc3N5c0332TYsGEhzydUpGBO50YaeUlUEkp9b31sfUjX3rlzJy6Xq0kYJVS++uorPB4P48aNC3msjCDx/GDvd1R69uzJ//3f/3HBBRcYMl7v3r1D2slHE1Iwp3MjjbwkKtFb3+uKcbHpmND6gXuFUIw08r17926K9YbClOxs4iy+b9s4i4WbsjtvydQJJ5wQkgenOfn5+ezdu5f6ev0LxptuuolXXnnFkPmEghTM6dxIIy+JSgLV/wq7wJZla/O+Jc5CZVIlRSNDcz9u27YNq9UacoY+QHl5OevWreP00083RLBlal4efeLi2hj6OIuFPnFxTO3Evelra2t5/vnnWbNmTchj9erVC4Bdu3bpHqOwsJDCwsKQ5xIq0SSYIxMAw4808pKoJG9qHnF94nwa8vgj4xn641CfZUM5H+Zw1Q1XhXTtbdu20atXL0OSppxOJ5dccgljx44NeSyAJKuVVUOGcFdeHlk2GxYgy2bjrrw8Vg0Z0inr5L3Y7XYWLFjAp59+GvJYvXv3BkIz8ikpKU0dFyNJtAjmyATAyNB5nwiSqMZb/1s0q4jiF5oJ3tz0W5/s/IfzyX84v8V5+eT7GVE927dvp3///iGPA9C1a1fuuusuQ8bykmS18nB+Pg/nh/5ZOxIxMTGMGDGClStX4vF4sPgJa6gh77BHJBQjn5ycHJYSumBEi2COmgTA1vezJHTkTl4Staip/22O2+1m+fLlHDhwQPc16+rqKC4ubhJECQWHw8FPP/1kun655DdGjhxJWVlZyA1m4uPjycrKCtnImy1rq4ZoEcyRCYCRQRp5SYfh0KFD3HrrrSGVUXljqEYkyX377bdcc801rF27NuSxJOo46aSTgMY+AaGSl5cXkpE/9thjDdVaCAWtC2YzkAmAkUG66yUdhoqKCoCQtMK9tdHemGwoLF++nPj4eAYPHhzyWBJ1ZGRkMHjwYBwOR8hj9ezZk6VLl+o+/w9/+EPIc+hI2DJsjbH4AO9LjEcaeUmHwZvkpLepCDQaeYvF0hST1YuiKKxcuZITTzzRsLKuSNNeGuP861//MqSSIS8vj/Lycqqrq0lKSjJgZp2b7CnZFM0s8umylx3zzEO66yUdBq+RD2UnX1hYSI8ePUI2zLt27aK4uJiRI0eGNE600J4a43gNfKi5EN6F3u7du3Wdv2jRIs455xxqampCmkdHIVDFjOyYZx7SyEs6DEbs5AsLC5tqpEPBGxPuKEa+PTXG8Xg8TJo0iTlz5oQ0Tm5uLqDfyLtcLvbv3x8VyXfRQLQkAHY25Lcq6TAMHz6c559/nm7duuk6X1EUioqKQu5FD3DhhRdy1FFHkd1BFOjUNMaJlpI+i8VCXFxcyAmP3t70eo28d7FZVVWl+zfZ3nFVuxrLYGc3K4Odks3w7cOlUQ8Tcicv6TCkp6czfPhw7Ha7rvPLysqoq6szROkuNjbWkMVCtNDeGuOccMIJbNiwgbq6Ot1jJCYmkpaWRrHOzn6JiYkAndZdL8VvogNp5CUdho0bN7JkyRLd5xcddjl73bR62bp1K7Nnz+bgwYMhjRNNtLfGOEOGDMHtdvPTTz+FNE52djZ79uzRda7XyHdWd30kut9J2dy2RMzICyHmCSEOCCF+DnLciUIItxDiknDNTdI++fDDD3n00Ud1n+91y4aaWf/NN98wb948QzK8q10upu3YQdaKFViWLCFrxQqm7dgR9kS39tYYZ9CgQVgsFtatWxfSODk5Obp38llZWZx22mmkpqaGNIf2SrjFb6TnwDeR3Mm/AowPdIAQIgZ4AvgsHBOStG9qamqadk962L17NxaLhe7du4c0j3Xr1nHEEUfQpUuXkMaJpoz29tYYJzExkWuuuSZkeeLs7Gz27t2rK1O/R48ezJw50zCJ5PZGuMVvIuE5aA9EzMgrirIMCObP/DOwANCvUyqJGOF2ndXU1JCQkKD7/OLiYrp164YtBNez2+1m/fr1nHDCCbrH8BJNGe3tsTHOTTfdxKhRo0IaIycnB5fLRWlpqUGz6jyEu/udlM31TdTG5IUQOcCFQNA6GCHEDUKItUKItSUlJeZPThKUSLjOamtrQ9rJ79mzJ+Rs+E2bNlFbW8vxxx8f0jigLqM9nHgb4xwoKMA9ZgwHCgp4OD8/Kg08/FYtUV5ernuMHj16AOiKyyuKwtixY3nppZd0X789E+7ud1I21zdRa+SBfwB3K4riDnagoihzFUUZqijK0KysLPNnJglKINdZ7YZalicvN3xnX1tbG9JOfu/evSEb+X379pGUlGSIlG17y2iPNkpKSrjwwgv57DP90T6vkd+7d6/mc4UQOByOJrnlzka4xW/C7TloL0SzkR8KvC2E2AlcAswWQlwQ0RlJVBPIdebF6J39I488wu23367r3IaGBkpKSpoe6no57bTTWLx4MV27dg1pHGh/Ge3RRteuXenatSs//vij7jG8v4d9+/bpOj8xMbHTltCFW/wm3J6D9kJ0+tkARVGalDWEEK8A/1EU5cOITUiiCbWuMSN7SYeiVLd//34AQ8RrQulj3pwp2dnMLCry6bKPxoz2aKR///78/HPAAp6A2O12unTpomsnD53byMNv3e/C0Sc+b2oeJQtK2ngQO7tsbiRL6N4C/gccLYTYLYS4TghxoxDixkjNqTMQrmQ4La4xo5Ji3n//fTZs2KDrXO9DPJTM+v379zNx4kS+/fZb3WM0p71ltEcjAwYMoLi4OKS4fPfu3ZsWgVpJSEigtrZW97Ul6pGyub6J2KdWFGWShmMnmziVToM3Ga75StdZ6mTXo7sofKQQ3GDLbJSdzJuaF9JNEajjlC9CTYpRFIXHH3+cyZMnc9xxx2k+3+uODcXI//zzz2zdujWkvIDmeDPaZxUV8UKzzm83RWHnt2jF+1vYuHEjBQUFusbo1q2b7r7yp556akjVGhJthNNz0F6QT4lOhL9kOMWlNP1/b5y8ZEFJSKtff64zf4SaFON0OvF4PMTFxek637tTCyWW/vPPP2Oz2ejbt6/uMVrjzWiPFl349saxxx4bcq169+7dWbNmja5zr7nmGt3XlUiMIJoT7yQGoyYZDowRj2jjOgsg/mZEUkx9fT2AbiN/4MABunTpElKL2Q0bNtC3b1/dOzcj1e2iRSkv0sTHx4esOtetWzdqa2t1y9OG2vJWIgkFaeQ7EVpc4kbEyb2us4IDBYyqHEXCcQmmldPU19ejKArff/89Z511Fn379mXIkCFMnz5dVdLU/v37Q+oU5vF4+PXXXzn22GN1na9H3c6fId/ncESNUl40sHPnTt577z0URQl+sA+8vws9cflZs2Zx5pln6rquRGIE0sh3IrS6xI0UjzA7Kaa0tJQtW7bw3JPP0XdlX57Z9Qx///7vDJw2kId6P8TXn3wd8PySkhJdrvqGhgZ+/vln1qxZw0knncTw4cN1zV+rul2gRcHAtWvZWlfnc6wNtbV0W7myU+3qV61axeOPP45eoaxQjLzdbu/U2fWSyCNj8h0Afz2bWyfPdb++O7uf3N0iBh8Io8UjzEyKeeihh3BXu/mgxwcklCfgcTQauDTSuNh5MbvO3UXhxkJ6HeO7zO7AgQMMGDBA9fXq6up49NFHmTt3LgcONKoup6am0tDQwPHHH09aWpqm+Wvt1x5oUeBvHC+1Hg8zi4pYUFIStZK0RnLMMccAjWqEehZy3nO8/85aiI+Pp6GhAY/HY1hppUSiBfmra+eolY91Vbso/bAUxa3eZemucbeLNo3bt2/nvffe458F/2w08K3yDmKVWLor3fni+i98nt/Q0EBFRYVqA1BXV8f48eP529//Ttqtt5L85ZeweDH1b73FM5WVFJxxhuaSLa3qdoEWBWqIhP59pOjbty9CCDZt2qTr/MzMTIQQuoy8t9JCltFJIoU08u0ctZ2XimYV4djpAA1hSU+tp120afzwww9RFIVe3/fym1hox063Vb5j7mVlZUDjw1wNs2bNYtmaNeQuXMiuggKqYmJACBzx8diuvJKNN9/MnQ88oOkzaFW3M0LSNhL693oINYkwISGBvLw83UbeZrPRpUsXaeQl7RJp5Ns5ajsvqc2s9zVGtLdp9GqDx9TEBDwu0e27eY23w5gaI+9yuZgzZw59/vpXSu32NrvpBiGIyc3lNY2a5Vr7tRslaRvt+vdGtdvt27cvW7Zs0T2Prl276orpH3300Vx55ZXY7Xbd15ZIQkEa+XaO2s5LoSTRRXubRq+cbXVM4BKnWqvv3ZQWI79z50727t3L/hEj/LrL3VYrrrPP1qSZrlXdLtiiINNq9ft+c6Jd/96odrt33nknb775pu55ZGVl6TLy/fr149Zbbw2phE8iCQVp5Ns5ajsvhSw2E8VtGi+55BLi4uL42Pox+NkwOXBQf2a9z/cOHjwIQEZGRtBrecuwqoMZ0NRUTSVbWvu1B1sU/HTiidyVl0dCgHm2B/17o9rtZmZmhqREqNfIezweamtrcUaBxyRcktaS6EIa+XaO2s5LwY6zJAT+KURjm0bvQ+unPj/xSf0nnOU4ixpPDbTSs3HgoMxexpnzfNcre2PyXbp0CXrN3r17061bN2Lr6gIfWFnJwIEDVX0OL1r6tQdbFHS323k4P5/9I0dyXEJCu9W/N6rdbkNDA88++ywrV67UNY/MzEzKy8s1G+uNGzcyevRoVq9ereu6RqE2QVfS8ZBGvp2jtmdzsONybslpV20aWz+0BIJUUrE6rZQ3lHOIQ3jwUE45/+v1P07deCrJXZN9jnXw4EFSUlKwqigls9ls3HDDDTS8+y42fzt1h4Pjd+3SXEanFTWLAq0egmjDqHa7NpuN9957j2+++UbXPLyhHK/XRy1e70FdsEWhyahN0JV0PKSRb+eoFZkJdlyv+3upWixEC/4eWnbspFpT2Td8H1//9Wvyvs3joZ0P0eMI/33iDx48SHp6uupr33333Zy4fTvOnTuxtE78cjiILS3l/csv1/R5zCTQYiDa5W+1JiT6QwhBnz592LZtm655eI28N39DLV6Z5UgbebUJupKOR3Qv4yWqUCsyE+y4IauGNIrqvNBMVOem0DvSmUGgh5bFZWHA9gHcOENd1+JDhw5pMvKJiYks/vhj7psxg7mrV+M480xITYXKSk7YvZv3Lr2U3iFI5IYLb+Z688Q2b+a6P6GcapeLWUVFzG7WFW+KiV3xpublsaCkpE3ynZ5wQ58+ffjqq69QFAUhAjRT8IFeIx8fHw9E3sirTdCVdDyi68ktiSjtqU2jkQ+tgwcPcsQRR2i6flJSEv984gnu2r2bsWPHcsUVV/CXv/yFlJQUTeNEEjWZ681V9vQsCkLFyHa7RxxxBB988AHl5eWaFnXwm5H35m+oJVqMvC3D1hiLD/C+pGMi3fU+kFmo0Y/aqgI1VFRU6I6fHzhwgMTERMaOHduuDDxoz1wPtCjYVFfHI4WFpsxTS0JiIPr06UNycrIuDfr09HSEEJp38na7neuvv55BgwZpvqaRqE3QlXQ8pJFvhcxCbR8Y9dDyeDwhGfmdO3cC0LNnT13nRxIjpXRdisKsoqKoieX7YujQoSxevFhXp0Cr1UpqaqpmIy+E4MYbb+T444/XfE0jUZugK+l4SCPfCpmF2j4w6qFVXV2Nx+PRbeR37dpFbGws3bt3bzlulCe0gfFSum6Iai18i8WiORbfnPT0dM3Z9dAYDjp06JDu6xqB2V0gJdGLNPKtkFmo7YPWDy1FKFRbqzU/tLwP31CMfG5ubosOY0ZJsZqNGVK60a6FP3fuXJ544gld52ZkZGiOyQNMnjyZp556Stc1jcSbc1NwoIAx7jEUHCgg/+F8aeA7ONLIt0JmobYfmj+01s1ax6yRszQ/tCorKwF0x9MnT57MX/7ylxavGSXFajZ6pHSDEe1a+Hv27GHp0qW6ztVr5OPi4iKeeCfpvEgj3wojE7ok4eMvf/kLn332mebzQjXyAwcOpKCgoMVrRkmxBsKIcIAeKd3ALYAC7/ajIYTRq1cvDhw4oKsrXHp6uuYWwtCYYS+NvCRSSCPfCpmFGn2oqXawWq1NwiNa8Bp5PQ1EampqWLZsWZt4q1FSrP4wMhygVUo3kKEPJE4TLSGM3r17A41hFq2kp6dTV1en2WDHx8dTX++7b4JEYjbSyLdCZqFGF2qrHT777DP+7//+T/P4XiOfnOxb8jYQmzdv5vbbb+eXX35p8bpRUqz+iGQ44P5evThGhxZ+tIQwvFUQeo08oHk3HxcXJ428JGJII98KmYUaXaitdli9ejULFy7UPH5VVRXQKG6jlT179gCQk5PT4nWjpFj9EY5wgD/0auFHcs7NycvL46ijjmqRKKkWr5HXmmF/4YUX8rvf/U7z9SQSI5AWywftSfmto6Om2iH/4XzcbjcxMcEixm2pqqoiNjaW2NjY4Ae3nltxMUKINuVzRkqx+sLscEAwvC7+5mp4wYj0nL3Y7XbeeustXed6uxRqNfKnnHKKrutFK65qV6P89exm8tdTolP+WiJ38pIoxlXtCijFCb9VO+jRI4fGOnk9rnqAvXv3kpmZ2WaBYHbnN7PDAWagd87RkKznxWvktda8l5eXs337dhNmFH6kWFj7Qy67JFGJ92ESDG+1g8fj0eWCra6u1uWqh0Yj36OH7+52ena7apmSnc3MoiKf7m8jwgH+CKU5jZ45m6WV/9prr/Hxxx8zf/58Ted5jbzWmPxrr73GO++8w4oVKzSdF40EC58VPlKIJdYid/lRhPzWJVGJ92ESiObVDkIIXe76mpoa3Ub+vvvui0hplNnhAF+EanD1zFlrAx0tbNu2TfMCLz4+HrvdrtnI2+12HA6Hbm+TVsx0pwcLnxU9UYSIFSgOBfhtl1+yoETmNEUI6a6XRCWBHiZemlc7zJgxgwULFmi+Tk1NDYmJibrm2LNnT44++mhd54aC1nCAES7vULPj9YQwzErWy83NBWD37t2az01LS9OVXQ/gcDg0X09rsyyz3elBxcAUmgy8F7WS4ME+q2wcpg+5rJJEJWqUBZvvDDZu3MhLL73Etm3bSE5O5sILL2TChAlYg7hzq6urycjI0Dy/mpoaPv30U0aOHEm2Se7xQKgNB/jbgU8vLOSRwkKm5uVxf69eQd3eagxusLloDWGYlazX3Mgfc8wxms7VI4jjbTdbX1+vScvBa7Cbu8eD7YzVVKOEklAcrGWtP5onyfoi2Gcd9OUg1p+xXtN3IWlE7uQlUUlQ5cEsG9YkKy6Xiz/+8Y8cd9xxPPPMM2zfvp3PP/+ciy++mH79+rF58+aA49TW1pKQkKB5fkVFRTz++ONs2rRJ87nhxN8OHH5rKKNGjCYS2fFmJRh6F2XFOjwBaWlpmhPv7HY7oH0nr6dZltm9NwKJhQUj0MI92GfdePlG2ThMJ9LIS6IStcqDd911F3PnzqVgSAEz+szghb0vML9kPl+lfMXYPWM59/RzA+68amtrdbnrDxw4AEC3bt00nxtOAu3AodHQq3G3RyKj3yy9gaSkJMaNG9em9FENeoz8kCFDePDBBzVXcegx2Gb33vCKhekh0MI92Get+KZCNg7TiTTykqhEjfLg/v37ee655/jj1X/k7l13c+LWE5vikJZKC5e6LuXe3ffy6pxX/V6ntra2yZ2qhZKSEgAyMzM1n2s0gWLuanbYauLbgQwuQInTScKyZSQuW2ZYqZvWBjpaePTRRxk3bpzm8/QY+Z49ezJhwgTNHiM9Btvs3htesTBLgjbTEUwSXE2sPxCycZh/pJGXRCVqlAffeecdnE4n1yVdR0J5AlZPq5hcA+SKXPY9s8/nNVwuFy6XS5e7vqSkBIvFoiuebyTBNOHTVZaYBVsM+DO4zanzeKj1eJrmML2wkOTly8lcvlyXwTdbb8Dtdms+JzU1ldraWpwawhM1NTX8+OOPVFdXa7qWHoMdjt4b1iQreXfmaXLbe5wePA0ev0lyoS4+ZOMw/0TMyAsh5gkhDgghfvbz/u+EED8e/m+lEGJQuOcoiSzB+l/v378fi8VCwzsNxLh9l8/ZFBsnHTjJ53veTmR6d/JdunTRVbZnJMGy3o9LTAxomL0oENAQtza4WgrBylwu3Y1otDTQ0cKLL77IKaecgidAKMMXaWlpAFRUVKg+Z/PmzVx77bVs3LhR07X0GOxw9d4IdB1rprWtZXHDnn/s8Zvhnz0lm4AtDgP84GTjsMBEcif/CjA+wPs7gFMURRkIzADmhmNSkvZDVlYWHo8nqKsuWfEdC/U2DdFj5G+99VZefPFFzecZTbCs9421tfSJi8MapD5bgaCGuLnB1RqDD3cjmmCkpKRQX1+vWaLW261Qi5H3Jt5pbVKTfVM2iuLbT60oik/DFq7eG4Gu0+P6Hlhi25qWQElyQRcfftz1snFYcCJWc6AoyjIhRO8A769s9tdVQK7pk5JoprXwhjXdSuJxidRsqMF10GWq4tWll17KHXfcgcPmwF5v93ucO9G3W9b70NXTojY5OVlzIlUoinH+COZmP+h0smP4cB4pLGRWURGBHNRaRGb0ZNOrLbULB94Me680sVr0GHnv70urkQ+WTOavJC1cvTf8XWdF1oqASXKFMwoBWjwTrElW0OZUASB5WDIDPh4gy+cC0F5i8tcBn/p7UwhxgxBirRBirTchSmI+voQ3XGUuKpZV4Cpzma5rnZ2dzQ033MDb9W/jtvo2Xw00+HXlhWLkX331VdasWaP6eLP6qavJek+yWnmsTx8OjRrFg716BXS1qxWZ0ZtNH65GNMHwyhHv3btX03mhGHmtJXTFs4vbCMt4URxK1GaUq0mi8/VM0BNXr/2lVhr4IES9kRdCnEqjkb/b3zGKosxVFGWooihDs7Kywje5doQZalH+altbY2Yt6z/+8Q88l3rY5dqFg5YP0QYaiO8Tz9HTfKvS6TXyiqLwwgsvsHr1atXnmNVPXUuZmdfdHgw1hjhYtr0/9C4OjG5U4y2f27fPd1KmP0Jx12s18lqy69Xe3+FQjVNjrH09E/TU4Mus+uBEtZEXQgwEXgTOVxSlLNLzaa+YJXWpRnrWi1m1rLGxsbz6zqus/N1KPk39lBpbDQoK7mQ3+fflc9IPJ/ld6XuNvPchrJaqqipcLldTf3E1mCXRqqfMzIiadzXZ9q3RW9tuhhckMTGRK664QrMscUpKCgCVlZWqz0lOTuaxxx5jxIgRmq6lNrte7f0drg5yao21p95D8ezipkVH4fRCPE4Pwqo+rVNm1Qcnao28EKIn8D5wlaIogWXLJAHRo5ylBq2raDNX3V17daXw1ELOaTiHU5VTOb3ydI565KiArjzvzqr5Tt7j8bB06VJeffVVPvjgA6qqqtqc562T9nYlU4NZinF6ysyMEJlpft0EFYY+lNp2s7wgt99+O8OHD9d0Tnx8PFarVdNOPjY2lrFjxzbJ6aolmLF0V7vZMW0HhY8Uqrq/zXoOtMZf5r0vvIuMJqlcd6OnjBhA0FiP7yfrXmbVqyOSJXRvAf8DjhZC7BZCXCeEuFEIcePhQx4EMoDZQogfhBBrIzXX9o5ZUpdaV9FmrrotFovmciivkffu5N9//3369u3LmDFjmDx5MhdddBE5OTncc889LeqivQp6WnbyZirGaS0zM0pkxnvdhCBlhAJCqm03ywvicrkoK9PmIBRCkJKSomknD/Dtt9+yc+dOTecEM5aeOg9FM4somlWk6v42W/LWS/PMezW1lm3m5AaLzUKvB3oxcv9IEo5JML0ksCMTMSOvKMokRVF6KIpiUxQlV1GUlxRFmaMoypzD71+vKEoXRVEGH/5vaKTm2h4IFGszS+pSawzNzFW3EMJvuZE/GhoaALDZbLz55ptcfPHFJGRkcOHChXRZuhTx9dc0zJ/PE/v3M/Gaa5rG9+7kvTXTajBLolUPRovMBPNCCAiptt0sL8jMmTO5/PLLNZ+XmpqqaScPcMcdd/D+++9rOqe5sfSnMOep9xCwZILf7m+zJW+b48287/VAL11a995FR7hKAjsy8hvqAPjr4FQ4vZDCRwoRdoFS798ABtth++tPnX1TNiULSlQl34GKWtgQSEtL06w+5zXybrebP/3pT5x02mlUPPoonzocTTtHR3w81iuv5P1du/jgv//lorPOYvTo0SxdulRTwl4kesAHQmtHuEBk2GyUBjC0oeramzV+t27dOHToEA0NDcTGxqo+Lzk52WcYJxDenvJa8RrL4tnFeGp11Jjx2/0drIOcGZ62vKl5Pp8RljhL0GeGd9ERrpLAjkrUxuQl6gmY5e4+3N/Zj9ssWFwrULLO+jPWM+jLQarccrZMm6mr7ttvv52XX35Z0zleI//JJ59w6NAh+j7wANubGXgvrpgYyM7m3vXrgUavQWJioia1OyN3z0ZnmoeK2V6KUMYP9F117doV+K3ZkFr07OT1GnkvenfZze/vcEjetibQTtyaEfg3L5PqjEHu5COIvx2yVuGYoFnuCo1GOIYWrj01ca1gyTrNBTmKZvqODVriLI2ylVGG18hv3ryZuLg4PrbZqPe3Y7Tb2dqvHwCLFy/m119/ZcqUKZquZ8Tu2V9/+JlFRSwoKTFE010rZnsp9I4f7Lt6rpmR15IUl5yczJYtWzR9hlCNfNA+7jGNcezWu+Xm93egXbWZ8W1fO3FXtYtDSw5Rscz3Ykkm1RmH3MlHCCPLWVSt8hWw2C2a41pqk3XCpZntj3feeYf77rtP0zneZLr4+HicTmfQ2K4nKQmAlStXsnDhQn0TDRGzMs1DwexGMnrHD/ZdvX/YRb9//35N80lJSQmbu95LsF143tS8oHHraIlve599lat9Jy/KpDpjkTv5CKGmnEVtDCroKr/Z2KNrRmuap9pkHe8DpGhWEcUvNPNM3GSOpG1rdu7cyapVqzSd4zXyZ555Jk888QRJbjfVAVzw8YePr6ys1CxpaxRqMs2NiLNrleA1MsbvCz3jB/uu3qqpYdbNN+uqla+pqcHtdqsO2dxzzz26lBW9ZN+UzZ7Ze9o8L4RdENcnjl7392raMQciGuLb3mefPzU/KVVrLPJbNBi1Lng1O2S1N2L2lGy/rvLm6IlxaUnWCfUBEkr4IiYmRnPrUJfLhcViYcyYMQwaNIjNCxZgv+wyfO63HA6uPZzYV1VV1SSKEm7MyjRvjtEhATM0+9UQVNff5WLy5Mmax/Uu8Kqrq5sU8IIxcOBAzdfx4qp2sf6M9Xiq297f1hQrg74c1K4MYrDwopSqNRbprjcQLS54I8tZvK7yQEpRemNc4UrWCTV8ocfIO51ObDYbQgjeffdd0j77DMeOHVhaGweHgxwheHzwYKDRyEdqJ29mvb0XI0MCZmn2Nx/fX2Kdmu/qwIED7Nq1S9M1vf/2Wlz2P/74IytXrgx+oA8CJda6q9xRq2Hvj3CW8kmkkTcULYpSaiUr1eB1lefemetXHcpT72HP83s061SHK9YeqhqXxWLRtZO3Ht5JHnXUUaxbsYLbtm7F/sEHUF4OHg/2ujquTUjg19NOa9p1NjQ0RMzIh6Pe3kjxGTNzCIItIK7v3j3od/XAAw/w8MMPa7qu14ujxci/8cYbPP3005qu4yVcIjbhwshnnyQ40sgbiJab0egdsjXJSp/H+jDq0Ch6PdgLa2Zbd5erzKU5sS+UZB0tzTD0Psj27dvHjBkz+Pvf/85PP/3E6aefzptvvtmUOR+I1jHV7t2789Qjj1Dz/PNUjxuH65RTqD/rLF46+eQWbuV33nmH6dOnBx3fDIxSqwuEkSEBs9TqIPgCAgj6XWVmZlJaWqrpukmHEzC1GPm4uDjdiXcdYefb/FkQKPwns+qNRxp5A9FyM5q1Q/bGxXOm5PhcROjRqfaOWXCggDHuMRQcKCD/4fygBl6L+13Pg+ybb75h8NGD2f7gdmbvnc2imkXcuuRWvvjdF4wdNbZJmc7vHJvt5Jujpg7eoqMDmxGYnckOxoYEzMwhCLaAeGnfvqDfldfIa1FL1OOuDyW7vr3vfNs8C/xglHfQ6E574ejcZybSyBuIlpvR7HKWSLv4tLrftT7I9u7dy6XnXsrf6//O7+2/J9GZiECQ7EnmKttVXPPtNVx3xXUBx/Rn5APR0NDAgw8+yP/+9z9N5xmJVq16rRgZEjAzh0DNAiLYd5WZmYnD4aC2tlb1dfXs5EMx8pEQsTEStS2psUDGedpUK1tjdKe9cHXuMxNp5A1E682oZ4eslki7+IItMgpnFLZYDWv97ubOnctZlWeRI3JonQ5vcVrIs+aR8mkKv/zyi985ejwezTvy6upqPvnkE4oiUI8eLowMCZiZQ2DEAsIrhazFZd88u14tsbGxuo18pDUoQkVtS2pPrYc9/9gTkvE0utNeuDr3mYk08gYS6ZuxuVuJIN5Hs118QRcRCi1Ww1q/uwULFnCJ7ZI2Bt5LjCuGCUwI2BREj5H37vgSEhI0ndeeMDIkYGYOgRELiOOPP54ZM2ZoahuckJCAEELTTv7SSy/lpZdeUn18c/x5/XJuzSHjvAxW56+Oajeylg1FqMbTaA9mpD2iRiCLEQ0kUoIwrmoXhY8UNt4YKhLMw+HiUyPQ01r4R8t3V1lZSYIzsKFNJTVgS1AtYiZeOoORB+PEbbwLhllFRbzQrE7+JgPq5I2Q0+3Rowc9evTQdF2LxUJiYiI1NTWqz9Fznea01qDw15SqaGYRJQtKTFWw06pnoVasy4tWnZDmGO3BjLRH1AikkTeYcCtKeW/2uk11qg18OLwKagV6mt/QWr673r17U727mmS3/1K2Ciro1auX3/cVRWn3O/lICc1owSw1PCMWEB6Ph/Xr15OZmUmeBq+C1k50O3fu5Pvvv+fss8/GbrerPs8fRipmakHP4kLts6A5eo2n0Z32ItG5z2iku76d0yQR6QqeHRxOnWp/7ndf6Lmhr732Wt53v4/H5vvB4bK4+MT6CZMmTfI7htvt1mzkPR4PqampTclXkcRsoRl/14ymDnihJiG6XC6uuuoqnn76afbt26f+uklJmmLy69at45FHHtHcvc4fkXIj64lRa3kWeNFrPI1OUmzvSY8gjXy7R21SCxYCJvYZXSbSPI4YtA2tjhv68ssvZ/Pxm9nl2oXb2tKF4bK4KPIUkX9PfsBYq6IoCBFkcq0YMmQIX331Ff3799c851DwZVzP+eknttbVha1ZTSQWFWbhdruZNWsWRxxxBBs2bODpp58mJyeHCy+8MGCyppfExERNRt6rWx9Kk5rmRMqNrGdx0SanQAXNjaeWZ5PReVGRzrMyAmnk2zlqb+ZAhtSsMhGv+73XA700r4aD3dh2u52PvviIBact4A3XGxziEB48lFPO2+Jtiu8v5t7p9wacnx4jHwn8GddlFRU4/NR3hyo044tA4jMbamtJXr484jt7NXg8HiZPnsxdDz5I7A03YP3Pf2DxYuyffsp/u3fnpNNOY/369QHH0LqT97ro1Yg0qcGs2vlg953exUXzSqJgi36gyXhqfTYZXZocLZ37QiH6ZygJiJqklmBuJbPje1r7WKuN+2VkZLDoy0WsX7+eDz74gKqqKnr37s0TVzzRVBoVCD3Z9StXruSDDz7ggQceCFuTGn/GNRhGNKtpTiDxGS+R7m2vhvfff5833nuPru+9x97kZFyHP1NdbCz2iROpGTmS3994I9+vXOl3EZiUlMSOHTtUXzP2cFtbo3bygeLcet3Iau47I2LUQcfItDUZTz3PJqPzoqKhc18oyJ18O6f79d396tUDEENQt5LZ8T2tq2Gtcb9BgwZx0UUXsWfPHs4880xVBt6L1p38zp07+frrrzWdEypqjKsvjGhW0xy1i4ZI9rZXw+zZs0n94x+pTE5u8706FAWRk8P6Y45hzZo1fsfQml3v3ckbZeTNcCOrue9CjVG7ql0k9POftGqJs5A95bcxOkIJW6SRRr4d46p2UbawDPw9/y2ND4NgbiU9LjitMXwtwj96buyGhga2bt2qKeNZi5Rp8+sAhmRIq0XPjtyoZjXN0bJoMCNcYBSrV6/GcdZZfhdOTosFJkxg9erVfsdISkrSZOT79+/Pu+++y7HHHqt5vr4ww42sRsCqcHohHqenTcdLNYsLr6egcrXvslZfY3SEErZIE32+NIlqimYVUb+j3qfwjbAKcu/Mpc9jfYKOY0234irzH0Nt7YIzu0ZXz43tdYcaFfP0h3cnZjN4lxyIDJuNUg2G3shmNc2Zkp3NzKIi1V4Fo8MFRiGEoP7w78UvqamI3bv9vp2YmIjT6aShoaHptxeIhIQE8g0uITTajaxGwAoANygxSqMH0dPoXlejBdJUCeTwvbhOHpbMgI8HtBijI5SwRRq5k2/HBFp5Ky6FfS8FLwlyVbsCJsL4csGZLfWoJ6nIa3SdJhsWh8NBbGxsWBvUBFN2G52aalqzmub4U6/zh9HhAqMYOXIklmAen4oKCgoK/L7tLaFUm3xXWVnJm2++yfbt21XPM9xY0zX8XtxgsVno9UAv1XLcwSqBan+p9Vlj395L2CKNNPLtBF/u8WAJd2pcWUWzinBX+VfRiUmOaeOCMztOpufGNjqxyR9JSUmaRFOMIJg07McDBpjWrKY5reVuA2UzxAA1bndU1NK35uabb8bzwQfEuP387h0Ocr77jiFDhvgdIzExEUC1y766upqnnnqKDRs2aJ5vuEg8LlHT8VrvdT0euo5QwhZppJFvB/grIwmGGldW8exiv+4zaIxbt15dB71ZS50h6WfrubGTk5MZNmwYaWlpqq+jp3zu2muvZf78+ZrPC4VwtJfVMhev+EzlqFEcl5DQZvEhaEwTqfV4orKW/rzzzuO6pCTcu3YhWnt+HA5i9u/no9/9zu/5NTU1LF26lN27d/O3v/2NZcuWBc3vMLqETgtq82dqNqjPMfDifRaouYYeD117KmGL1pa0Qk/yUTQzdOhQZe3atZGehqHsmLZDsyykJc5C3l15QeN1SyxLAjezEdDrgV4tdKrdtW48tYHnknBcQkg3YZM+tok9AO644w6Ki4t56623DBmvM+KV1fXKysZZLDQoCi4fz5U4i4W78vIMl7fVg6Io/PNf/2L65s0cLCiA1FSorGTgjh38e8IE+vfxncvy6quvcsstt1BZWYkQAovFgtvt5vjjj+fdd9+lj5/zqqqqOPXUU7n99tu54oorzPxoLfCVPwO/LZib36NBnwU+sGXZGL59uKprBHqOqX1eRStavmezEEJ8pyjK0Navy518O0C1qt1htLiygu72LbTxIHgcnqCCFv5i82pXu2a24W36aBYLHo2lafPmzWPatGmGzaG901pWNiEmxqeBh+jKuBdC8JcbbqB01izW9e5Nvz//mX+VlrL+ttv8Gvj58+czefJkhg8czocXfMhHMR/xhecLvkz6kuG/DGf8KeM5cOCAz3ONLqFTi5b8Ga1JbN7QmdprdGTXezS3pJVGvh2gqUxEoMmVFSj+TUzjw7DNAkNFIxxf8TqzlPUA6uvrmTBhAgsWLFB9jhBCcxndli1b+Pnnn7VOr9MQLKM+1Ix7o7XzhRAMGjSIxMTEgK50t9vN3XffTcGQAmYcnEHap2kkuZIQiiCmOobLPZdz3577mP332T7P9yaGmm3kWy+iC2cUqs6fCfgsaEVzw6w2R6c9ud61Es31/O33W+1EaGrVKNDk8gqkRudxevw3vlFhG1svTsxU1rPZbBQXF1NeXq76HD1G3ul0hrV8rr0RrNwvlIx7r7xvc/U/IxT2LBYLL7/8Mt27d296rbKykrfeeosNGzYQGxtLZmYmhYWFPH/i8zj+42ibx9IAuZZc1s1eB0+0vYYQgo8//pjkZP9dE0PFn8s4EM3v0UDPgpjkGBRFwXXQ1SZ0piWhrr2rx/kjmuv5pZFvB2hp1ajV5eZdXfuKfxfOKNQ7ZZ9zUbPa1Xvzx8TEYLFYNO2UYmJicPvLsPaD2+3GGoVSrdFCoFr6UAV6AmnnexX29Mb7jzvuuKb/P2/ePP7yl79QXV1NamoqDoeD+vp6ABK+SPD7G7Z5bJxWfVqbhaDT6eSjjz5i1apVQGMJ33nnnWf478jfIjoQze/RQM+CQLkwspY9ur8D+bRqB/hbYbdGb92ov9V18ezigD9cES9QGhSf7ntfczF7tRsXF6fJyOuJybvdbmJiAukId26m5uWxoKSkjTE2QqAnkLyvN96v18ivXLmSuro6Dhw4wHXXXccp48dz5P33s1AIKp1O4hwO6t9+m9q3FRIDJKSkktrCeC9ZsoQrr7ySPXv2NBn+J598kry8PP79739z8skn65qvL/Tk7rS+R/XstM3Q0W9OUxJus+Tf7CnGJuGGitnfQSjImHw7oEUsK9P3itCM5JVAMTphF8QkxviW1BVg721vMxezOmd5sdvtphv57t2706tXL61T6zR4y/1uzckhoVlpnQDO09BTwBdmxvvfffddXnzxRe69915OGDWKkoce4t8eT1PXv3q7HSZO5KbZCnVx/sdx2B1NpZlr167lrLPOIispi/9O/C8fig/5zPkZX6V8xWU1l3HBmRfw/fff655za7Qskls/L7yx/OWZy1kilrDEsoQlYgnLM5cHLQMzM6HOzDweI4nmpEJp5NsJTdnmJQWMqhpFrwd7mZ68kn1Ttt+YteJSGkV0fEnqxggyL8gMu3rV6NGjOeqoo1Qfr8ddf9999zF9+nStU4tajE5k87KorKzF+q/O4+Efe/aEVCsfLJ7f/H2tnys1NZXt27dTWFhI/j33sN3haOs1sNspzlZ4Y6LvMRw4SL06tenvDz74IF2TuzJbzCb+w3gSGhIQCCyVFs6rOY+nG57mkb8+ovLTByfoIlng83nhNaS7ntj1m7z14fvaVeaicHohy9OWs+3ebT6NqpkJddGctd6caE4qlHXyEr/smLaDXU/sCiiW4w9blq2xd3QzoqGWtDkzZsxg5cqVfPrpp23eq6qq4pVXXuHVV1+luLiY9PR0Jk6cyA033EDXrl3DNkcz8ZXIBr+51vUmsk3bsSNgXF5vrbzacfV8rqeeeoo5c+awZcsW0pcu5WAAD09yuZt3L3Jh57cmRQ4cWHItnPrLqViTrBQXF5Obm8tLJ79EnzV9fLpx3VY3/3b9m8f2PUa3bt00fx+t0VuHrlqHIwYSjglN/0IrwZQ9fT1nOitRVycvhJgnhDgghPBZjyQa+acQYqsQ4kchhH+NSYkpBFPDC4Qv12G0rXb97eR37drFCSecwC133UXxuHEcnDePDc8+ywP9+5Nz//3ceNttYZ2nWahJZNOz01cTO9dDMHlfb7xfzedqTWpqalPopjxICKcqVbDuqHUcEofw4MER7yDr5qwmAw9QVFSEoij0/qG3X+MZ44rhPM5jz5496r6AIOh1GauO5bv961+YRTRnrbcXIumufwUYH+D9s4CjDv93A/BCGObUbgiHhGIoN5A/16GZIje33XYbt99+u+rjrVYrrlbGyuPxcP7557O/spLen3xC+fjxOOLiQAhIS8N1ySXMHTSIYg2letFKMGM8+7B7fWZRUVNsWo1ErVmxc7XyvnoWGcnJyaSkpJCUlERsXV3AedgdDu7dfC+f/uFT3rr+Lc6sPZMhz7ZcpKakpDT+H99dVZtIJfW3Y0NE7yJay30e7ppvs/N4OgMRCxQoirJMCNE7wCHnA68pjfGEVUKINCFED0VR9oZnhtGL2a1evWiqz2+GsAq6X9c9+IEG07zUyR/l5eVs3LixSY609U7+q6++4ocffuD8Dz7gs5gYn3FZpUcPrv/ySz659NKgc/LKvs4+LPuaYbMxJTubqXl5fl3hes7RQzBjW+pyUe3xaC5ZM7NW3quwF8jdr2eRMX78eEaNGsWzzz7L4++8g/XKK3H5qqJwOLg6tTHunpCQwP79+31e45hjjqFfv37UbKohyZ3kdy41MTV+pXD1oCc7Xut9Hs7dczRnrbcXojnxLgdo7hfaffi1Tk+4klGCZddbM60+5W0Vt0Lph6Vhz3yNi4vza+T379/PtddeS3Z2NqNGjWLkyJFMnz6dLVu2tGgX+sEHH5CSksKKzEz/fdPtdr5MSAg6H29sWMtOWO85epLnghlbAbrc7sFa44ZSK68GLQl6XlJSUsjOzmbGjBlcpii4du2C1pUaDge5MTE8NWwY0Gjk6/zs+oUQ3H333SxwL8AV4z9RT5mg6GqUZCRalO4gvLvnaM5aby9Es5H39cv3GSAWQtwghFgrhFhbUlJi8rQiT7gkFAPdYPFHxtPt6m6+f0EKOHY6wp756s/I79+/n4KCAj548wNmHTeLxSmLWSwW867rXc7ceyZnjTmrqWVoVVUV6enplAUxkM74eL865V70xIa1nqNnUeAlmDEOlo3hb8esNnZuFnoWGQcPHmTevHkUFRXx9ssvs6hnT45dv56YqirweEhwOLila1d+GTOmyZuSkJBAbW2t33lcffXV9L67N0XuIhy0XDA4cODq6uLs184O4ZMag/c+F/bgi41w756jLY8nFCLVpc5QIy+EiBdC9DRouN1A86dBLuDTeimKMldRlKGKogzNysoy6PLRS7iSUYLdYAdeO+BXxz4Ses3+jPxdd91F2e4yPsz+kIEbBiIqBUIRJLmSmCQmce131/LkjCcB6NOnD7t27aKLHyPRhMPBGeed53cnB/piw1rP0bOQ8BLMGGcECQ0o4NNj4K9W3kLotfJq0LPIqKqqYvbs2fz6668IITj39NPZeNdduM47D+W006g580yeOf74FuGS+Pj4gP/+ANMen0b/pf35dfCvVIgKPHioj6sn+Q/JnLntzKgwUt77vOfdPRu9c36I1O7ZmmQlb2oe2TdlY0tvDC0Uzy6maFZR1NTJByOS9f6qjLwQ4hQhxBohRK0QYocQYpoQItbHoRcBOwya20fA1Yez7EcAFTIe30hQd5kHw1aJgRLloi3zdciQIZx++uktXisrK+Ptt9/mkYGPIPa2bbYTq8SSa8ml5LkSnE4n11xzDYqikPvdd23dtc2w2O38dOONvBKgt7ye2LDWc0LJZA+WyPannBy/O2JoNPKBPAata+VrDaiVV4PaBL3meDXlq6qqVF/H664PJqh04ugT+cv3f2HrrK08PPphxteNZ+TckVFh4L147/NRJaMYo4wJmxaHGtqLIE4gIlnvH9TICyGOAT4DBgIbgVhgGo3JcLqzq4QQbwH/A44WQuwWQlwnhLhRCHHj4UM+AbYDW4F/AVP0XqujoSaGFo6bINoyX88991zuuOOOFq/9+OOPNDQ0cOzmYwNqjp9eczpFRUX06tWL2267jR/vuw+Ki7H40ZHwWCyInBwe277d73z0xIa1nhNqJnvrVrEHCgp4OD+fJKvV7464Of7K7ZKXL2dDba1PD8OmujoeKQytL0IwAn0un8cnNSbHaTXyiqIETfb0EhsbG/ZWs3oJR6tntWg1kJFyiwcikl3q1OzkHwRqgOMPF9rnAn8GjgW+EULk6rmwoiiTFEXpoSiKTVGUXEVRXlIUZY6iKHMOv68oivInRVH6KIoyQFEUqXBzGH+x8taYvUo0W8FOD4qitFDpa0pqUlHK5D121qxZDB80CKZMwRPgoazExrJnaBvtiSb0xIa1nqNnIaGW5jviQNFaX+V2gXApStOiIFqIjY3FbrdrMvLx8fEAqo283W7H5XKpllKORmMVCbQYyGjd9UfS66nGyA8HZiuK8gs0Gd/ngdOBDGCpgXF4iQraxMoDYOYqMVBinr23HU+DJ6wPqLfffpvhw4c3JdEBDB48mPj4eBz2wDuoaks1PXs2/owtFgvnnnsu1NeD3R7wPE+S//IoPbFhreeYncnu3REHo9Tl8pkb4A83BMwXiARJSUktKi2CkXC4wiJQ8l1z7HY7QghVu/loNVZGo2Yho8VARqsMbiS9nmqMfA8a3eYtUBRlJTAW6AIsCVLzLjGY5u60gNsszFsl+kvMy7k1ByEEe/6xJ6wPKJvNhsfjaZEMlZaWxlVXXcW7De+ixPp2vTtwcOiUQy26y11yySUAJATZlSYG2I3qiQ1rPSdcmeyhlNv5Q6/ynVm888473HXXXaqP9+7k1Rr5q666ijVr1jSdF4hoNVZGonYho8VARtItHohIej3VGPn9gM8ZKIryHXAGkAJ8DRxh3NQkatG6SjTSDegrdmeJtVC/I/wPKH/u08cff5wfj/2RnQ07cVlafkYHDg4lHOKSdy9p8foxxxzDhRdeSN38+dj8GS+HgxuD7JS1xoa1nqNnIaGHUMvtfBFK1zgzSE1NJTbWVz6xb7S66y0Wi+qa+Gg1Vnrw97wpfKRQ1UJGi4GMtmRgL5Gs91dj5NcD4/y9qSjKOhp39Mk0JuRJwoyWmyAcbsBIPaC8D93WZU1dunThyxVfsumWTSyIXUA55XjwUCEq+E/SfzhuyXEkZLQVt3nllVcoKCrCWVgIDQ0t33Q4OCIujoeOOcaUz6IFPQsJrYRabueLUPIFzODjjz/mjTfeUH28110frIzOy8/f/syrp77KN5nfBF1cR6ux0kqg503RLP9NcZo/J7QYyGhLBvYSyXp/NUb+Y+BkIcRAfwcoivI9jYb+kEHz6vRo2W1ruQnC4QaM1APKn5GHxl3a4888ztPlT3P0hqPJ+TWHlK9S+N/R/yMmyYd8KY0qaF9/8glvdunCUWvXNgmjxNbWMjUvj/UFBYYa0mgm1HK71oRD+U4r33zzDR988IHq47W4613VLkouK6HH0h64y9xBF9dGG6tIJfEFet7409jw4n1OaDGQ0ZgM7CVSFQtqRn8NWAYElJJTFOX7w53itPeQlLRAqza99yYomlVE8QvFOMuc2DJsZN+UTd7UvBbHqtlla9G9bj7nollFFM8u9qNL+BtmraZzcnKYOHEiXbp08XtMXFwc/fr1Axp17AEaWu/Sm2G1Wpl0wQVMuuACQ+faHgmkGz81L48FJSVtku+8zunmP4lwKd9pJTExUVPiXVxcHKBuJ180qwhRLIhVWoYDmi+um993Rmq2h6vXhS9Ud7jzQfPnhFpN/rypeZQsKPHbzrozyuCqWXr3URRlk6IoB4MdqCjKLmBA6NPq3OjZbatdJZqxy27jkguAmavpvLw87rzzzqYs+WB446/tpXY5mvG30787L4+7Tc4XMIqkpCTVSXSgLSZfPLsY/KwlfYWwjIzhmuG9U+sZ0Ou10/uc6EgyuEah5hN/J4R4EHhSUfwogwBCiHxgHjAaeM6g+XVKzNptQ/COU3p22f4eIq0xezWtKAoNDQ0IIVQlUNkPl8cF2sm3Zvr06ZSWlvLPf/5T9zw7KoF2+o8Z2GnNLBITE6mrq8PtdreotPCHlpi81sW1Fu9cMIx+nngX9XVb61AcjSbBWeqkcHohe2bv4cSfTsTevfHeCtrhLgYsNouhu249nfg6Mmp28muAJ4DlQogjfR0ghLgZ+BE4CbjfuOl1ToI+EHS0f/ViRsxKjUsuHKvp8vJyCgoK+PDDD1Ud710IaDHyFRUVdIYmSKGgtytepElKSkIIoXo3HygHpDV6YuxGxXCN9t4VzSpqYeCb4yp1sXbg2qYdfTB1zpQRKeTcmiN33SYS1MgrinIKcAcwGFgvhLjF+54QIl8I8TXwT+AXYIiiKI+bNNdOg5rdtGOfPhezGaUcQR8SFsKSZKI129m7k1dbAgUQExODK8qNVSQJpStepLn88stZs2ZNk459MCwWC7GxsaoWBZFMCDM6ia94drFPA+/FWeJsCgEE63BX/V01ZYvKGL59OGPcYxi+fTgAq/NXd2qVPyNRlQ6rKMrTwBDgZ+BpIcQSIcTdwE/8tnsfoSjKRtNm2onInpKNsAaop1Xg2wHf6q5rH/TlIJKHJf+WFSUgeVgyg74cpMsIR0vZit1ux2KxtFC8C4Q3cUpLTN5ms0kjH4BQuuJFmpiYGM293f11PmxNJOukjV5gqNn5e3MMvGGHlOEpPo9rnhfQWVT+wo3qmhdFUTbRaNDn0Bh3fxTYSaOm/WOKouhLoZS0IW9qHgHSH4BGt5jehJn1Z6ynak3VbynPClStqWL9Get13UjRUrYihCA+Pl6TzChoM/JWqxVnlIm4hILRrvVQuuJFmp07d/K3v/2NXbt2qT4nLi5OlefImmTl2MXHsvmEzZBGWF3TRi8w1Czamy8ErElWajf6vye9eQGdQeUvEmjtJ38t8DvASWPTmj7ABKF1+SsJiDXJGrSGFNAlKmPGjaT2IRKOWt3ExETNRl6Lu37AgAGMGjVK19yiDTNc66F2xYskhw4d4sMPP6RYw0JETU95LzFJMcypn0PRP4vCWydtcMZ59pTgi/bWCwE1eQEdSeUvmlDbTz5HCPEpMJdGHfuhNJbKrQIeA1YKIfqaNstOiC1T22pZLWbcSGoeIuFyxf3ud7/j5JNPVnWsN/HOn5E/cOAA06dP56ijjiI5OZn8/Hy+//57rrrqKkPmGmnMcK2b2RXPbLQ2nIFGI6+lCx1EpmTTSCGWvKl5WDP9n+fLe6cmpNdRVP6iDTX95H9PY+z9dGAGMExRlJ8URSlUFOVU4FYaDf4PQog75K5eH613ue7a4Ft5PbFus26kYA+RcLnifve733HqqaeqOtZisWC3230+dDdu3MjgwYOZ9thjeK6+Gtd777Fz3jwePfFEjvzb31i6Zo0h840kZrjWze6KZyaJiYkAqnM6QL27Hhpj/haLpd3rMliTrJz404k+O2D6CwGoCelFS25PR0PNTv5lYDcwXFGUaYqitNhyKYryT+B44HtgFvCN4bPs4Pja5XpqA6c4CLvQFevWcyO5ql1su3cbyxKWsUQsYYlYwrLEZWy7d5vqHXi4XHHV1dWUlZWpPt5X4pTT6eTcc8/FHRtLn88+o/iUU6i320EISEuj/oILOH3TJvZXBmlSH0b0xNbNcK2HqyueGWitzgBtO3lo/L21dyMPYO9uZ/j24fR6sJdP7x3QYtOy5/k9WJIsbbLsmy8KoiW3p6OhxlfzGPCQoih+73hFUbYIIUYBdwIPGzW5zoJaMRkvwi6IPzKe7Juy2TFtB8Wzm4llTAkslqFVLtNV7eK7E7+jblNdC21ST62HoieKKFtYxpA1weN64XLFTZs2ja1btzJu3DjKy8vJzc3loosuIiXFd3avr53YwoUL2bFjBxP/+18+xEcLVbsdd9euXP/FFyy6+GJD5h0K3th6c9e7N7a+oKTEr7pchs1GaQBDrse17lW+m1VUxAvFxZQ5nWTYbNyUnc3UvLygKnfVLhezioqY3ezcKSrPDZWEhAQSEhLwaGiZGxcXx/79+1Uf36NHj6aqjvaOP9EZXzK6rjIXljgL1hQriqLgOuhqI+7jT5JW2AWWJAt7nt9D4YxCVc85yW8E/YYURVElbnNYDW+WEGJRyLPqZAQTk7EkWIhJjGmhepV9Uzbrz1gfVI+6uaa8s8yJNd2KJcmCoigtal39udmKZhVRt6XOtx69AnVb6trobvvCDKW91tTX1/P111/z/fff89FHHzW9/uc//5n77ruPe+65p02JlK+d2EcffUS3bt34MjGRen87Ybudz90qsiNVEKphUxNb96VCNyU7m5lFRT5d9qG41gMp3wVC72LFKOx2O8uWLdN0jtad/Pz587VOq90RsCkNkHdXns/nhS+VP2u6FSEE7ip32HX3OwqGfzuKovxq9JgdjdaGN1hDF0+9h9E1o1u8tmPajqAx7rypebpW1M0pnl0cMNNfcSmqZDGNbLjhpfX3WGur5YSGEzgl6RQusF2AckiBVFjVbRUP3/cwDoeDhx56qMUYvrKja2trSU9P59cg2eUNBuzIjDBsamLrWprKqHWtG73r1rtYMWs+alBbJ9+ZMERGV6EpbOlxtO1Y56+xj6QtWkvoJCHiK/4eDF+7XDU3UqAVtbvKTc6UnKCZtmrc6GqOMbpW19f3mNCQwCQmcV71eSjlSuN3ewhGFo7k36n/5u9/+zv79u1rMY4vI9+3b1+2bNlClyCtU+M0yOH6w4gMdzWxdV8x+1lFRXw5aJDf9rGBDKMZ5XehJAIaNZ+ZM2fyzjvvqJ6zViP/1FNP8cILL6g+vj2iNzTnNzfJzyZDltWpQxr5MKM1/u5vlxuuulM1bnQ1xxhdq+vve7Qc/l9zPPUe0uvTucR9Ca+++mqL93zF5K+77jpcLhf5P/7ov0e6w8FVfuL8WjAiwz1Y7DzdZvNrAM9Yv56peXkcKCjAPWYMBwoKeDg/P+jO14zyu1ASAY2az6pVq/jhhx9UHQu/Gflg4lVefv3+VzzzPGHv6x5O9GbJa302giyrU4M08mFGS3/lQLvccNWdZk/JhkANuSzQ/bruQccBY2t1NfepdsAFlgvYsmVLi5cTEhLaGPk+ffpw++23893UqcSWlNCmn53DQVptLU8NG6Z53q0xIsM9WNlav4QEww2yGeV3odTYGzUfLSVx3uM9Ho8qFURXtYtzPj6Ho78/ukPLturNktfTe16W1QVHGvkwo2rlqWKXG66607ypecQfFf+bzn1rFCj9sDTsDyg9K/hkT3JTLbSXhIQEn+Ins2bN4qF77sH1xz/S8OqrUF4OHg8cOsSIwkK2n3WWIXFeI8RjgpWtbaipMdwgm1F+F0qNvVHz0aJgB7/1P1Djsi+aVURSZRJWd8vfTUeTbdUbmtN6T8uyOnVIIx9mrOmBDYMty6Zql6vmRlK7og4kN2tNsnLCtyeQMtKPa1oBx05H2B9QelbwFVRwwQUXtHjNn9a9xWJh2rRp7N2+nVfGjOGxTZt4cccOFqem4vrXv9i+YYPeqbfACPEYb9mav9j6wSDxaD0G2Qxlu1Bq7I2aj5lGvnh2MTFu326xjhRf1hua03JPh6OxT0dB1h6EEVe1y/+OGG0rU1/lJmrrTpvfIL5qWn2VqNRt8v/ga50x2zrr3Yy61kDZ+r5w4GB1t9U8NuaxFq97d/KKovjsQJaSksLvf//7pr///PPPKIpiWEZ1qBnuXgKVrZlRD29G+V0oNfZGzadr166aOtFpMfKdSbbVXw19IALd08IqELECT70nYDWQpC3yGwojRbOKcFf5r0eLSY7RtDINdiOpWQioKcXLfzg/+AOqxMmOaTtU1++Hir8FjIfG/988+c6Bg1JbKX9c/EefdfLemKpXyz4Q3oe6lt1eIEIVj1GDGQbZqMVJa/TW2Bs1nwcffFDTdbUY+XBoRbRngm1KZE28PqS7PowUzy5uIUDTGkVRDP8RB0t2U5uBr+YBVDSziG8HfBsWjXp/LsHYq2NZmLCQClGBBw9VMVUcHHeQs3acRX6/tobDG6NX25QkPj4eMM7Iw2+GTWuGu1rMkJoNFiIwW50uWubjNfJqpGrbk2xrODpGtr7W6vzV1G6oBdEoAIYIXzvejoz81sJIsN2w62D4s2vVuhDVuMc99Z6g76sSwlCJL0/GoUOHuHXDrYycOpLzLz8/6BhevfKamhrS0tKCHm+GkTcbs7wFenfdZmHEfBYuXMjSpUt56qmnVB2vZSefNzWP7S9vRylWWiTfRVt8WW0Iz6xreeo8WOIsJPRLkMbdAOROPoxEY5cltXPyl+inFbPjjklJSQBUVVWpOl5r57GkpCQmTZrEkUceqW+CEcJsb0FHYc+ePXz55ZfcfPPN5OTkkJKSwqBBg3j22Weprq5uc7yW9rHWJCu77tnF4q6LG1u1hqgVYRZaO0aGsus3ujtlOD0Q7QVp5MNINLrrtMwp47yMkH8xZi9krFYrf/3rXxk9enTwg9Fu5GNjY7njjjsYMmSI7jlKopdffvmFn7Zu5YX6ekpffJGqhQvZ+Mgj3LJuHcNOOaVNMxotO3mA2NRYPs/+nME7BoesFWEWWkS0fKnUaan9N7I7Zahz6ahEzy+rnaMmo1xNtnu40ZuBr4dwLWRal8kFQmtMHhp3bR6Pp8l13xHY53Bw+caNfFNR0aS0bBUCt6KEtRNcJNm+fTsvvPIKYvZsbL17492bu5KSiL36an4tLOTyyZNZ8umnTed4d/JqjXzz471ep2hDSxWAmp14oPCckRUHoc6loyJ38gbgbwVZOL2Q5cnLWZ65nB3TdgAYKu1qBGpqWrXITQq7wJZlM0yjXg/bt29n69atqo7VupOHxkXEk08+qWtu0cg+h4Peq1axrJmBB3ApiiGa9O2FF154Afell0J2Nq2d7w1CEJOXx9Lu3Vm/fn3T61rc9aAtUS9SaAkrhroTNzKEaaRXwB/tMRwgjbwBBDOCrjJXk8sIMEza1ShCycBvjiXOQvyR8Qz9cWhEFzLTp0/n6aefVnWs18j7irf6w5+Ajq8mMNN27Ih6w3j5xo04gmiv65XAbU/fyUcffYT1ootQ/JRSumJiYMIEFi36rZu2Vnd9ZmYmAwYM0FSLH260hPBC3YkbGcI0W4egvYYDpJE3ADVGsD1LV6q5OZobcnt3e0QXMsnJyaqNttdlqsXIJyUltdn5m9GVLVx8U1Gh6jitErjt7Tupra3F1Ur2uA2pqU0LvL179/K3v/2NH3/8kSuvvJKMjAz+9Kc/sXnzZr+njxgxgpdffplsHdoE4UKLLG2oO3Eju1OandhsdJJguJBG3gDUrhDbq3Rl0JsnyxYVHgkvycnJqrPr4+PjsVgs1NTUUF9fz7p161i7dm1Ao5+YmNjGyJvRlc0XZuyM1fVPa0SLBG64vhOjOOqoo7AEW+xVVHDUUUexYcMGjj/+eJ6d+SzXWq7lY9vHvHfwPcbNHses42bx5aIvwzNpE9AiSxtsJ979uu4B3dtGdqc0O7E5HOEAM4iokRdCjBdCbBJCbBVC3OPj/VQhxCIhxHohxAYhxDWRmGcwtKwQ26N0ZffruyOsvt2L0SbiAY07bbU7cyEEcXFxzJ8/n5ycHE444QROPPFEevTowZQpUygrK2tzTmJiYpvxzejK1hqzdsZaHMfNJXCDLTjC8Z0YyQ033IDn/fcRfhYyFqeT2P/+l4suuojzzz+feOL57MjPuLjhYhKcCQgEqaRyqftS9lywhwOFB9qMsXXrVi6//HLWrVtn9scJCbUdIwPtxO297ZQtLAvq3jaqO6WRXgFftFdZ4ogZeSFEDPA8cBbQD5gkhOjX6rA/ARsVRRkEjAH+LoQIrj0aZgKtIFvT3qQrXdUuSj8sRXH72O8JiMuPHhEPL96dvJoe37W1tfz8888sXb2abnffTfJXXyEWL8b57rv8n8NBwRlntDH048eP59JLL23xWrAdbiDteLWYtTM+OTVV9bElTidZK1Zw77ZtDAuy4DCjU52ZXHzxxQzetAll925iWi2YLE4nnt27eWLIEL7++mu2bdvG86OfR9mtYFNa3tOxSizdPd354vov2lzD4/Gwbds2Dh06ZOZHCRuBduKZF2RSvyN87m0jvQK+iEadEzVE0rc6DNiqKMp2ACHE28D5wMZmxyhAsmjMUkkCDgLRFcjjtzK0uq11AWVro3HXG4yiWUU4djp8+3QtkHF+ht+bJxyNanxx9tlnM2jQIFXHPvHEE5TX1ZH0+uvs6Nq1yYA64uKIveoqNp18Mrfffz+vzpnTdM4ZZ5zRZpxgTWAsNO58QylBU7Mzbq72Vu1yMauoiNnNVO58lcLN79eP3qtWBU2+81LqdDKrqAgPbX8WzRccZjTGMRObzca//vlPxp1/PuXjxsGECZCaChUV2L/4gpknnMDNf/wjN9xwA126dCHl6xRc9b4fR3bspC1Na/N6qNn1kbqnAuGvh8aKrBVB3dtGl7TpaYyjlkCqn9H8bI+kuz4HaL6U2334teY8BxwLFAM/AX9RFKXNNyyEuEEIsVYIsbakpMSs+frFmmRl0JeDsKb4v8mEXUSVdKVaAiYVumHfS/t8vhXJTNQ+ffowevTooBnMTqeTuXPnknLDDdSlpbUxoA1ATG4ub7rdlJeXN71eV1dHcXFxC0/BlOxsfDcRbUQIEXIMWsvOWItrv7vdzs4RIxidmtrCdW8L8P258R/L9y44jGijG27S09M5okcP3jjjDJ4rLubxb79lvtPJwaee4ubrrgMaM+lTUlJwlQX+Dcc72+ooaM3G9+KqdrHt3m0sT1tO4fTCdpHdbZR7O1rK1swOB5hFJI28rydI6+fGmcAPQDYwGHhOCNGmsbmiKHMVRRmqKMrQrKwso+epiuIXigN2mEsZnhJV0pVq0XujRjITtby8nG+++cZv8t2BAwf47rvvWLZsGfv27aPuzDNx+9lhu61WXGefzY8//tj02nvvvceECRNalNEFa/LiUpSQY9BaeqZrde13t9tZevzxeMaMQTn8X8Mpp5Cpc7dd5nSa0hjHbLydCFNTU/nTn/7E3XffzWWXXdZknAGOPfZYCgsLsaQFfnw2xDW0eU2reA78tmDe/eTuxtVVK6I1u9uaHvhZp8a9HU1la2aHA8wikkZ+N9D8Ls+lccfenGuA95VGtgI7gGPCND9NBCujq/2lNmp/BIHQG4eKZCbqr7/+ym233cb27dtbvP7DDz9w/vnn06NHD4YOHdrkdncGU65rFbNOTk4GWurjJ1mtBFMSCDUGrWVnbFTSm945Z9hsUdepTg0JCQkMGDCAlJQ2e4kmJk+ejNVqZVX3VX5zcRw4SLyibTlefHw8w4YNo2vXrqrn5F0wKy7/4ZRg91S4d8OualfAjM7m7u1Ac4u2sjWjkgTDSSRn9i1wlBAiH9gDTASuaHXMLuB04BshRDfgaGA7UUh7zbwMht44VCS/D+8DurKysum1b775hvHjx5OekM7ckXPJ/zEfUSmooIKJFQ4caXH+hoPKSgaNGdP01+ZGvnv37k2vmx2D1tIz3aikt2CfyRfNFxzR1qkuGOnp6bz88ssBj+nRowczZsxg2r3TeDXxVbpYumDz/PZv68BBbVotp//j9DbnxsbGMnv2bE1zUitG5e+eCmdXOS9Fs4oCejZjkmP8SmY3n1vDvoaAm4WiJ6MrPyEaidhOXlEUF3Az8BnwC/COoigbhBA3CiFuPHzYDGCkEOIn4CvgbkVRSiMz48C018zLYOiNQ0Xy+2i903Y6nVxxxRUcmXMk8zPmc9Tao7BUWhAI0kjj4oVWbA4/D1GHgyFFRS3a0PrayYO2nbYetOyMtbj2AzElOxt7gNi8tdV70eyKN5K7776bWc/O4o64O3jT8ybllOPBwyEOUVRQxDk7z8GabIyhUbsg9ndPRWI3XDy7OGASsqIoASWzvXMLlvfgqfVE3I0f7US0Tl5RlE8URemrKEofRVEeOfzaHEVR5hz+/8WKooxTFGWAoij9FUV5I5LzDUQ0dpjzEoqrTm8cyszvI9jnaW2EFy1axO7du3liyBO4Cl1tHihXvm0luxhiHK2+D4cDe1kZH0yc2OJlf0Y+HDFotS1jjVpwBDouVghuyc5uN654NXg8Hi6//HLee++9gMcJIbj55pvZumcr5eeX87chf2P/m/s5reI0rl9+PbGp/it9r7rqKp577jnVc1KzIA50T5kdOvN1PzpLAy9MXAddquamScSB6M1PiCRS8c4gojXz0ojEFT1xKLO+j4DNgNKWs+3ebSRaGmOhXnf9ypUriYuLI+mrJJ8PlPh6eGGKhYvfdkJ5OXg8iIoKhm3fzpZx4+jZKpkzOzubO+64gz59+rR4PZpi0P4WHABOj4cGj0eVeM4LxcV+qxQsQpBktXa4HvU///wzy5cvZ8uWLUGPtdvt9O/fn7y8PCZNmhQwlu/l4MGDlJaqd0gG1eGIIeA9ZWbozN/9GAzvwiXotRVUa5B4iWb1uUggjbxBRGvmZaQSV8z6PgI2A3I3vv9DwQ88/+TznHfeeS3eDuT6i6+HP75iZ32fPqzr0oWqM85g9U03kZeZ2ebY1NRUJk2aRG5ubpv31O60zca74Lg1J6dNaZ8b+MeePapU8tqbal0ovPbaa/Tr14+NGzfyzDPP0LdvX0aNGsXixYsDnhcbG0tDQ9tMen/ExcVpyq73t2AGIKbx/UD3lJmhMy0dKr009zoEu7Y10+r/swegveZAmUH7XnJHGWYKMehFjavOrPma8X0ETUJyQ+2GWjgVtmVuo25KHSMGjeDv9X9HSVEQlf79f/Wx9QwcOFDVPHbu3ElcXFyLxLtAqBWmMZIkq5VYiwWbxYI7QCld66S45nMNlnRnpmpd63nEWywIoM7jMfz7mzFjBg8++ig9bruNmJNOwp2URKLLxYZPPmHshAm89/rrXHjhhT7P1Wq04+PjNR3vXTAXzSqi+IVmSWY3qUsyM1PERW1SYPPrNfc6BJtbzpQc8qbmtfns7mo3njr/17Vl2KJSOCgSCDXSn+2JoUOHKmvXro30NExD6w93iWVJ4A4kFhjjHmPWdA0n6OdphSXOQtwRcUw8OJGLnRdzbvW5PhOCHDioGF/BZZ9epmrc008/nbFjx3LPPW1aLrTBK0zjLyveTFd+1ooVAQ11ls3GgYKCoHNVe75RqJmHUd/fzz//zIATTyT13//GkZnZ8t9ICMTevdhuvZXibduaWhM35x//+Afvvfcey5cvV3W966+/HqvVypxmKopm4iuDHX4zuKF41oLejwJsmTa/CxO9c9sxbUfgxcGtOZQtKjPlM0crQojvFEUZ2vp16a5vR+iJr3e0rH+t8/XUe6jfXs9LY1/ixeoX2eXahdvasrTHgYMD1gPE/C6QZl1LUlNTW5ToBSKS3di0ltL5m6svzFStUzMPo76/OXPmEPO731GfkdH230hRcHfvTuVZZ/HWW2/5PD82NhaHw6GqVwLAsGHDGDx4cEhz1oKZocSgz5dMW8BcHr1zC5bzA0RVfX0kkUY+SlCTAa8nvh7NWf960NIMyIun3kPsf2P5/JvPee+093jD9UZTyVNVTBU159XwQv8XqGhQ11cdGo282iYjkYxray2lCzTX5phdKqd2HkZ8f2vWrMFy4YV+tfsbAHHBBaxZs8bn+3FxcSiKgktlF8AbbriBG2+8MfiBBmKWiIsRzxc9cwu2ONj34r6AYco9s/eo+4AdAGnkowC1O3Q9pTDRmvWvF+/n8df61h/OMicnnngiCz9fyN92/43sVdn02NiDc53nctFHFyEShOqdOTQa+YoKdYuCSHZj01pKp3YuSRYLXw4aZFqYQct3Eur3Z7FYcCYkBDxGSU7G4ud79Erhakm+6yhE8vkSaHEQLPHOVerqNLX00shHAWp36HpKYaI1618v3s+Te2cuATvCtKK5WzEnJ4fhw4dz7LHHNpWHaXG/e49Xa+TTgxjCdBO7sWmt3VcrklMdYQ+E3mN9MWrUKAj2b1lRwcknn+zzLa+RV9tZ7qmnnvKbxNfeiNbni5qwXmdx2UsjHwWo3aHrja+3R73lQFiTrPR5rA+jDo2i14O9Gh8uAVDjNtTifofG3uNTp05VdexxPpK1mtMvyC4yFLTW7gfa+TcnFDd5tcvFtB07yFqxAsuSJWStWMG0HTtalPOpnYcReQE33ngjfPQRFj8eAdHQQMKXX3LJJZf4fN/bdEbtTt7j8bToatjeicbnS/aU4L+JzlJLL418FKB2hx5N8fVoaP/Y/OEyqmoUCccl6HYbatmZAwwcOJBTTjlF1bEbamoCvr8xyPuhoqV2P5CITmv0uMnVtsBVMw+j8gKOPPJInho2DM/u3YjWhtrhgOJi3r3kkiZj3hqt7vr4+Hjq6upCmrMkMGrCBJ2lll4a+ShA7Q49WuLr0dT+0UuobkOtRv7QoUOsWbOmRbtZfxwMkpAV7P1w0nznHyzrQY+bXG2lQWsPhAASLBYSDtfKG60keNuNN/Jet27krVjRpHrIoUMc88MPfDNwIGefeqrfc73GX627Pi4uDrfbrTpRT6Ida5IVa0borW47Au3TX9vBUCtWEaoohlGoySGIhCBQc/GdgwcP8vnnn9P75N6qvhetRv6HH37gzjvv5I033uCYYwJ3Pza7O53ReHf+ADOLinxmuet1k6upNPBeW20HO6OEhi4++2wuPvtsJk+eTGVlJS+++CLpF1wQ9Dyt7vr4w62N6+rqmvogRJqOKByT86cc00SA2hNyJx8FaNmhR0P8K5K94tVSVlbGk08+ya+//qrq+LS0NCoqKlTXOnfp0gVAVWzV7O50ZmFGwx2jKw38uf+nFxaStnw5927bpkqjvzknn3wyp59+Ounp6aqOtx1epKndyR955JFccMEFfrP1w000euaMIFo8n5EmOn5lnZxozVD1RyR7xaslNTUVQPXuPC0tDY/H06aznD+0GPlwdKczAzMa7hjVAtdLINEcN/Dk7t2qNPqbc9111/GnP/1J9fFad/LDhg3jr3/9q0/1vEgQqf4WZtPenqtm0Tk+ZTsgGnXv/WHLsAXsNBUNsS5v/3e1GfPNj1fTSUyLkfcay1lFRbzQzKV8k8na9Uag1mWulinZ2YaGAIKJ5rgUxa9Gv1HoqZP3eoz8dfgLJ8E8c4UzCgHapeu+PT1XzULu5DsxejPkoynL3x+xsbHExcVp2smD+kVBUlISNpuNgwcPqjs+SrrTRRqjvRpq3Ptay/3+9re/cdVVV6k+Xmud/OrVqxk2bBg//fST6muYiZp2r+3ddd+ZkUa+kxJKHM6MWJcZJXkpKSmqBW60GnkhBH//+9+5QEViluQ3jA4BqHXva4n1OxwOTcJIXiPvVHkNm82GoiiaOtGZiRrPW3t33XdmOtc2QtJEKBnyRmf5++pE5V1wlCwo0R0/e/nll0lKSlJ1rFYjDzBy5EjNc5IYGwII5P5vjpZYf0xMDG63O/iBh9GbXR8tRj5QdU9zzG5NHYiOmP0fLuROvpMSaoa8kVn+ZiX+dOvWTXVykx4jv3HjRpYtW6ZjZuahRk2uI+F1/wdSONYa69dq5L3Z9XpK6KKBpn4Q9uD5AZFIqnXsc7AqfxWF0wtbeB13PbFLhhBUII18JyWaMuTNKslbtmwZr7/+uqpj4+PjiY2NVR1jB3j33Xd5/PHHdc3NDNSqyXUkvO7/qXl5Pg29nli/ViOvNSYfF9fYCjVajLw1ycqgLwdhTQm+QA93Uq2r2sXagWtxlbb97SoOhbqtdWEJIUSDwqdepJHvIGj9EUZTn3mzFhwrV67klVdeUXWsEIIuXbpo2slnZGRQVlaGR0VL1HAQyb71kSTJauWxPn04NGoUD/bqFXKsf9CgQYwbN0718Vpj8ikpKUyaNIkjjjhC9TXMpviFYtxVgRc2kUiqLZpVhLPE//eqOBTTdTnau46ADGZ0APTEtNWq7IUDs0ry0tLSqKysxOPxqBIe6dKli6adfEZGBm63m8rKyiZ3fyTRoibXETEq1n/OOedwzjnnqD7earUihFDtrk9ISOCOO+7QOz1T2PP8nqAxeTMFZPzF3Pc8H7zvu9lex2hV+FSL3Ml3APTEtKNJDcqskrzU1FQURVGdKZ2enq55Jw9QWlqqZ3qGE8m+9Z2Z8vJyqqqqWLlyJT/88IOqc+rr66Mm8Q7AVRZ8N2qWgEygnbKaeZntdWwPCp+BkEa+A6DnRxhNalBmLTi8u2u1tfJad/KZmZlAo4Su2ahJqDNaTa6z8uyzzzJ69Oigx9XU1PDHP/6RnJwcNm3axOuvv87xxx/PsGHD+N///hfw3HHjxjF79myjphw6wXLuROMzw4zYdKBNihrM9jpGU/6SHqS7vgOg90cYLWpQZjXe8arSHTp0iF69egU9Pj09nYMHD6IoiiolsmOOOYbXXnuN3r1765qfWrwJdc3j7d6EugUlJU0xZ6PV5DoriqIEja87HA7OOussvlv+HbOGzKL3+t4kuhJxJ7r5z+b/cPapZ7Poy0WMGjXK5/lR1242WMsGxbxS10CblGBYM62mex3bg8JnIOROvgMQTUl0ejGj8c7QoUNZvnw5gwYNUnV8ly5daGhoUP3wTUhIoF+/fiQkJOieoxrUJtS1V438aCMmJiZoMuW8efP49ptv+TDnQwZuGEiSKwmBwFpj5cL6C3nO8xx/ueEvfhsexcXFRZW7PlhbVmum1bRSVzU7YV/hPFuWjRN/OtHvM8Ior0N7UPgMhDTyHYD2/iM0C6vV2lSupAZv1zEtLvtPP/00qGs2VNQk1IE5DWU6I0KIoN0I58yZw209bsNeam9j9BSHQg96MPCXgaxcudLn+dG2k8/5U47fOnlhF+RMyTEtNh1sE2LNtLYJK/Z6sBfDtw/H3t3u8xwjM+KjKX9JD9LIRxgjVpvt/UdoFh6Ph6eeeopvvvlG1fF6jPyLL77Ihx9+qGd6qtGSUCc18kPHYrEE3Ml7PB5++uknxhwa49foWZwWJjDBrz59tBn5vKl5xB8Z7/MZEn9kPHlT80yLTQfbpORMydHs5TPS6xBN+Ut6iO7ZdXCMinHpiWl3BplIi8XCggULsFgsnHzyyUGP92bLa0mky8rKoqSkRPcc1ZBhs1EawNAHS6irdrmYVVTE7GYd8Ka0gw54kWLAgAFMnDjRb26GEAKbzYatLvD3nkoq5bG+uxReeOGFxMQE0ukLL2qeIWbFpvOm5lGyoKSNUQ5lk6LG66AlFyla8pf0IO/wCGJk/aWWH6FZCTRqrhvuhYUWgRs9O/msrCzWr1+vZ2qqCSWhTm3SnuQ3CgoKKCgo8Pu+EIKxY8dS9UkVKYr/tsQVVHDaaaf5fG/ChAkhz9Nogj1DzNLWMCPxtr1nxBuJdNdHkEjVX5qVQBOISKlGpaWlqer5Dr9l42vZyXft2pWSkhJTVe9CSahTk7TX2fTug+F2u3E4HAHj8rfccgsfKB/givH9HTlwsOnoTX4rL2pqajhw4IAR0w0bZoYFjU687QjJyEYhjXwE0bvaDDWOH4nFRSQWFqDNyFutVlJTUzUbeafTqUlERyuhJNQFS9qbXVzc6fTug/Hqq69SUFCAK8BnHzduHEfcewRF7iIaREulOwcOyuxlTP50st/zn376aa6++mqjphwW2lNsWiYj/0b0/Kt0QvTEuIxwtRvhytLqejc6RqYWb+27Wrx69Go5++yzGTt2rOmytnolW9Uk7VW73QF3+h1ZCjcQwTLsH3j0ARYNXsSqe1YxYMcAUkml2lLNwZMPMuHfE0jPSfd7bnx8PLW1tZrmEw15NO0lNm1GnL+9InfyEUTPatOIHXGoriw9rvdwx8icTicLFixg3bp1/PLLL5x22mnMmTOH6urqgOdlZmb6NPL19fW8/fbbPPTQQzz++ONNWdPJycmkp6er0saPBGpU7tSU53Um1AgheTnvsvN4cPuDLL99Oc9d+Bznuc5j8pLJAQ08NBr5+vr6oAsJL+29SUq4aU9eB7OJ6JNJCDFeCLFJCLFVCHGPn2PGCCF+EEJsEEIsDfcczURPjCvYjrhwemFQ932oriw9C41wxsjKyso4+eSTufKSK+nzTR8e2fgID3z9AN1v6s592ffx87c/+z3X107+zTffJC8vj0mTJvHwww9z7733MnDgQM444wwKCwuZO3cu3333nWHzN5Ip2dltYvle4iyWoEJnnVHv3mvk1RpgaBS3UauUCI1G3uPxqO5cF+ieq9tUx8quK9tdC1SzMUNgqz0SMSMvhIgBngfOAvoBk4QQ/VodkwbMBiYoinIccGm452kmelabana8wVb4oSbQ6InphzNGdvnll/PLul9YmLOQC+svJKEhAYEgjTTOrTqXH0b+QMU+33r2GRkZlJaWNj3g58+fz+9+9zuOHDCAK7/8ksxvvkF8/TWJn3/O0vx8xk6YwNy5c00XxNFLsKS9jCCZ9Z1R716PkbfZbKoNNjQaeVDfUz7QPae4FDx1Hr+7+/bcC70jEal/h0ju5IcBWxVF2a4oSgPwNnB+q2OuAN5XFGUXgKIo7SsdVQVaV5tqd7yBdtWhurL0uN7DJdjz7bff8tVXXzHn1DnElcVBq+6fscSS5crii+u/8Hl+ZmYmDQ0N1NTU4HK5uPPOOzlh1CgqH3uM92w2Sl0uFKDGZsNyxRVsufVWqt3uqM2UDpa096ecnIA7/c6odz9gwACuvfZaTXXsNptNdatZgCFDhnDHHXc09aIPhpZwVvN7X7r5o4NI/jtE0sjnAM0t0O7DrzWnL9BFCLFECPGdEMJnOqoQ4gYhxFohxFqzhUkiTaAdcWsCZcpbkxobO2TflI0tvTEBsHh2cdODIRB6XO/hipHNnz8fu91O7ne5fnc+duzEfx7f4rXNmzfz1ltvsWHDBpxOJ6WlpXz++efs3r2bPvfdx3aHo03sukEILLm57Bg2jH379hkyfzMIpIIn9e7bMmTIEKZMmYJNgxfDZrMFzMZvTd++fZk0aVLTjj7o+BrDWd57P1JVLZKWRPLfIZJG3lfwqrV/zAqcAJwDnAk8IITo2+YkRZmrKMpQRVGGZmVlGT/TKMLfjtgfgcrw9K4s9brewxEjO3ToEOnp6bgPugMeF+9sfLhu2rSJM844g6OPPporrriCxx9/nB9//JHrr7++qTf4V0lJfpPTPDYbDePHR7WRD4TUu29LfX095eXlprrr6+vr2b59u+oMey2Ley/OMqfp5bIyFKCOSPakj6SR3w003ybkAq0/6W7gv4qi1CiKUgosA9S1FGvn+Lt5gJY74iD42wGEsrKMZq383Nxc9u/fj6VL4J92fWw9W7ZsoaCggE0/bOK1015jSZclLBaLWSgW0vvr3sx9Zi4AB92BFwykpnLo0CFTBXHMROrdt2T+/PmMHTsWh8Oh+hytRn7Dhg1cdtllbNy4UdXxWhf3cLhE18SqFhkKUE8kFfgiaeS/BY4SQuQLIWKBicBHrY5ZCJwshLAKIRKA4cAvYZ5n2Al28wBNO+JeD/bStasOZWUZzeUpV111FYqisPHIjX6/FwcOOB/uvPNOYt2xvJX+Fr1W9kIpVxCKIEVJYZJlEtMOTCNBJGAP8rC3OxwsWbIkasvoJPrQUkrndder3f1rTbzzdc9ZEizgJ23Ae++bWdUiQwHqiaQCX8SeSoqiuICbgc9oNNzvKIqyQQhxoxDixsPH/AL8F/gRWAO8qCiK//qnDoKWm0fvrjrUlWW0lqf06dOHG264gdvW3MahhENt2mc6cFAeX84x047hP//5DzP6z8BT5GnzXce4Ysiz5DFJTKJ+/nxs/nbpDgdXp6ZKA9+B0OKm9+KN36uNy2s18tD2nhu5fyQJxyQEvPfNrGqJpAu6vRFJBb6IPpkURflEUZS+iqL0URTlkcOvzVEUZU6zY2YpitJPUZT+iqL8I2KTDSNabh69u+qOrO387LPPMvnGyUw8OJFXHa9SYanAg4dyyllzxBpO//V0tu7Zisfjoc9Pffx+11aPlXM85zB8xw6chYWI1tnTDge5FgvTjjmGGTNmsHbt2jB8OonZeI28lp289XBoQ43Lvri4mDlz5rBt2zZmzJjBiy++SE1NjeZ5qrn31W4C9MTWZRMY9UQyxCm3H1GI1ptHz666I2s722w2XnjhBTZs30Cvh3rx5MgnebDgQfK+zeOBbQ+Q1TOraeelVAbetaWSyvxXXmFefDw9V65EVFSAx0NcfT1T0tP55dRT6RIXx8KFC/32Dpe0L/Ts5L1GPthO/qmnnqJXr17MnDmT+vp6Nm7cyB/+8Ad69erF0qXatb6C3ftqFgJ6Y+sdeaNgNJEMcXbOzJoox6y+zc3pDNrO+fn5TJs2DY/Hw3fffcfQoUOb3hs2bBgpKSnUO+qJd/gvY6qJqaFnz55c06sX1/g76HBjm7179xr7ASQRYejQodx8881NhlsNatz1r7zyCnfccQeXT7icO/PupPL1SizlFkiFj/mYi8++mGXfLqNfv35+x9BDML15vS2vzWo921GJlO6/3MlHIeHYZUdz8pzReJvUNN+hJSYmct111/GO4x08Nt/uegcOHOMdqty22dnZ0sh3EAYOHMjkyZM15VkEc9e73W4eeughThl2CrdvvZ3al2qxVFoai4Yr4Nzqc3my7kn+8dg/DPgE2tAbW4/mKhvJb0gjH4WE6+aJ1uQ5o+nSpQsNDQ1tapIfeeQR9ozaQ6GzEKdo+XB24KAmtYbz32wtwuib7Oxs9uzZY9icJZGjsrKSPXv2aK6TB/87+eXLl1NYWMjUnlOp21bXxqgqDoVcSy7KW4om5Twj0Btb70wbhfaMNPJRiLx5jCUjIwOgTcvZ+Ph4Fn25iOonqvlvl/9STjkePFTFVPFp6qf0X9ofW4q60EivXr2wWq264rmS6OKtt97i/PPP11xCB/538l6xJPundhSH79+I1W3lbPfZVFZWapxxaIQSW+8sG4X2jPyXiFLaS9/m9kCPHj04+uijfT6A7XY7f77rzyhTFWpqaoiJieHXX39l+R+WM7FuouprTJkyhSlTphg5bUmE0CNqFCzxLjMzEwBLTeB9VSqppKSktHndzF7yMrbesZE7eUmHZ8iQIfz73//miCOO8HuMEIKkpCTi4+Pp2rUrQNQ2nZGYi6IomnUPghn50aNHY7fbG4WYAtBAQxvNfLOV5WRsvWMjjbxE0gpv/wMtRv7QoUP8+c9/1lUGJYku3G63pg50ENzIV1RU4HA4ED5bdvyGgsKGDRtavGa2spwMD3ZspJGXdHg8Hg+///3veeutt1QdHxsbS5cuXTQZ+cTERFatWsWvv/6qd5qSKMHj8WjeyQeLyZeWlgKNHRADYcfe5ncXDmU5GVvvuMh/QUmHx2KxsHv3bgoLC1Wf07VrV/bv36/6eJvNRrdu3di9e7eeKbag2uViVlERs4uLKXM6ybDZmJKdzdS8vE7bNCacnHrqqeRpbLHr3fm7/TQzyszMRAiBM95JbK3/HvIVVHBU16NavCaV5SShIHfykk5BRkYGZWVlqo/v1q2b5ph8bm5uyGV01S4XI9atY2ZREaVOJwpQ6nQys6iIEevWUa2hZ7lEHwMHDuSiiy7SdI6axLvx48ezyLIIEefbZd8gGljdbTXHHXdci9elspwkFKSRl3QK0tPTNRl5rTt5aDTyoe7kZxUVsa2+vk3/+nqPh2319cwqkp29zGb//v1s377d7/uKorB79262b99OfX09oE7W9v777+eVulfYK/bS2mvvtDjZo+xhxNMj2pTudWQJaon5SCMv6RRo3cl37dqVysrKpoe4Gvr160d+fr6mvuKtmV1c3MbAe6n3eHihWHb2MpuXXnqJG2+8sc3riqIwd+5c+vfvT15eHn369KF79+7ceuutTbXtgYx8QUEBr77zKn/iT42Nk8RvjZPe5m1cz7i4YNIFbc6T2e+SUJBGXtIp6N+/fxs3aCC6d+8OoGk3f9FFF/F///d/bUqgtFAWZIEQ7H1J6Lhcrja69YqicP311/PHv/yF8vPPJ/GLL2DxYurfeotnq6q49OqrcTqdfmPyXi666CK27N7CgL8P4OHBD3NR6kWsn7aeR/Y8wh9u+YPPc2T2uyQU5K9D0imYNGkSkyZNUn18t27dgEYj36tXL7Om1YYMm43SAIY8I4QFhEQdLperTQnd/Pnzmffmm2S9+y7lKSlN3hZHfDyxV11F8cknU3XPPar6yaenp3P77beTnZ3Nk08+ya233kpaWlrAc6Q4lkQvcicvkfjAa+S9cqRqcLlcXHbZZbz++uu6rzslO5s4P+VbcRYLN2XL+KvZuN3uNjv55557ji5TplDVzMB7aQAsublUnnWWpsTLhIQEAOrq6kKes0TiD2nkJZ2CH3/8kfHjx/Pjjz+qOt6reqfFyFutVqqqqti2bZuuOQJMzcujT1xcG0MfZ7HQJy6OqRpLuyTaae2udzqdrFixgvozz/SbL+G2WmHCBH7++WfV14mPb2xxLI28xEyku17SKYiLi6O0tLRJlCQYsbGxZGRkaM6w79mzJ7t27dIzRQCSrFZWDRnCrKIiXmhWJ3+TrJMPG5dffjlVVVVNf/c2HaoLFipJTdWUdHnCCScwe/bspvwPicQM5BND0inwNghRa+ShMflOa4/4Xr168dVXX2k6pzVJVisP5+fzcL6Mv0aCIUOGtPh7bGwsAwYMYGNNDe6kJP8nVlTQu3dv1ddJT09n2LBhOmcpkahDuuslnYK0tDQsFoumMrru3btrctdD406+oqIi7O1CJcaxZcuWNiGXm266CfeCBdj8dahzOLB9+ik5OTmqr1NTU8MXX3yh+TcmkWhBGnlJp8BisdClSxfNO/n9+/dr6hHfv39/zj77bByOwN3GJNHLrFmzeOKJJ1q8dt1113FaSQnOwkIsrTPoHQ4s+/fTZ+3aoCV0zSkrK+Pee+/l+++/N2LaEolPpJGXdBrGjx/PMccco/r4Hj164HA4KC8vV33O4MGDmT59elMnO0n7w+l0ttE6iI2N5ZMFC7ht61ZiFyyA8nLweODQIY5at47lAweSaLFoMvIy8U4SDmRMXtJpuO222zQd36NHD6Axwz49PV31eYqi4HA4iIuL03Q9SXTQ0NDgs27dbrfz1COP8EhdHd9++y0Oh4Njhw4l94ILaGhoAPw3qPGFt4SupqbGkHlLJL6QRl7SqdDSRtRr5Pfu3Uu/fv1UX2Py5MlkZWXx5JNP6pqjJLL42sk3Jz4+ntGjR7d4LVgXOn/jgNzJS8xFuuslnYZ58+YxcuRIPP6Sp1rhNfLFGvXiu3btys6dO7VOTxIlNDQ0aJYm9i4c1f62vOfY7XZp5CWmInfykk5DUlISLpeL8vJyMjIygh6fnJxMUlKS5jK63r17s2zZsqA7Qkl0cu+995KcnKzpHCEEFo0xeYB//etfTeWdEokZSCMv6TQ0r5VXY+ShcTev1cjn5+fjdrvZvXs3+bLWvd0xfPhwXefpMfJawkASiR6ku17SadAjiNOjRw/N7nqvIMqOHTs0nSeJDlauXKlLtdBisWhy1wMsW7aM5cuXa76WRKIWaeQlqnFVu9gxbQcrslawxLKEFVkr2DFtB67q4J23ogFvWVtJSYnqc7Kzs9m7d6+mWvn8/HwmT55MntSZb5fcdtttLFq0SPN5MTExmnfyr7zyCm+++abma0kkapHueokqXNUu1o1YR/22ejz1jbsVZ6mToplFlCwoaRd9rTMyMrj88ss1udCzs7Opra2loqIiaDtQL/Hx8dx88806ZymJJG63G7fbTWxsrOZz9ezk4+PjZQmdxFTkTl6iiqJZRS0MvBdPvYf6bfUUzSqK0MzUExsby9SpUxk0aJDqc7IPt3bV6rKvra1l69atms6RRB6vUqHdbtd8rh4jn5iYSG1treZrSSRqkUY+Soh2V3jx7OI2Bt6Lp95D8QvajGCkcDqdHDp0SPXxXi1yLX3CAV588UWuuuoqze5bSWTxGnk9QkZ6d/LSyEvMRBr5KMDrCi+aWYSz1AnKb67wdSPWRYWhd5YFbqEZ7P1o4bbbbuOWW25RfbzenXyfPn1wOp0htZ2VhJ/6+nogfEY+ISFB1slLTEUa+SigPbjCbRmB672DvR8tZGVlacquT0xMJC0tTfNOvk+fPgBs375d03mSyJKens6cOXM46aSTfL5/4MABHn74YY444gji4uLIycnhzjvvZOfOnbqM/HXXXcfrr79uxNQlEp9E1MgLIcYLITYJIbYKIe4JcNyJQgi3EOKScM4vXLQHV3j2lGwscb5/LpY4C9k3ZYd5RvrwGnktD+Ps7Gx2796t6Tr5+flYLBa2bNmidYqSCGK32xk6dKjPBkO//vorgwcP5qEnnsBy7bVYFi6k+I03+PuoURz92GMcrKvTbOQzMzObvEUSiRlEzMgLIWKA54GzgH7AJCFEG2WIw8c9AXwW3hmGj/bgCs+bmkdcn7g2ht4SZyGuTxx5U9tHuVhmZiYej0dTZ7nc3FzNO3m73U5ubm6bvuSS6KasrIzPP/+8ze/D5XIxYcIEXDYbff77X/aMHk2d3Q5CQFoazosvZu0111BxuFGNWjZv3swrr7zSFCaQSIwmkjv5YcBWRVG2K4rSALwNnO/juD8DC4AD4ZxcOGkPrnBrkpUhq4aQd1cetiwbWMCWZSPvrrx2UT7nRU+tfG5uLvv27dOcRHfHHXcwefJkTedIIsumTZu47777KCpqGSL7+OOP2bJlC2NeeIE9QH2rHbsSGwvZ2XyoMSt/w4YNPPfcc1RUVIQ6dYnEJ5F8MucAze+k3UALPUkhRA5wIXAacGL4phZesqdkUzSzyKfLPppc4dYkK/kP55P/cPuVaj366KO55ZZbNLWOzcnJwe12s2/fvqZsezUUFBTomaIkgnh31N4OcV4WLVpEeno6X6ekUO/ykwhrt7Nj4EBN1/O2m5UZ9hKziOROXvh4rbWs2D+AuxVFCbiFEkLcIIRYK4RYq2WHFi10FFd4eyA7O5urr76arl27qj4nNzcX0F5GV1tby9dff82+ffs0nSeJHF5j29rI19XVkZaWRpk/A38YT1KSpuvJdrMSs4mkkd8NNLdeuUDrDLOhwNtCiJ3AJcBsIcQFrQdSFGWuoihDFUUZ6ithJtrpKK7w9kJxcbEmw+s18q1duME4dOgQU6dOZeXKlZrOk0QOr7H17rC9HH300ezYsYMulsCPzBiN6nWJiYmA3MlLzCOSRv5b4CghRL4QIhaYCHzU/ABFUfIVRemtKEpv4D1giqIoH4Z9pmHA6wovOFDAGPcYCg4UkP9wvjTwJnDttdcyd+5c1cdnZWURGxurOcO+R48eJCYmygz7doTXyLfeyV977bVYLBZy1q4lzp+hdzg4TqPKofc60shLzCJiFkRRFJcQ4mYas+ZjgHmKomwQQtx4+P05kZqbpGPTtWtXTYl3FouFnJwczTt5IQR9+/Zl06ZNWqcoiRDnnnsuJ5xwQhsxnNzcXO6//36m338/ya+/jiczkxZ59A4HtpISzigr03S9o446is8//1xz/3qJRC0R3SYqivIJ8Emr13wad0VRJodjTpKOT1ZWluZdeV5enuZzAPr27cuiRYvweDxYgrh6JZEnPT3db1LmQw89RGJiIo/cfDMNZ50FEyZAaipUVjLiwAEyv/wS+5FHarqezWbTlAQqkWhFPnVMINp16Ds7Xbt25cABbRWZubm5FBUVaWo5C42x3NraWl0LBEn4Wb16NZ9//rnP94QQ3HXXXRRv28ab48bx5PbtvLxrFwdPOYX/3XADsW635t+H0+lkzpw5rFu3zojpSyRtkAFfg+kILVk7Ol27dqWqqor6+nrVGuV5eXk4HA5KSko0ZeaPGTOGwYMHNyXvSaKb999/n23btjFu3Di/xyQmJjJp0qQ2rwshNBt5i8XCiy++SExMDEOGDNE8X4kkGNLaGIwaHfr2XGfeETjllFPo0aOHJvd5z549gcYMey1GPiUlhZSUFM1zlESGmpqapox3rQjhqyo4MDExMcTGxsoSOolpSHe9wbQHHfrOzhFHHMH48eOJjY1VfU5eXmO1p56ucosXL+bNN9/UfF4gql0upu3YQdaKFViWLCFrxQqm7dhBdZA6bklgampqSNJY6x4q8fHx0shLTEMaeYNpDzr07QEz8xpcLhfff/+9pvax3bt3x2azac6wB1ixYgUvvfSSZleuP6pdLkasW8fMoiJKnU4UoNTpZGZRESPWrZOGPgSqqqrCbuQTEhJkCZ3ENKSRN5j2oEMf7XjzGopmFuEsdYLyW17DuhHrQjb0TqeTP/zhD3z2mfqeRxaLhdzcXAoLCzVf79hjj6WiosIw5btZRUVsq69vo59e7/Gwrb6eWToWIpJGqqurI7KTl0ZeYhYyJm8w7UWHPpoxO68hPj6elJQUzRn2PXv21OWu79evsbniL7/8Qo8ePTSf35rZxcVtDLyXeo+HF4qLeThf5n3o4dVXXyUmJias13zttdc0hY4kEi3InbzBSB360AlHXkPXrl3Zv3+/pnN69erF7t27NfcMP/LII4mJiWHjxo2azvNHmTNwyCfY+xL/dOvWjczMTF3n6g3HxMXFSQ0FiWnIX5bBSB360AlHXoOeWvmePXvidDrZu3evpvNiY2Pp27cvpaWlms7zR4YtcMgn2PsS39TU1DBv3jy2apSmbY6eDPuPPvqIl156Sfc1JZJASItjAh2hJWsksWXYGmPxAd4Ple7du2veWffq1QuAwsJCTS1nAebNm4fNIOM7JTubmUVFPl32cRYLN2XLkJAeSktLmT17Nj169OBIjcp1oH8nv2bNGn766Seuu+46XedLJIGQO3lJ1JE9JbtNuMOLUXkNl19+OU8++aSmc5obea0YZeABpubl0Scurk2jlDiLhT5xcUzNkyEhPVRWVgLo1jVQFEXXTj4hIUGW0ElMQxp5SdQRjryGPn36MHjwYE3ndOnSheTkZF1G/tChQ9x66618/fXXms9tTZLVyqohQ7grL48smw0LkGWzcVdeHquGDCHJKh10eoiUkZd18hIzkU8DSdThzWsomlVE8QvFOMuc2DJsZN+UTd7UPEPyGqqqqlixYgWDBg1SnfEuhKB3797s3LlT8/VSUlL47rvvyM7O5tRTT9V8fmuSrFYezs+XWfQGUlFRAUBqaqqu80PdycsmRhIzkEZeEpWYnddQXl7OX//6V6ZPn66prK1Xr16sWrVK8/UsFgvHHnssP//8s+ZzJeEhUkY+Pj4eu92Ow+Fo08deIgkVuWyUdEq6desGoFmgpnfv3pSWllJTU6P5mv3792fz5s00NDQEP1gSdi677LKQervrNfJXXXUVK1askAZeYgrSyEs6JXa7nbS0NM1GPv+we1yPy37gwIG4XC5+/fVXzedKzCcmJob09HTdLnO97nY9C4P2iGzBHRmkkZd0Wrp166ZZEKd3794A7NixQ/P1BgwYwODBg3FJbfmoZOHChbzzzju6z9dr5Ddt2sSDDz6oqZdCe8NsqWqJf6SRl3Raunfvrnknn5ubi9Vq1WXkMzIymD17Nh6Ph5UrV1JSUqJ5DIl5fPrpp5r6GbRGr7v+4MGDfPLJJ4aJJUUjaqSqJeYgjbyk03L77bfzzDPPaDonJiaGnj17ajbyTqeThx9+mLy8PE488UQKCgrIyclh0qRJuhYMEuM5ePAgXbp00X2+3p28NxbfkZvUyBbckUNm10s6LVpV67zk5+ezefNm1ce7XC4uvvhiFn3xBTl33IFl+HA8SUlYGxp4//33+WrMGFZ+9ZUulTWJcRw6dEizdkJz3G63LiOfkJAA0KFr5WUL7sghd/KSTsu+fft47bXXNGvYH3HEEezZs0d1lvzLL7/Moi++oMcHH1B6xhl4kpNBCOrsdsSkSZTNmMH1f/6zno8gMQiPx8OhQ4dC3snr6WAXFxcHdGwjL1twRw5p5CWdlpKSEv75z3+yadMmTefl5+fj8XhUZ9jPnj2brrfcQnlCAo5W7zkAS04OS7t31zwPiXFUVlYihCAjI0P3GG63W5eRT0xM1F2b314Ih1S1xDfSXS/ptHhFcLQm3/Xp0weA7du307dv34DHNjQ08MMPP5DwxBN+e8C7YmJgwgTWrFnD0UcfrWkuEmNIS0vjf//7n+Y2wv/f3v3HVlWfcRx/P/fSUjGOH1JLRwG1liEu4BSVoTEs2ZyaDDY2ExfD2I/EzKQLC8uC02VuLhN0RjLNmEGjqGFumOlwGWNz/DG3P1gKjG1aZqiNOLChZWAJOjpLn/1xziUNtPeee+7tvbfnfF4J6W3v+Z779Dnf8PR8zznf73Bxh+svvPBCdu7cGftzx4NZ355F36/6zrn5Tktwjz2dyUtqTZs2jbq6uqKXjp09ezaZTIbu7u7Ibd4vtEDN5MmpeV66VmUyGSaUMO9/3OH6NNAS3NWjzEpqZTIZmpqaij6Tr6urY86cObz55psFt62vr2fRokX87eRJTuebSa2/nyVLlhQVh5RPR0cHO3bsYPXq1bEXqBkcHIz9R8I999zDddddx/Lly2O1Hw+0BHd16ExeUq25ubnoIg/BzXdRijxAe3s7p198kQmnT4+8wcAArZ2dXHrppUXHIeXR2dnJtm3bYhdpd2doaCh2+127dumeDBkTKvKSauvXr2fTpk1Ft2ttbeXw4cOcOnWq4LYrV67k84ODDL79NpkPznpUaGCACX19/OaOO4qOQcrn6NGjTJo06czjbMU6Hf4BF3e4vqGhIdF310v1qMhLqk2ePDnW2ddll12Gu0e6Lp/JZPjl5s2sO3GCD23fDsePw9AQvPsuC/fvp3PpUi4Pp8uV6ujr62P69Omx25da5LWmvIwVFXlJte7ubh566KGin5XPTVzT1dUVaftsNsvdq1dz9OGHeeOKK3i+t5eP3X8/j119NW0tLUXHLeXV29tLY2Nj7PYfhCM0dYVusBxFbk15kXJTkZdUO378OFu3bi16VbmWlhbq6+sjX5fPyWazzJ07lxUrVtDQ0MDu3buLai9jI5vNxp4BETiz6FDca/ItLS1MmTIl9ueLjEZ310uq5Z6VL3YFsEwmQ2trKwcOHIj1ufX19SxYsICOjo5Y7aW8nnjiiZLal3omv27dupI+X2Q0OpOXVGtqaiKTycRa5rOtrS3ycP1IrrnmGg4cOEB/f3/sfUhtKPVMXmSsqMhLqmWzWZqamoqeEAeC6/LHjh3j2LFjsT572bJlvPDCC7Gfy5by6Orqor29vahFh85W6pn8c889x9q1a2N/vshoVOQl9WbOnMl7771XdLu2tjaA2EP2jY2NXHzxxZrprsoOHjzIrl27StpHqUX+0KFD7N27t6QYREaiIi+pt3HjRh555JGi2+XmrS/lDHDPnj1s2LAhdnspXW4UZ8aMGbH3kVuRsL6+Plb7hoaGSHMuiBRLRV5SL86iIhA8Y9/Y2Bj7TB6CoeItW7Zw+PDh2PuQ0vT09DBp0iQuyDftcAGlnsmfd955nDp1CnePHYPISFTkJfU6OztZs2ZNrJvv5s6dW9J0pIsXLwYoebhY4uvp6aG5ubmkyyblOJN39zP7ESkX3QoqqTc0NMSRI0c4efJk0W0XLlzIwMAAQ0NDsUYEZs+ezbx58zRUW0VTp04taR15gIkTJzJv3rzYowFNTU3Mnz+fwcFBJk6cWFIsIsNZ0oaHzKwPOFjGXU4HjpZxf+OV8hBQHpSDHOUhoDwEqp2HOe5+zrSNiSvy5WZmu919UbXjqDblIaA8KAc5ykNAeQjUah50TV5ERCShVORFREQSSkW+sOIXG08m5SGgPCgHOcpDQHkI1GQedE1eREQkoXQmLyIiklAq8mcxs9vM7HUzGzKzUe+UNLO3zOyfZrbPzBK3KHgRebjZzN4wsy4zu7uSMY41M5tmZq+Y2YHw69RRtktkXyh0bC3waPj+P8zsqmrEOdYi5GGpmfWHx3+fmX2vGnGOJTN7ysx6zey1Ud5PS18olIea6wsq8ud6DVgBvBph20+4+5W1+NhEGRTMg5llgZ8CtwDzgS+a2fzKhFcRdwM73b0N2Bl+P5pE9YWIx/YWoC38dyfws4oGWQFF9PE/h8f/Sne/v6JBVsZm4OY87ye+L4Q2kz8PUGN9QUX+LO6+393jz1OaEBHzcC3Q5e7d7v4/4BfA8rGPrmKWA8+Er58BPlu9UCouyrFdDjzrgV3AFDNrrnSgYyzpfTwSd38VyLemchr6QpQ81BwV+fgc+IOZ7TGzO6sdTJXMBP497PtD4c+SosndewDCrxeNsl0S+0KUY5v04w/Rf8ePm9nfzex3ZnZFZUKrKWnoC1HVVF9I5dz1ZvZHYKR1Je91920Rd3O9u79jZhcBr5jZv8K/8saNMuRhpBU9xtXjGvlyUMRuxn1fGEGUYzvuj38EUX7HvQRTip40s1uBXxMMW6dJGvpCFDXXF1JZ5N39k2XYxzvh114ze4lgWG9c/cdehjwcAmYN+74FKH4ptyrKlwMzO2Jmze7eEw499o6yj3HfF0YQ5diO++MfQcHf0d1PDHu93cw2mtl0d0/TfO5p6AsF1WJf0HB9DGZ2vpldkHsN3ERwo1radABtZnaJmdUDtwMvVzmmcnoZWBW+XgWcM7qR4L4Q5di+DHwpvLN6MdCfu7yRIAXzYGYzzIJ1as3sWoL/V/9T8UirKw19oaBa7AupPJPPx8w+BzwGNAK/NbN97v5pM/sw8KS73wo0AS+Fx3IC8HN331G1oMdAlDy4+6CZtQO/B7LAU+7+ehXDLrf1wFYz+xrwNnAbQBr6wmjH1sy+Hr7/OLAduBXoAt4HvlKteMdKxDx8AbjLzAaB/wK3e8JmGTOz54GlwHQzOwTcB9RBevoCRMpDzfUFzXgnIiKSUBquFxERSSgVeRERkYRSkRcREUkoFXkREZGEUpEXERFJKBV5ERGRhFKRF5G8zOwBM3MzO+fZ53Dykz+Z2YCZfTT82afM7HEz6zCzU2HbpZWOW0RU5EWksO8TzOK3wcxmnfXeN4EbgfvcPTfT3x3AVwkmj9lfoRhFZAQq8iKSV7jE6irgfODJ3M/N7CPAj4C/Aj8e1uRe4AJ3vwrYUsFQReQsKvIiUpC77wXWATeZ2Z1mlgWeJVh9bJW7nx627WF3H6hSqCIyjOauF5Gofgh8BngYuJJgtb017v5GNYMSkdHpTF5EInH3DwiG7RuAu4C/AD+palAikpeKvIgU4wSQG4rf7u5D1QxGRPJTkReRSMJ1sp8G6gnumv+umbVWNyoRyUdFXkSi+gbBWto/AG4juKfnqbD4i0gNUpEXkYLMrI3g7voO4EF3f52g2N9IUPxFpAapyItIXmaWATYTTG4z/HG5B4HdwDoN24vUJj1CJyKFfAtYAqx19zMz2Ln7aTP7MrCXYNh+qbu7mS0AloWbXR9+XWlmN4SvH3P3/grFLpJq5u7VjkFEapSZXU5QxPcBNwyf9GbYNt8BHgBWu/ujYeF/Os9uL3H3t8ofrYicTUVeREQkoXRNXkREJKFU5EVERBJKRV5ERCShVORFREQSSkVeREQkoVTkRUREEkpFXkREJKFU5EVERBJKRV5ERCShVORFREQS6v+fQFgZFKUpIAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAGQCAYAAACtTRl2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACfJUlEQVR4nO2dd3hUVfrHP2cyk0YaHQIREBDFjogIitjRVWyrC+jqqugqu7qWBdeyuvbCb+1iWXUt7FpBxcUu1YKKiA0VQUpICIQA6ZlkMuf3x+TGkMzMvTP33Gk5n+fxUWduzj0zc+/9nvc9bxFSSjQajUaj0aQernhPQKPRaDQajTNokddoNBqNJkXRIq/RaDQaTYqiRV6j0Wg0mhRFi7xGo9FoNCmKFnmNRqPRaFIULfIaTYoihFgvhFgf73loNJr4oUVeo9GERAghhRCL4j0PKyTTXDWaWKFFXqPRaDSaFEWLvEaj0Wg0KYoWeY0miREB/iyE+F4I0SCEKBFCPCyEyA9ybL4QYroQYoEQYpMQolEIUS6EmCeEGN3u2D8IIYya10e0uMKNf/7R7rg5QohfhBD1QogqIcTHQohzQsx3dyHEE0KINS3HbxdCfCuEeEwI0T3I8ZOFEAuFEDtaPt8PQogbhBAZkc5Vo+mMCF27XqNJXoQQDwCXA5uBV4Em4BRgB9APaJRSDmw5djSwpOWftS3H7AZMBDKAk6WU77QcewBwKnATsAF4ps1pF0kpF7UcVw+sAr5tmUN34MSWc98mpfx7m7n2Bb4D8oC3gB+BTGAQcDRwiJTyuzbHPwVcAGwC3gN2AqOBMcAi4Fgppc/qXDWazogWeY0mSRFCjAE+JiDYo6SU21tezwQWEhDEDW1EPh/wSCm3tRunP/A5UCml3KvdexJYLKUcH2IOg6WUa9u9lg68DYwDBkopS1pevwx4ELhCSvlAu7/pAvillPUt//8H4N/Aa8DZxust7/2DgKDvMo7ZXDWazoh212s0ycv5Lf++3RB4ACllA3Bt+4OllJXtBb7l9U0EvAB7CiF2i2QC7QW+5bVG4BHATcBCb099+xeklLVthRz4C+ADLmj3OsCtQAVwdiRz1Wg6I+54T0Cj0UTNiJZ/Lw7y3lICIrkLQoixBAT0UKAXkN7ukH7ARqsTaFkUXENAzHcDsoKMZzAPuAN4RAhxPPAuAU/EKtnGpSiEyAb2B7YBVwghgp3aC+wV7A2NRvMrWuQ1muTFCK7b0v4NKWWzEKKi7WtCiNMIWOwNwPsE3Py1gB8YDxxBYG/eEkKI3Qm4+bsSWFS8B1QCzcBA4Ly240kpNwghRgH/ACYAp7e8VSyE+D8p5YMt/98VEEBPAm55jUYTJVrkNZrkpbLl372BX9q+IYRIIxAEV9Lm5VuBRmCklPKHdsc/TkDkI+GqlnOcL6V8pt14kwmI/C60nPd3Qgg3AWv9GOAy4AEhRK2U8qk2n+srKeWI9mNoNBrr6D15jSZ5WdHy72DifDgdF/FDCLjG2wu8CzgsxDn8QFqI94a0/HtOkPfCLhiklD4p5ZdSyruByS0vn9ryXg3wPbC3EKJbuHEimKtG0ynRIq/RJC/PtPz7+rZi2BJdf2eQ49cDQ4UQhW2OFQRc4sNDnKMCKArx3vqWf49v+2LLfvvU9gcLIUYJIXoHGcd4ra7Na/cSiBd4WghREGSsrkKI9lZ+uLlqNJ0S7a7XaJIUKeXHQoiHCLi7vxNCtM+T39zuT+4DHgO+EkLMaTl2LAGBfxM4OchpPgQmCSHeBL4kEMy3REq5BJhFIML/lZbxSoB9COy3vwz8rt1YU4A/CSEWA2ta5ji45bxe4P42n+1pIcRBwDRgrRDiXQIBgd0I5NWPI5Bid4nFuWo0nRIt8hpNcvMXYDXwJ+CPBKzZ14DrgK/bHiilfFwI4QWuILBfXk8gYO584AyCi/xfAEkgev5EAt6/mwmI5zdCiCOB21rec7ec83QChWvai/wLBALxxhDIDMgisDB4Efhn20I4LfP9kxDibQJCfgxQAGwnIPYzgdlW5xrkc2k0nQJdDEej0Wg0mhRF78lrNBqNRpOiaJHXaDQajSZF0SKv0Wg0Gk2KokVeo9FoNJoURYu8RqPRaDQpSsql0PXo0UMOHDgw3tPQJAE7d+5k8+bNDB48mPT09n1a1FFWVkZVVRV77LGHY+cwO39lZSXDhg2Ly/njRV1dHRs2bKB///7k5ubG9NwNDQ2sW7fO0XMbmVEhGvhoOhlffvnlNillz/avp5zIDxw4kOXLl8d7GpokYPny5VxyySXMmjWLUaNGOXaemTNn8tZbb7Fw4ULHzhGOqVOnIqXkqaeeisv544XP5+Of//wnEydOZK+9YtuwrrS0lIkTJ3LjjTcyceLEmJ5b0zkRQmwI9rp212s6LYWFgequmze3LwynlrS0NJqbmx09RyiklPz8888MHTo0LuePJ263m2uuuSbmAg9QUFAABLxFTuD3+7nnnnv45JNPHBlfkzpokdd0Wnr16oXL5aK0tNTR87jdbny+Dq3dY0JZWRm1tbWdUuQhIIarV6+mqqoqpufNysrC7XZTWVlpfnAU+Hw+Xn75ZX788UdHxtekDlrkNZ0Wt9tNr169UtqSX7t2LQBDhgwxOTI1+fnnn5kyZQofffRRTM8rhCA/P98xkTeuJ7c75XZcNYrRV4imU/Pwww/TrVsk3Uwjx+1209zcjJQy5kFSY8eO5c0336R79+4xPW+iMHToUHJzc/nyyy858cQTY3ru/Px8xzwIhmdIi7zGDH2FaDo1scjESEsLtDj3+/2t/x0rhBD07ds3pudMJFwuFwceeCArVqyI+bnz8vIct+RjfT1pkg/trtd0an788Ucef/xxR/fMDWsrHvvyTz75JAsWLIj5eROJESNGUFxcTEVFRUzPm5eX55gl39zcjNvtxuPxODK+JnXQIq/p1Pz444/861//YuvWrY6dw7C2Yr0vL6Xkueeei4sVm0gccMABAKxcuTKm53VyT7579+4sW7aM008/3ZHxNamDFnlNp8ZwZZeVlTl2jnhZ8uXl5dTV1cVkSyKRGTZsGA8++CCjR4+O6Xnz8vKorq6O6Tk1mvZokdd0agyRdzLCPl4iv379eprT03m3b196fvwxrkWL6Pnxx9y0bh01cUrpiwcej4cxY8bQpUuXmJ43Ly+P+vp6mpqalI+9bds2brrpJr777jvlY2tSCy3ymk5Nnz59gNiIvBMP+3D8tGEDP152Gc/7fGxrakIC25qauKe4mNErVnQqoS8uLuapp56ioaEhZufMy8sDcMSar6qqYv78+Y7XeNAkP1rkNZ2a9PR0unXr5uievBEcFes9+ZddLhp79MDbUuPcoMHvZ21DAzOLi2M6n3iyfv16Hn30UVatWhWzcxo1650IvtMpdBqraJHXdHpeffVVrr32WsfGj5clv6xPH/whoq8b/H4e7URW4L777gvAt99+G7NzGpa8EyKvU+g0VtHLQE2nx3gYO0W89uQrTBYVZu+nEgUFBRQVFcVU5A1LvqamRvnYuuKdxiraktd0epYtW8btt9/e2rpTNYa7PpaWvN/vJ8PrDXtM906WY73vvvvy3XffOfY7t8dJd71RNtfJFsma1ECLvKbTs379el577TXHOobFQ+TLy8vpungxnhCClulycWlLF77Owt57701VVZVjv3N7nAy823vvvfnwww85+OCDlY+tSS20yGs6Pb179wacy5WPh7u+pKSE3osWUeRykena9TbPdLkYnJnJ9KKimM0nETj11FNZsmQJXbt2jcn5cnJyAGdEXqOxihZ5TafHSKPbsmWLI+PHI/CupKSEtMZG5g8cyIyiInp6PLiAnh4PM4qKWDZiBDmdbD83IyMjpnvY6enppKenOyLyP/30EzNmzGDjxo3Kx9akFp3rLtdogmCIvFOWvOGuj6Ulv3nzZoQQDC4s5GaPh5sHDYrZuROZ559/nvLycq666qqYnC83N9cRkS8vL2fBggWcd955ysfWpBbaktd0egoKCsjNzaWurs6R8eOxJ+92u9lrr710A5N2rF+/nvnz58cs+C4nJ8cRkdcpdBqraEte0+kRQrBgwQLHer3HQ+QvuOACLrjggpidL1kYPnw4b7zxBps3b6YwBoGHubm5jqbQaZHXmKEteY0GHBN4iI/Ia4IzbNgwILCnHQucctcbWz9a5DVmaJHXaIB58+Zx/fXXOzJ2rAPv/H4/Z599Nm+++WZMzpdMDBkyBJfLxerVq2NyvpycHEcs+czMTPr27avz5DWmxE3khRBPCyG2CiFCtlESQowXQqwUQnwvhFgcy/lpOhebNm3i/fffd6S+fKwt+e3bt/PTTz/FtBlLspCZmcnBBx8csyh7p0R+3LhxvPnmm/Tv31/52JrUIp578s8ADwPPBXtTCFEAzAImSCk3CiF6xW5qms5Gnz598Pv9VFRU0KuX2kvNsLZiJfJGsx0j/z8RqPH5mFlczKzSUiqamuju8TCtsJDpRUUxT+V75JFHYnYup0Reo7FK3Cx5KeUSYHuYQ6YAc6WUG1uOd65NmKbT42RBnFhb8sZnSBSRr/H5GL1iBfcUF3e6lre5ubk0NjYq/+0/+ugj/vSnP8Wsep8meUnkPfk9gK5CiEVCiC+FEOeGOlAIcbEQYrkQYnl5eXkMp6hJFQzr3YmWs7Hekzc+g2qPRLTMLC5mbUMDDX7/Lq/Hq+Xt6tWrOeWUU/jyyy8dP1eXLl0A9U1qysrK+Oyzz2LevliTfCSyyLuBg4DfAMcDfxdC7BHsQCnlE1LKkVLKkT179ozlHDUpQu/evenfv78j+dOxLmtbUFDAiBEjKCgoiMn5zJhVWtpB4A3i0fK2W7dulJSUxCT4zihtW1tbq3Rcf8v36XIl8iNckwgkcp78JmCblLIWqBVCLAH2B2ITFqvpVOTl5fH66687MrbL5cLtdtPY2OjI+O2ZMGECEyZMiMm5rJBoLW+7d+9OQUEBa9ascfxchsirtuR1nrzGKom8DHwDOFwI4RZCZAOHAD/EeU4Jja/Gx7qb1vFxz49Z5FrExz0/Zt1N6/DVpO6eZ7Lg8Xg6bZ68WUvbWLe8FUIwZMiQmIi8U+56LfIaq8Qzhe4F4FNgmBBikxDiQiHEJUKISwCklD8A7wDfAJ8DT0opQ6bbdXZ8NT5WjF5B8T3FNG1rAglN25oovqeYFaNXaKG3wAMPPMCNN97oyNixFPnzzz+fe++9NybnssK0wsIOnfAM4tXydvDgwfzyyy+tbm+nMERetbs+Pz+f3XffXYu8xpS4ueullJMtHDMTmBmD6SQ9xTOLaVjbgL9h14eWv8FPw9oGimcWM+hm3aQkHNu2bWPlypWOjB1LkV+7di3Dhw+PybmsML2oiDnl5R2C7+LZ8vaQQw6hqakJr9dLVlaWY+dxak/+5JNP5uSTT1Y6piY1SWR3vSYCSmeVdhB4A3+Dn9JHYxvclIz07NmT8vJyR6y79PT0mOzJNzQ0UFdXR48ePRw/l1Vy3G6WjRiRUC1vx40bx3XXXeeowINz7nqNxiqJHHiniYCmivBWotn7mkCEvc/no7Kykq5duyodO1aWfEVFBRAILkskctxubh40KKFa3vr9fhoaGsjOznbsHE5Z8q+//jpvvPEGTz/9tKN9FzTJj7bkUwRP9/DBS2bvawKWPAR6dasm1iKfSJZ8onLGGWdw1113OXoOj8eD2+1WLvJlZWV8++23WuA1pmiRTxEKpxXiygz+c7oyXRReGvvgpmSjf//+jBgxwpGxPR5PTNz1WVlZHHfccbqmuQX69u3L+vXrHT2HEIIuXbo4kievc+Q1VtBXSYpQNL2IzMGZHYTelekic3AmRdNjH9yUbOyxxx488cQT7LFH0JpLtkhPT4+JJT906FDuuOMOdtttN8fPlezsvvvurFu3zpECSG1xQuSbm5t1ZL3GElrkUwR3jpsRy0ZQNKMIT08PuMDT00PRjCJGLBuBO0eHX8STWLnrnU4JSyUGDhxIfX29I6WM26IteU080U/+FMKd42bQzYN0qpwNpk6dyvDhw7nqqquUjuvxeGISYf1///d/fPTRR8ybN8/xcyU7g1qCANetW+doM5/s7Gzq6uqUjtm3b1/2228/pWNqUhMt8hpNG+rq6ti4caPycWOVQldRUdHa9U4TnqFDh3LJJZdQ6HAxni5duijvFnfWWWdx1llnKR1Tk5pokY8zvhofxTOLKZ1VSlNFE57uHgqnFVI0vUi72OOAkSuvGrfbHRN3/Y4dO+jWrZvj50kF8vLymDp1quPn6dKlCyUlJY6fRzX62ZQa6E2dOKJL0SYePXr0YNu2bcrHjZUlv3PnTuU5/qnMzp07Wbt2raPnyM7OVr4n/9RTT3HRRRcpHbMt+tmUOmiRjyNWStFqYkuPHj3YsWOH8gC2WEXX79ixI2FazCYD9957L5dffrmj5+jSpYvyPfktW7awYcMGpWO2RT+bUgct8nFEl6JNPPbee28mTJhAQ0OD0nFjFV1/8sknM3r0aMfPkyrstttubNmyRfnv3RYj8E7lwlFK6WghHP1sSh30xkocUVmKVu+fqWHcuHGMGzdO+bixKobjtFWaahj1BDZu3OhIfQT4tX69yhK6TqfQ6TLZqYO25OOIqlK08dw/S9Ue9snorvf5fNTV1Tle3CWVGDBgAADFxc65nw1hV7kv77Qlr8tkpw5a5OOIqlK08do/S8XgnK1bt3L44Yfz5ptvKh03Fu76VatWMW7cOD799FNHz5NKFLW0uXUibdLAEHmV+/K77747Bx10kLLx2qPLZKcOWuTjiKpStPHaP0vF4JyCggLq6+tbG72owuPxIKWkublZ6bhtqaysBCA/P9+xc6Qa2dnZ3HbbbRx99NGOncNw16sU+XPOOYdbb71V2Xjt0WWyUwct8nFEVSnaeO2fpWJwTnp6Orm5ucrT6NLT0wEc3Zc3Cq7o6PrImDBhgqO1/p2w5J1Gl8lOHfQvFWdUlKL1dPcE3OVh3neCVA3O6d69u3JL3u0O3GpNTU1kZWUpHdugqqoKCBR50VinpKSE1atXc+SRRzoyvhN78vfccw9r167l8ccf3+V1lQG4ukx2aqAt+RQgXvtnqRqc061bN7Zv3650TMOSd3JfvqqqCpfL1eoe1ljj7bffZvr06Y6l0RkiX19fr2zMnTt3dqjMmIoxMhr7aJFPAeK1f5aqwTnHHXcc48ePVzpmLET+oIMO4uKLL9bdySLECL4rLXVme8kJd32wFLpUjJHR2Ec/DVKAeO2fpWpwzm9/+1vOPvtspWMa7non9+RHjRoVk1rsqUb//v0B2LRpkyPjOyHywVLoUjFGRmMfvSefIsRj/8xYXBTPLKb00TZ7gJcmdxEeKSU1NTV06dJFmVVsdIbz+ZxzmZaXl5ORkaH35COkX79+gHMib8RgOC3yqRojo7FHcj6FNQlDKgbnzJs3j1tvvZU333yTvn37KhnTEHkn3fV//etfycvL46GHHrI9Vo3Px8ziYmaVllLR1ER3j4dphYVMLyoix51aj438/Hyys7MdE/m0tDTS09OV7snvs88+9OnTZ5fX4hWAq0lsUutu1WgUYHRx27FjhzKRj0UKXXV1datVaocan4/RK1awtqGBhpbKf9uamrinuJg55eUsGzEipYReCMGsWbM6iKZKunTpojS6/txzz+3wWuG0QorvKQ7qsk/mGJlYkorlwfWevEbTDqMfu8o0urYpdE5RVVVFbm6u7XFmFhfvIvAGDX4/axsamOlgCdh4sc8++9CjRw/Hxs/KylJqyQcjVWNkYkWqZidokddo2mGI/I4dO5SN6bS7XkpJdXW1kv34WaWlHQTeoMHv51GHotDjyerVq5k9e7Zjdf+NTnSquOGGG7j44ot3eU0XsLFHqmYn6F9do2lHW3e9KpwW+YaGBpqbm5VY8hUmczR7Pxn56quvuP/++znxxBNbF3kqycrKUirytbW1Qd3/qRgjEyusZCck4/eqRb6Tk4p7UHbJysri4osvZr/99lM2ptN58i6XixkzZiiZc3ePh21h5tndk3oBXEbsRWlpqSMir9qSd7oLXWckVbMTOudTPIYksogae1BtXVTGHlT5nPJO7eJr7wq1i9N78hkZGZx11llKxppWWMg9xcVBXfaZLheXFqZeAFfv3r2pr6/nww8/pFevXvTq1Uvp+NnZ2Ur7IWiRV0+qZifoPXkHSfRAjlTdg1JBZWUlZWVlysZzOk++traWNWvW4PV6bY81vaiIwZmZZLarEZDpcjE4M5PpRfEJ4Krx+bhp3Tp6fvwxrkWL6Pnxx9y0bh01Nr5Tv9/PAw88wPHHH8+qVau44oorKCws5IwzzuCHH35QNncnAu+0yKslVSt4apF3kEQXUV0hKzR///vfmT59urLxDEveKZFfuXIlkyZN4ueff7Y9Vo7bzbIRI5hRVERPjwcX0NPjYUZRUdzS54y0vnuKi9nW1ITk17S+0StWRCX0Ukouvvhirvjb3+APfyBt3jxYsID0t97irV69GH3kkaxcuVLJ/FWL/CGHHMJhhx2mbDxN6mYndE5fbIxI9EAOp/agEnmLwipdu3Zl7dq1ysZzOvCupqYGQFlzmhy3m5sHDeLmQYkRaGQlrS/Sub755ps89Z//0OOVV9iSl0dzy9j16elkTJpE3ZgxnHPRRXz7+ee2rWbVe/JTpkxRNpYmQKpW8EzOWScJiR7I4cQeVKrs83ft2rW1P7sKYiXyOTk5jowfb6yk9UUq8rNmzSL3oouoycvrMLZXSjz9+vH9PvvwySefMHbs2KjnDgFL3uv1Bm0so0kcUjE7QV9tDpLorVid2INK9C0KqxQUFOD1epW1H3U68M5Ip0pkkbezp+5EWt+yZcto+s1vQi4emlwumDiRZcuWRTx2e1S3m73yyiu54IILlIylSW20yDtIogdyOLEHlSr7/AUFBQDKrPlYWPIul4vMzExHxreL3T11s7Q9s/eDLTAaJk2ioSW1MST5+UoC3FQ3qWlubqa5uVnJWJrURou8gyR6IIcTFbISfYvCKgceeCDXXnutsj1upwPvjj76aP7xj38kbMS13VK50woLO0T7G5il9YVaYDSdcQaEsOJbqaxkzJgx4Y+xgCHyqix5pyrzaVKPxN8cTWKSIZBD9R5UquSaDhgwgAEDBigbz+Vy4XK5HBP5YcOGMWzYMEfGVoHdPfXpRUXMKS/vsFCwktYXaoHh93jA50P4/chgC4jGRvp8/jmH3HGHyaczR7W7HnQKncYa8VeZFCcVAznCkSqdsHw+H2vXrqVnz57KKqC53W7HRH716tW4XC6GDBniyPh2sbunbqT1zSwu5tE27W8vtdD+NtwCA7cb2dyMaGpCtnX5e724tmzhjSlTEtJdr9FYRbvrNUpJ9C0Kq1RVVXH22WfzwQcfKBvTSZG///77uUOBxekUdvfU4de0vq1jx9I8fjxbx47l5kGDTPP2zRYQwuWi6zvvwI4dAff9zp3s/e23fHnIIYzad1/TeVlBtbt+3LhxHHPMMUrGSlR8NT7W3bSOj3t+zCLXIj7u+THrbloX9yJiyUbcRF4I8bQQYqsQ4juT4w4WQjQLIX4bq7lpoidVOmEZ3dwqKyuVjel2ux0NvEvkyHo7e+p2MVtA9EhPZ9v//R8/Dh/OZzk5VIwbx3d//SsHKNz+UC3yZ555Juecc46SsRKRRK8WmkzE05J/BpgQ7gAhRBpwN/BuLCakUYOxRTF261jGN49n7NaxDLp5UNIIPAQEuUuXLspF3ilLvq6urnXfNxGJZ6lcKwsMIQTDhg1j1KhRjjWoAXUi7/P5HFswJgKpkoqbCMRN5KWUS4DtJoddBswBtjo/I41mV/Lz85WKvMfjcbR2fSKLfDxL5UaywHjrrbe48847lc9B9Z78VVddxdSpU5WMlYikSipuIpCwe/JCiH7AacBjFo69WAixXAixvLy83PnJaToFeXl5VFVVKRvP7/ezatUqXn75Zb77LuwuVcTU1tYmtLseot9TV3FeqwuMNWvWMG/ePOUpakb9AlXFlSC10+hSJRU3EUhk/+n9wDVSymaz6FYp5RPAEwAjR45M3StfE1P+9Kc/KSkuU1dXx/Tp03nvvffw+/28/PLLABx66KHcf//9jBo1yvY57rzzTnr37m17nFTFai3+Xr160dTUxM6dO+natauy8xvXkepOdKlKqqTiJgKJLPIjgRdbBL4HcKIQwielfD2us9J0Gg499FDbY3i9Xn7zm9+w6LPPyL/sMhqOP57GrCyyfT6+mzePIyZMYOFbbzF69Ghb57FbWz1e1Ph8zCwuZlabtLhpFtLinMLoI79161alIm9UI9Qib41UScVNBBLWXS+lHCSlHCilHAi8CkzTAq8Jh+qUm5KSEj777DNbc/r3v//NomXL6Pf669ScdBLerCwkUOt203jGGTQ/+CAXXX65LddrQ0MDS5YsYevW5ApdcaJ9rF169uwJ4Mh3mZWVpWxPXgiR0u76VEnFTQTimUL3AvApMEwIsUkIcaEQ4hIhxCXxmpMmeXEi5eb111/nsssus/Uwfeyxx+h75ZVUZGbS3M4y9UoJhYV8t/fethYTW7du5aqrrmL58uVRjxEP7Ja6dYLevXvTrVs3GhsblY+dlZWlbE/+2GOP5eSTT1Yyll2cyGdPlVTcRCBu35SUcnIEx/7BwaloUgArKTeRVh3Mzc3F7/dTX18fVeS63+/nm2++IfOee0w7nX399ddRu+wN6zDe0fWRut6daB9rl169evHee+85MrZKd/1JJ52kZBy7ONlaurNVC3WKhHXXazSR4ETKTW5uLgDV1dVRzUkIgdvtpt6smlt+fmuXumhIBJGPxvXuRPvYRCY7O1uZyNfW1irN/IgWnc+e+GiR16QETqTcGFXvon2YCiE4+uijEWaLhMpKjjzyyKjOAb+KvKqOedEQjetdRalbO4Tqbz/z4Ye59957lZ8vKytLmcj//e9/55JL4r+zqfPZEx8t8pqUwCylJpqUG7uWPMDll1+OfO010kIFkXm97PHjjwyy4ZY2RN4ouBIPrLje2xPPUrfhPA9377YbH69YofycKkU+UQLvdD574qNFPkHQzRiiw/jemmubQx4TbcrNnnvuycMPP2yrs9sJJ5zA1f3701xcDF7vrm96vaRXVPDO+edHPT7AwQcfzOOPP06hg6JoRjSu93iWug3neajs0oUVQ4cqP6fKPXmXy4U/VGe9GOLE4lqjFi3yCYBuxhAdbb83f33wB56dlJu8vDxGjx7d6raPlv+79VZm5+eTO39+a6czUVnJ4SUlrDnuOAb16WNr/K5du3LQQQcpKdwTLdG43uNZ6jac58GXlsamgw5SHmGfipZ84bTCDmluBjqfPTHQIp8A6OCV6Aj1vbXiBlxQt6qOzwZ9FrFnxOfzsWDBAn755Rfbcz379NO5JDOT055/nooDDsB38sksueACinr0sD32Tz/9xLvvvhvXh360rvd4lbo18zz4srPZtm2b0nOqFHlV2PUg6nz2xEeLfAKQLMEribalEO57A8AH/jp/1J4RKSUzZsxg4cKFSubrbhGubt264QohiNHwwQcfcOONN2JW/tlJInG9hwp4i2XxGzPPQ4bX65glr2IxdsIJJzB5suUs5KCo8CDqfPbER4t8ApAMwSuJuKUQ6fcSqWfE4/GQnp5OTU1NNNPrQFpaGs3NoWMHomHlypUsXLiQyspKfvrpJ6VjR4JV13uiVLkz8zxcs+eeDBw4UOk5s7Ky8Pv9SlrEHnnkkZx22mm2xlDlQUyF1tKpjBb5BCAZglcScUshmu8lUs9ITk5OQor8999/z5gxYzjwwAOZM2cOP/30E3vuuSfHHXccGzZsUHKOSLHiek+UKnfxCPpT2Ylux44dbNmyxdYYyeJB1NhDi3wCkAzBK4n4QAj3vYUjEg9ATk4OtbW1EZ8jGKoion/66ScOP/xw1pSUcNx//0vm22/DggVkv/ceS3bfnTFHH01pkJS1RCCaVDsnCOd5+HTECC676CJmz56t9JxGsSIV+/L33nsvF198sa0xksGDqLGP9qckAEXTiyifU97BUk6k4JVEfCCE+t7MiMQDoNqS9ylwR//tb39DZmZS8N//sqS5uVU06zwe0idNYvPo0dx45508+dBDts+lmkSqcheu/WxpaSnr1q1Tej6jjoEKkVcRXa/buXYOtCWfACRD8EoibimE+t7yx+Ur84zceOONTJ8+Xcl809LSbFvypaWlzJs3j71vuYXiNgJv0Ai4+vfnOa9XmQdCJfGucmeVHj16UFFRoXRMlSKvYusnGTyIGvtokU8QEj14JVEfCMG+t33n76ssrWfIkCEUKdqfVeGuX716NX6/n+8GDw7p9m52u2k64QQ2bdpk61xOEM8qd5HQvXt35SJv7MkniiUfKv2NNPA3+dlw64a4Z9Bo7KNFXmOJZMqHVekZ+frrr5k/f76SeamwvgyhMK2mX1DArLq6uPRkD4fVgLd4p9n16NHDkTx5UBN4p2LB2OE+EUBaYAFBMwmRQaOxjxZ5jSWSYUuhLao8I++88w7//Oc/lcxJxYP5wAMPpGfPnnjMrEEheKK6OqZpaVawkmqXCGl2e++9N/vuu6/SMVW6648//nimTZtme5y298mAvw/A5XEhfbt6CHRRruQmsZ7MmoQmUfs7+2p8FM8spnRWKU0VTXi6eyicVkjR9CLbi4/s7OzWBjB2UWHJZ2RkMG3aNG5+5RXcv/89vjBFddqmpcW6L3s4wgW8gbU0O6c/zxlnnMEZZ5yhdEyV0fUHH3yw7THaYyWDJtHufY052pLXJDVOF+np0qULPp9PSfUzVSl0119/Pb+pqcG3YQPCZF7t09Li7Qa3QqKk2alG5Z58eXl5ROWWrVSrTMQMGo19tMhrkhqni/SodLGqEnmPx8PrL7zAY2lp9F28GEwCsIy0tERwg1shEdLsVq1axfHHH8/y5cuVjalS5J999lkuuOACS8daXQgnYgaNxj5a5DUxRXX9e6eL9HTp0gVAicteZXtQt9vNH889l5+vvx63SaqckZaWKNXmzEiENLvs7GwqKiooLy9XNqbKineRXEtWF8KJmkGjsYcWeU3McMK17rSL8cgjj+S1116jZ8+etsYBWpvSqOwDnpmZyWW77UZmiOY0bdPSksUNnghpdt26dQMC5WNV4XK5SE9PV5Ynb7WwktWFcDwyaGLd9CrRmmzFAi3ympjhhGvdaRdjbm4uRUVFrR3k7GCIvMqWsC6Xi1uGD2dwVpZpWloiuMGtEI+68u3Jzc3F7XYrz5XPzs5WJvJWF4tWF8KxzqCJddOrRGyyFQu0yKcwibZqdcK1HqmLMdLvpLy8nOeee46SkpKI59ZhPg5Y8hUVFbz83HO80quXaQe4RHCDW8FqRzsnEULQrVs3pZY8BDwvsY7viGQhHMuiXLFuepWITbZigU6hS1GMVWvbi9pYtZbPKY9LbrsTrvVI6v5H852Ul5fz4IMPMnDgQPr16xfx/Npi9HtXaclv3ryZWbNmMWzYMG5u6foGgSC7mcXFDPrsMyqamuju8TA8O5vPqqrwBjl/pG5wY/xZpaWt408rLGR6UZESETZLs4sFxx9/PIWKtwaysrKU7MkfddRRDBgwwNKxhdMKKb6nOOgCO5577bFO2eusKYJa5FMUK6vWWF/QTjTEMFyMxTOLKX20TZ78pR3z5KP5TlQHS4FaS96wCo15wq9R9G2D7LY1NfF5dTUAGULsIvSRusFDjX9PcTFzystjZm07zV/+8hflY2ZlZdmy5Jubm3n33XeZO3cuVVVVLF68mAsuuIA999wz5N+oaIDlRC2KWKfsddYUQe2uT1GSrTWsHYvCqosxmu9EZQETw5JXKfLG4sNI9YPwUfQAh+Tl2XKDJ0uUvgpU/lYQWIxFu2Bcv349Bx54IL/5zW949dVX+fzzz7nvvvvYa6+9+OMf/xgyEM/uXrtTe9mxTtnrrCmCyb/c1gTFdNVa3sQi16KoVuTRrurj3VI3mpW8SktehIiAt0MwS/6RkpKQUfReKVlVV0f52LFRna/G5+P/iotNo/QTqcJetDz22GPMnj2bpUuXKvvtMjMzo9rnr6mp4dhjj6WmvIY3TnuDLu93wbXBRVq3NH7Y4weueOIKsrKyuP/++4P+vZ1qleE8YHXf1/FR7kd4ekT+HIn1NkKibls4jbbkUxRLq9IoVuR2VvXxrn8fzUo+0d31xrzainyFSWpVtFH0hpu+zmT+iRKlb5fs7GwaGhqUeHEMonXXP/fcc2xas4n/dv0vBW8XkFaThkDg3+5nz6/2ZG7mXI584EhHAmzDecAMorHsY52yl0xNtlSiRT5FCecab08k0aV2I1StutadyAyIZrsgIyODd955h0mTJkV9XgMnAu9OOOEEPvjgA/r06fPreZSNviuGm96MRInSt0vXrl0B2L59u7Ix7Yj8FX2uIK0srcO9J72SrIYs8sl3JC3M6l51pFHqsV70x9vIiBep+ak0IV3jobAaXRqLCFWnMgOi2S4QQtCjR4+QY27cuJE33niD6upqBg0axKmnnrrL/nj7sUCtyHs8HgoKCnZ5zWz0aM8erpiOQSL1hLdL24I4/fv3VzJmtCJfVlbGETuOwO+15gVSGWBrFjDb/ryRPANi3fQqUZtsOYm25FOUYKtWM6ys2GMRoepUPmu0K/nnnnuORYsW7fJadXU1U6ZMYdCgQVx++eVcf/31TJkyhX79+vHYY48FHccJkf/kk0+YNWvWLmN2Nwmg6xFh5LvR1GabBTd8rIrVxALDkleZKx9tCl337t3J8GZE9DeqAmwj8QpC6kapJyta5FOY9q5xTw/70aWxiFB1MjMgmmIfL774IkuWLGn9/6amJk4++WTmvTSPx0Y/xuKui1koFrIgfwFXFFzBlZdeySOPPNJhHCcC77744gtmz569y9h/6tePjBDnyhCCaRHk+7dtamNGtsuVMulzAH369GHy5Mm7bIXYJTMzk8bGxojjMqZMmUIllRGfT4XghtrLDkWqRqknK1rkOxEqUthi0cQi0fJZ09PT8Xq9rf8/Z84cPlv8GXP7zGXYimH4d/hBgqgUjN88nudynuPmv91MTU1N0PFUWvJer3eXoDsIlIUdEqLM7ZCsrIgs7VDpcu3JdLn4q6JCOE4RaZvdbt26cfXVV7PHHnsom4OxlROpNX/BBRfwYc6HNBJZy2MVgtvBAxZmrZrKUerJihb5GBPPUrMqoktjEaGaaPmsGRkZu/ST/9e//sUlBZeQuT0z6JZCz8ae/KbmN7z00ku7vOeEu76+vr5DDIDKsrBW9+ET3U0fbZvdxsZGak26/EVCtO1mu3btyh8X/JGt7q148e7yngwRZaFScNt6wA6rOozsvbM7XZR6sqJFPobEu0GCiujSWESoJlrLy4yMjF0s+TVr1nB8/fGhAxob4RRO4eeffw76tkqRb2hoICOj416tURZ269ixNI8fz9aWkreGwFu1aq2kw8Wypny0RFvA5/TTT+eee+5RNg87xZX2OXgfTi09lbqJddS4a/Djp85ThygQtgU3EuOjs0apJyv614ghiVBqVkV0qdMRqvEumtOe9iKfnZ1tGgSVR15rL3oDJ/bkvV5vyGj+UERSlra7xxM24K6nx5MUhW+stNkN9jkKCgrYuXOnsnlEa8kb5PTM4bQ3TmPhwoVMnz6d//73v+xeuLulss6hiCabpTNGqScrWuRjSGdtkBApkdSjb4+vxseG2zdQ8mAJ/rrAd+3KctHvL/0YcP2AqKyMhx9+mLS0tNb/nzhxIpU/VlJAQci/qaSSiRMnRnyuSPnnP/9JU4TFZ6xYtYbgTSss5J4QFe6SKV0u2ja7BQUFyqPrwX5xJeN69Pl8tgU3EYwPjXNod30MSbSAskQmmih4X42PFaNWUHx3cavAA/jr/RTfXcyXB38Z1ZZIRkbGLv3kL730UuanzadRBA+C8uLl20Hfsv/++0d8rkgRQpCenh7R31ixag0Sobc7RB40155o2+x27do1oSx5A+N6DFWvPhISsc+FRh1a5GNIogWUtSdeQYGqzls8s5j6n+uDV3uRUP9zPRtu3xDxuebPn89TTz3V+v8DBw7klBdOoZTSDkFQXrxUZFRw0QcXRTT3aPnXv/7FG2+8EdHfRGLVJkJv92iD5toyrbCww0LFIJxHQrW7XpUlr1LkTY0Pi4VwNIlJ3EReCPG0EGKrEOK7EO+fLYT4puWfT4QQzptFDpNoAWVtiVdQoMrzls4qRfrCBLU1BxYCkZ5r2bJlzJs3b5fXTjrzJEZ/OZpfRv1ClasKP36q06qpnFDJb9b/hr6797U8bzu89dZbfP755xH9TaRWrVkQX1vsWtzBUNH1LlqPxOGHH87UqVOVBUsaIm/Xkt9zzz155JFHGDJkiO05mRoXkphnAmnUEU9L/hlgQpj31wFHSCn3A24FnojFpJwkkRskOFVlLpbntbTd0UzE5/J4PEH3vfc8cE8u/exSJjZP5Ch5FCf7Tuast88iv0++5Tnbpb6+vkOevBnRWrVmqLC4gxHJ9kIoovVIjBo1inPPPVdpFzqwL/J5eXkccsgh5OXl2Z5T4bRChNvk88U4E0ijjriJvJRyCRCy84OU8hMppRHxsgxQUzw6jiRy6km89uVUntfOdke4c4US+UhRmTpnEKwYjhlO7bM71WfebHuhvKnJkrcgEo+EQWNjI5s2bVLShRDUWfLV1dV88MEHbN261faciqYXWb42nV70a9STLHvyFwJvx3sSKogmoCwWxCsoUOV5LVkkUZxLlcgbqEyla2hoiFjkndpnV2FxB8NKVzu73oJQfPPNN5x66ql8913QXcWIUSXymzdv5m9/+5uSeblz3NBs/XgdjJdcJLzICyGOJCDy14Q55mIhxHIhxPLy8vLYTS6FiFdQoMrzFk0vImtoVvCymwLTqz3UudLT0x2xwu3i9/txu92tBVYiIRqr1oxo09TMCLe9YGDXWxAKo8OfquA7j8eDy+Wy7RnwtCx8VATe+Wp8uLIikwKdCZQ8JLTICyH2A54ETpFSVoQ6Tkr5hJRypJRyZM+ePWM3wRQiXkGBKs/rznEz4vMRFF1ThCv71zFd2S6KrimiaEZRVOe6/PLLWbx4seV5hMJoSuIyESyruFwuli5dyoUXXqhkPLtEm6ZmRqjthfbY8RaEIj8/EF9RWRl5c5hgCCHIzMxMmBQ6I/BVNkW2iHV30yVWkoWE/aWEELsBc4HfSylXx/LcvhpfoBDLrDaFWKZZryCVjMSrypzq87pz3Ay+czCD7xzc4T1fjY+KNyviXknPicp3iYBThXOM7YWZxcXcsmFD2GOj9RaEQrXIQ/TtZttiWPJ2t5GMwNewWSlB6DK8i/lBmoQgnil0LwCfAsOEEJuEEBcKIS4RQlzScsiNQHdglhBipRBieSzmFe/68vEi1kGBRm78Z4M+o+77OhABixvh3Hmj/Ywff/wx//jHP2xbTapd/tu3b+eGG27gm2++UTputDhZOMfYXuhh0VugKpUvPT2dzMxMpSKv0pK3K/LhAl/DUbeqztZ5NbEjbmaplHKyyftTgakxmk4rnbnEY6zqUQerle2v9+PKdJE9PNvRTINoPuPatWv53//+xzXXXLNL5btIUS3yO3fu5J133uGII46wPVaNz8fM4mJmlZZS0dREd4+HaYWFTI+gfWxbi/vRNuNcGuE44bDiLYikNr8Vpk+fziCF9fmzsrJsi3xBQQFPP/00/fvbSzqKdm+9abvek08WEnpPPh7oEo9qCFfFLl45+dGiav/T2JNvWwffDoZQRBpd3x6V+e1OBPS1xYq3QHUq3ymnnMJ+++1ne+4G2dnZSire7bfffnTr1s3WONEG1Ma7OqfGOlrk26Hry9vHbMuj5JGSpFpIGaLc3BxBnlEQDEte1Z68IRR2Rd6p/HYnsJL+pzqVr7S0lNWr1YUFqXDX+/1+5s2bx08//WRrnHCBr6FwIhA3XiW1OwNa5NuR6PXlkwEzS91XEf7GTbSFlGHJqxJ5VagSeafy253CzFugOpXvgQce4Lrrrot6vu3JzMxUUlznlltusZ31EaoKp8gQiAz7feqtEMoo2HDLBj7b/TO8ZV7zQTQh0SLfjkSuL58smG15BM1jb0OiLaQyMjLIy8trdbdHiyHyqlLohBB069atQ9/6SHEqvz1eqE7ly8/PT7jAO5fLRVpamu3Au1DBqLtdsxuj14+OSSBuKKMAoKm8iS/2/UJb9DZIzXwwG8QrlSyVsGKJuzJdQW9qFQsp1SmQJ510EieddJKtOYH6PPkxY8bw3nvv2R6nu8fDtjBiEW1+e6SUeb38btUqllZWIgmsBQ/Pz+el4cPpk5FheRzVqXyGyEsplWy1ZGdn2xZ5UFeJMVwwaiwCcc0i/H3bfFEFPHfGVOhgaEu+HYlcXz5ZsLLl4VSjnkROgVS9J68KpxrWREKZ18vAZctY0iLwEOgYvKSykoHLllHmte6yVZ3KZ3hx6urUpI2pctenp6fT2NioYEbxxYpREGmcTiI/B2KNFvkgJGp9+WTBdMtjWqFjCyknIvdXrlzJjBkzsFsy2djTVxVdv2DBAq666irbguFkfrtVfrdqFd4QMQteKfndqlWWx1Jdm191QRwVKXQQiBVRUdY23ljZnos0TifZMnicRIu8RjlWWuo6tZByIgVy69atLFiwgJqaGltzU23Jr1u3jiVLltjK3QfnGtZEwlITATV7vz0qU/lGjhzJXXfd1VrH3i6ZmZk0NzfbdrU//vjjXHzxxUrmFE8Kp5l7iiKN09Gp0L+iTVONcowtj+KZxZQ+2mY/7FLn98OcSIE09tDtBt4Zf68yhS4tLc22yMOvonizwqIvkWCWdxDP9kCFhYUUKtyyaNuJzmMj3kFlgZ54UjS9KPCcKA9xb6ZBc20zi1yLLO+rq3oOpMK+fnLMUmOLeFyoKqrnRTNvT3dPYA8uBNFE7qsUeVVBdxBdm1k7qKiKFwpBeCGPZFmkep5er5evv/6agQMH0qtXr4j/vj2GyDc0NJCXlxf1OO+88w7Z2dmMGzfO9pziiTvHzchvRgai6Le1234QgB/8dYF7z9hXL59THnZrT8VzIFhlTqvnTyS0uz7FSdYAlGjn7UQKpGF5281zb25uVrYfD9ZEPlwN90jqu6usiheMw1v2vaN938l5VlZWMm3aND766KOI/zYYxm9mN5Zi9uzZzJ07V8WU4k5GnwxGrxvNgBsHtMbpuLJdiDTRYfVnZV9dxXMgVfb1tcinOMl6oYabd/1P9XzS65OglbGsxANESlZWFr1797Yt0Kot+by8PAYOHBjy/XCCN2rFCg7+8kvLYhiuKt6a+np+8+23tprBvDR8OBkhtjEyhOCl4cMtjeNE9T7D2q6uro74b4PR1l1vh1SJrjdoH6eTlp0Wsjue2b66iudAquzra5FPcaK9UONdZjLcvKVP4q/3B7XunUiBHD16NPPnz2fw4I7tayNBtSV/2WWX8fjjj4d8P5zg/Vxfz8/19ZbFMFxVPK+ULKmstGU598nIYP3o0YzLz291zQtgXH4+60ePtpwn70T1voyMDDweD1VVVRH/bTBUibyqPPlExc6+uornQKqUOE/8DQWNLaK5UGO1FxVuzz2SG6h9h8BYddOLFNWWvBnhBM8XZuvBEMO2QXiRVr1ru1iwGszXJyODxQceGNF52mM2z3BFf0IhhCA3NzchLXlVC49ExO6+ut3ngBPxPfFAW/IpjtmF6Mp0dbDWN9y+wXEXv9meu7tbZIsIJ91n33//PZdddhkbNmywNY5qS/6uu+7ivvvuC/m+nXK07f82mqp37S1nqzEAdnrBm83T1TJ+pOTm5ioTVFV78qlsyftqfGQPzw75fixKjKdKiXMt8ilO2C5TAvxefweRLZ5Z7PhelFmsQJe9u0TcHcuw/lVvNezYsYNPP/3Udp68apH//vvvWb9+fcj37ZSjbf+34arihcNYLFgNiLMbODetsBC3SYpiNPvyf//737nooosi/rtgGCJv15K/4YYbePjhh1VMKaEwDICqz4IvqmJVYtyJ+J54oEU+xQnZZcrd8iBs11jN3+Dv8Fp72rrSoxVUs1iB2lW1QecdDk93T1RR+WafQVVee6yj68MJs1sIQs0kWCnbUFXxzDAWC1YD4uwGzk0vKgqbBdEMUe3LH3DAAbZjMgzaptDZoVu3brb7yScihgEgvcF/x9xRuTFJX0uVEuda5FOcUBeq8HRMTbGKsQVgJz3PbM/dt93XYd6ubBehlMlwn5lF5W+4fVeXeySfIdlS6MKVqx2alcXQrCzLpWxDVcUbl59vqe691YA4u4FzOW632Ro1qm2MH374gUWLFkX8d8FQtSf/ySefMHv2bBVTihvBFtjF/xfakwhQ90NdzAQ2FUqca5HvBAS7UMPdROFouxdlJz3PShMbd46boulFFF5aiKebJxBRDx2Evq37zCwqv3hm8S7CbfYZvrnuG55//nk2bdrE888/T1lZWdh5hyPWIh+uXO3nI0bwxUEHRVTKNlip2Pn77mup7r3VdrZmx5U3NZnu0fdQ3GoW4PXXX+e2226L+O+CocqS/+ijj3j66ad3eS3eWTGREGqBbRS+CUWyRLUnClrkOymmkaFpmO5F2ckjtRLUEuwhQHOL+zwNEB3dZ6YPgGZ2WXyYfYYND23g8ccfp7y8nHvuuYeioiKuuuqq1mYzkeDz+ZSK/ODBg+nfv3/YY8LVcFdR391q3XurPd6tCLDZHr0TXfWM6Hq73hygtRSxiuh6b5vufMlW+CpcH/lwxDuqPZkWUqBT6JSRbDWOC6cVUnxPcLeYK9NFvyv64Up3ha09byePtGh6EeVzyjvc5K5MFxkDM/A3+vmk9ydBV/XSJ3FluiiaUdQhPcYs7QUCbSuNvzP7DAUUsLjbYvw7/Iiugq8Hfs01911DY2NjxEFPzc3NSurMGzz22GPKxrKDlbr3Vnu8hzuuLeFS9KYXFTGnvLzD3r6drnp5eXk0NzdTX19PdnboqG+rqOhEl56eTlNTU2ufezOv1Le/+Za6VXUJ83wy6yMfjHhHtSdjqVttySsg1itoFStJs8jRAdcPMN2LsuJyD0WoWIF+V/RDCEHJ/SVh3XahPAVWOlq1FXazzyAQ+LcHCu/IHZIDfjiAF7u9yFOPPMXatWtNz9UWn8+nVOSdxk4qW3ustrONJMAv1B69E131cnJyAGxnWBioEPmMjAz8fn+rV8nMK1W5pDKhLPxI3e6JENWejBVEtcgrIJY/vKoFhYrIUbt5pMFiBVzpLhrWWXPhBXtIFE0vChmcZ9BW2MOmGAbB3+CnoLaAKWJKh/1QM1SKfHV1NZMnT+b9999XMl57VNeAtyq87Y8zI9QevspWs6Be5DMzM23vyaenpwO0lraNVDTjLUyRut0TIao9GUvdapFXQCx/eJULCruRo07kkUbiwgv2kDCC9cyi8A1CfQYZJvVAeiWniFPC5qgHQ6XI19XV8fPPPysTnfY4UQPeqvC2Pc6JILpoOOSQQ3j++efp16+fkvFUiPxZZ53FkiVLWgP5otmrjqcwRbLA9vT0JERUezKWutUir4BY/vCJtJJ0Io/U6ncVzlMw4PoBZO+ZbWnxEewz1HpqTc+f488hNzfX0lwNVIq8IRBOtZp1ogZ8NEzt0ydkm1kBXNinT0zmkZ+fz1577UWGxRr6Zqhy12dnZ7fWcYjUK2UQL2EKtcBuT7z34dtiZ4syXmiRV0Asf/iEXUnKNv/YwMp3ZeYpCLff3/3k7nw26LNdYhmAXTwaJQ+XUEll2DlUUskZZ5wR0WdzQuQNK041VlPeOgt1dXXMnTuXdevWKRlPhcivXr2a+++/n+3btwPWRbM98RKmtvepu0fw+yIR9uHbkoylbpWKvBAiSwixm8oxk4FY/vCJtJJ0IuDQzBpxZbsseQrab0Uc8sshVLxZQcn9JaZznTJlCh/mfEgjwdt4evHyeZ/POfrooyP6bJGIfHFxMTfccAP77bcfQ4YMYcKECcyZMwdfy16405a8mRu8m9vNtWvX0mXJEsSiRYhFi8hesoRr16613Vu+LU+WlYVcN0rgKRt1CyKhuLiYa6+9lmeffZYdO3bYHk+FyG/atInZs2dTUVEBhF7c5o/LR2QE94fEW5iM+/Sw8sM4rPqwXfrJJ2J1uWQsdWtJ5IUQRwghPhdC1Akh1gkhbhJCpAc59HRAzVI3iYjlD59IK0knAg7DfZfZe2czZsuYqPbmIplrTk4OU9+fyhb3Frx4dznei5dt6du4ZOElEXeUsyry77zzDgcMO4CS20u488c7+dfafzHt/Wn877f/4+RjTqa2tpbMzEwOPvhgx8qahss1N/q+311cTF0bl36938/dxcUc/OWXyoQ+3h6FsrIyfv/737PvvvuyevVqbr75Zvr168fUqVNbLehocCLwDoLH2ew7f1+yhmRZej7FMwc8GarLJWOpW9OnlBBiT+BdYD9gFZAO3AQsE0LEZkMswYnlD59IK0kn4gOc+i4jnev+o/dnwtoJbDtmGzXuGvz4qXHXUP2bak7eeDID9hwQ8RysiPzatWuZctoUHpYP84eMP9ClqQsCQZ4/j997fs9Zi8/izxf+mWHDhvHoo4+yxx57RDwPK4RLectNS2OnzxfUwpbAz/X1UQXmBcNqEZ22qEr927JlC2PHjuXV+fM54P77SZs3DxYsQM6dy7+Bw449NmqrXlWePLBLQZxgWL2nkq2YTrxIhsVIW6zM6kagFjhMSvmDCER5TAP+D1gqhDhSSrnJyUkmA7HqYW7csMUzi0MWqrFSmEdF8R6n4gOc+C6jmWvP3Xpy9vtnq5tDUxMeE9F6+OGHOa3xNAo9hR0adLiaXOyWthvipUDhk6IoirpYxUhlm1lczKOlpVQ0NdHd4+HSwkIeKSkh3OPeaAJjtY98OKwW0TEwUv/aZgYYqX9zyssjypO/9tprKdm+ncLXX+dbIWhuGa8hM5P0s8/mh7Fj+fsdd/DwzJkRfy4VlryxVWMm8mDtnnKymI7Z8ybZioklE1b8jYcAs6SUPwDIAI8ARwPdgcWdcR8+noRbSVpZjatasSdSfIAZZnNxZbpCfu7FixczadIktm7damsOViz5OXPm8Fv3b0N24EprTuNkTuauu+7i1FNPteUyNiNUytt2CxaxHTd6W0v81g0b8AYR+AwhglavU5H6V+PzMWPVKv59yil4585lnZQdxmsUAldREU9WV0dlkRsib6dMbjB3vR2cKqZj9rzxlnm1B8FBrIh8X+CX9i9KKT8BjgW6AouEEAPVTk0TDVb2nlXtpSdSfIAZfab2IWQuFuD3+kM+UHbu3MmaNWvwm5RaNcOKJV9VVUVmY/hgunzyqaioYNOmTUpr4VvFSm56tPnrwYrwBJPBPLebD/bfv4NVbjf1zzj/A1u3Qn4+hGkz7He78R5/PL/80uHxaEpWVhZ+v58mG4uhPfbYg88//5wjjjgi6jHa7sGblYNuj9XnhdnzZtXvViVdFblkworIbwGCPq2llF8CxwB5wEJgd3VT00SDlb1nVXvpiRQfYJtmQj5QjLKhdgW1sbHRVOQHDhxIrTt8nn4lleTl5QHOpdC1p611vc1EmNIgqiYwENoSb091c3NQwbYbqGec37JtnJ8f1XVhuNrtuOxdLldEwZ/tg+o+6vERn+3+2a8WdBRYeV6YegiWViZM7Y9UxMoV8jVwXKg3pZQrCFj0uQQC8jRxxMres6q99GSKNC17ssw0hz/UA8VIW7Mr8j6fz1TkL7jgAub45iDTg0+2ydXEuxnvsvfee+NyuUzHU0F76zocAhialRVVExgIb4m3JZRVHk2gXjTnN3BVVzN48GDLxxuo6ClfV1fHHXfcweeff256bDCXua/CR1N5U9Rtpw2aypvCRuGbPk9M7stErCKXTFgR+fnA4UKI/UIdIKX8ioDQ71Q0L02UWNknV7mXniyRplYfFMGOMyx5u4VsGhsbW/dRQ3H++eezcthKNjRtwO/e9eHb5Gpik38T+962L83NzWRmZrZWO3MSq9Z1tsvFNUVFfHHQQVHXiI9kLz/YsXbbzEYUS+D1Mm7nzqgWWioseSklc+fOZfXq1bu8HiwN7tvffEv9mnrbgh6KcHvops8Tk0s4kWJ7khErIv8csBcQNoK+RehHAEcpmFenwImcVCv75Mm0l64Kqw+KYMf17t2bUaNG2bKapZSWLPnc3FzeWvgWsw+dzfO+59nJTvz42cEOXna9TNWdVfzpr39i9913Z/z48VHPJxLMrNueHg9y/Hhqx43jzsGDoxZ4iGwvP9ixVrvd2T6/10uXqipePfNMy/NtiwpL3iixa6WnfOWSypDBnOEwK6bTFn+Dn/o19R22vMyeN/mH58fseZRsveBVYEXkB0spf5JSmobxSik3Avvan1bqE+pm3HDLBj7K/YiPenwU1cVnZZ88pfbSLWKlrneoB8pRRx3FrFmzbO1/GwFWZiIvpeSHH35gwmkTKLiigPlT5zP/qvmUzSrj/7b9H3/5218AOPXUU7nllluink8kmFm3Zi78SAhnibcllFVut81s2PNLCX4/rqoqji4vZ+NJJ9E9yt7yxrVkx5J3u924XK5dRD5UkFs0eHp6whbTCYb0SkpmlezymtnzZvhLw2PyPOqsdQCsiPyXQojpwsQvKIQYJIRYCDygZmqpjdnN6KvwRXXxWdknT6a9dFUUXloYNl1JZAhHFziGyIdz13/yyScMHz6co48+munTp3P//ffz5JNP8umnn3LssceSn5/vyNzMMLNuXaCswp2VfvJmVrmdNrPhPAG96+sZPmMGtccdxwfnnEM3G4s+w11vtyBO+3z7SLo4hqPtgrfD88IE37ZdrwWz501Gn4yYPI+SsRe8Cqx8e58DdwOnCiHOk1KuaX+AEOLPwJ2AB7he7RRTEys3Y9uLL5LCMFYKX8SqeE+iYBahm3dIHvvO3zfoA2X27Nm8+uqrvP7661Gf38hlDiXyy5cv55hjjqH3wIGc+vrrLO3Wje3NzWT7fKycO5fDjj2W5UuX0r9/fwBmzJhBQ0MDDz74YNRzCkWNz8fM4mJmtRTByXK5EISPj5pZXKyk+E37IjzbWs4PgbK5PVoK8kwvKrK1LWD1/G2LAA36/HMeJuAet9szQJXI5+Xl7RKXoSJILVS3RuN5sUgsinhMs+dNLJ5HVrKKUvF5aHqXSCmPEEJcCdwGfC2EuFZK+SAErHfgaeAIYDnwBynlKisnFkI8DZwEbJVS7hPkfUHAK3AiUNcy9gprHyvxsXozpvLFF0tKZ5WG3ZOs+6EupMWwY8cOtmzZYuv8Zu76GTNmkN+nDxlPPsk7Ph8NLcF+tW43GWedxdZRo7j5nnv4V4uo79ixI+La+VYIVjGuziTgTmWFO/jVElc1nqrz1/fpw+knnEBOTo7tc6gIvAP43//+t8v/e7p7IkqHExkCV44LWSfx17f8zi7ofnL3oMcns0s7YTt4Ooylp4SU8j4CQXXfAfcJIRYJIa4BvgUOJWC9j7Yq8C08A0wI8/4JwNCWfy4GHo1g7IQnkojRVL34YomdG9xKERszwlnya9asYeHChQy/+WY2+Hwdgty8gKt/f55taGi1/BoaGhzpQGc1kr49Zvv2qurJx5OsrCzy8vKULK5U7MkHwzTIbVz+Li7x/lf2J6NXxi5uGn+dn5L7S4JuFVpyaTuf8NEBKwF1yVShUyWWr1Yp5U8EBP0xYBxwB7AeOFBKeaeUMqKngpRyCRAumO8U4LmWMrrLgAIhRN9IzpHIWAkEM0jViy+W2LnBVfSBN0Q+2GJhzZrADtiXRUUhxbXZ7abphBMoa2mt6pTIR5onbhBu3z5YFTujnvzoFSuSRuhLSkp46KGH2LTJfqsOVZb8Y489xr///e/W/zcLctt3/r67pLu60l00rLO+T106K/EK01gNqOuMWUUQeT/5C4CzgSYCTWsGAxPNgvKipB/Q9grb1PJaShDqZmxPKl98scTODd7U1GSa326GIfJG2lNbslsitKvM6pjn57ceW19f74jIR1Nz3iz/XEU9+USgoqKCZ599lo0bN9oeyyyF7uuvv+bKK6/kt7/9LRdddBEffPBB0LLKX3zxBZ999lnr/0caVBtp9UsrXsVYGyVWA+o6Y1YRWO8n308I8TbwBIE69iMJpMotIxBw94kQQnXPy2ALh6BPQSHExUKI5UKI5eXl5Yqn4Qy73Iw9gt8Udi++zpgTCsE/t7/RT8bAjKhu8KFDh3LYYYfZmlM4d/0hhxxCjx498JgEYbnr6ujduzcQSOs76KCDbM0pGJHWnLeSf263nnw8aW5ubs3KMBZYdXV1tsd1u92kpaV1EPmGhgYmT57MAQccwGOPPcaqVat49dVXOfbYYxk9ejSbN2/e5fhg3ewiKVAV6TaWFQEvnBZbo8TqQqUzZhWBtX7y5xHYez8auBUYJaX8Vkq5QUp5JHAFAcFfKYS4WqFVvwlo++ToDwR9Gkgpn5BSjpRSjuzZs6ei0ztP681YPpbDqg9jwI0DlF18nTUnNNTnLrm/BCEE/a7o1+E73v+D/SmeWRxyMXTWWWdxww032JqXkcsczJLPyMjgz3/+M42vvIK7JeAuyABMbGPpX3XVVUycONHWnIJhVjFuXH5+xPnnduvJx5rKykruvPNOdt99d9xuN126dGHSpEn8+OOPgBqRh4A1316gL7roIl588UVuufYWvrzsS/5V/i9eq3yND3I+4ICVBzDx2Im7dJ3LzMy01Go2FJFuYxVOKwxbGMfT0xNziziShUqyVOhUiZVP9m8CAXfntVS12wUp5YMtVv4zwEzgNMCe2RNgHvBnIcSLBNrdVkopN5v8TdKiOoXEigtLZcR+ovSDDvu51zXgSncxduvYXea9YvSKXf7GWAyVzylXtsI3S6G7/vrr+fq883ht40ZEv37Itsd5vfRoauLZE04AaLUsndglm15UxJzy8g7udcNin7/vvhGnrnX3eMIWzIm2Y50TlJWVceSRR7L+x/X8beDfODT7UDx1HqpermLOS3OoLqqmtjZ8AyGrtLfCf/zxR2bPns31V13P8fOOZ9vaba3XZFpNGpM9kzn0+0OZ+5+5TDp/UtAxIqVwWiHF9xQHtYRdmS76XNiHdTeta72v3d3cpOWm4ZM+2nfxcfdwM/KbkTEXTLOMgs4e02TFXX8ncFAwgTeQUv5MQNivIRCFb4oQ4gXgU2CYEGKTEOJCIcQlQohLWg55i8DWwBrgX8A0K+NqAqjqNGeFRPIaRPq5rSyG/va3v/HnP//Z1rwMayuUyLvdbl59/nmey8lhwKefIiorwe8nva6Oczwe1k2Y0CquDQ0NHHLIIfz3v/+1Nadg2K0YFwy79eRjybnnnsvWDVt5e+DbHFl2JOl16QgE+TKfKa4p/K34b6z5tkOpkKjIzMzcxV3/n//8h7S0NH7H74Jek6JJ0E/0Y83tv56/W7du5ObmRj2HcPvUGQMzqHijokNTG3+NH0++B3cPd6tHbMCNAxi9bjQZfTp6qpymswbUWcVKnryl4jYyYF7MFEK8afH4yRbG+5OVsTQdiWVOaKy9BuGI9HNbWRTsPH1naye6aAnnrjdwuVz8/swz+b3JWA0NDfj9ftsR/6FQnadu5h2ItmOdar777jvef/99nj/6eVwfuzpcFx6/h0IKqXq7KpBbZJP27vqysjJ69uxJ1XNVIa/JdJnO/uv3b/3/q6++2tYcjH3q4pnFlD7axgt3aSH+xkAqXbD7GqBoRpGS+9quF7BoehHlc8o7PIMiiWlKFE+kEyivpiGl/FH1mJrIiWVOaCy9BmZE+rmtLAqsdI8zI1x0faQYwuBEdL0TOOEdcIJ3330XgAFfDQh5PWeQwcBvBio5X3tLvnv37lRUVJhek12auyg5v0GofeqyJ8scv69VeAHtBtQlkifSCdSXzNIkBLF0YSVSJalIP7eVRYHX67Ut8mbu+kgwhCHRRb5tAZy8jz5iVmkplxYWUnnYYRHVk48VxuKpeUeI4McWcv3Ru8fb0t6Snzx5Mk1NTTRlhb9fZO6vAZjvv/8+l19+edD0OiuEy8Axva+3NdnO3lFVT95OQF2q17TXIp+ixDInNJEqSUX6ua0sCrxer20LXKX1bYxlpyue04QrgDNqxQquXbu2Q/W7Mq83rlXxhg8fDuwqosGocdUoOV/7oLn999+fU045hRfqX8DvDi7ajaKR3S7brfX/y8rK+OSTT6IKvjOzYN3dTATShW3rNxG8gIkwByfRIp+ixDIn1GmvQST5/pF+biuLgiOOOIKDDz7Y1mcw3PUqRL6goIBJkya1NqtJRMIVwPmxro6Z7cT/7o0bGbhsWVyr4p100kn07duX97u8j8gMnrngxcvXA79Wcr5gkfHPP/88W8ZvYYNvA152TY1rFI10GdKFQdcO2mUMiK5yXjgLtu7HOrL3zA55Xwu3aD22/d9GYv0mghcwEebgJFrkUxiVOaHhhNZJr0E0+2WRfG4ri4LLLruM3/72t1F/Bgg8hI3+33YpLCzkr3/9K4Pi1MDFCuEK4EgCTW3a4pUSr5Qxr4rXdksh4+OPqZk9m5nHl/NLxmb8nvY9BLxsdW+leIyauQQT+dzcXP734f8Y8L8BfL/v99S4a/DjZyc7eUG+wJSdU/j77X9vLW9sp5td2E6YzVD1aRWZg4Lf11LKjj9iC5FYv4ngBUyEOTiJFnmNKWZCCzjmNYjFfpnZoiBcH3qrqHD5GzQ1NeH1epXMyylUFrhxqipesC2FapcLce4ULnnYz9NpL7CDHa0i+9OBP7H8/OXU+p3JkzcQQnDUb45i0M2DOFuczYueF8nMzORczuXRykfZctcWxhw4hp9++slWoxtTC9UP3U/pHvS+DiXw4cYOZihkDw/tLYhV+luqp+BpkdeYYkVonaokZbpfNqvU8dK9Y8eO5bHHHrM1hkqRf/fddxk7diylCVwOVnWBGyeq4oXaUmgSAtdu/RHzJ7P1sa2UPl/K2K1juXzF5eT1zlNWhChcIZvi4mLOn3Q+j7sf52zX2WQ2ZCIQZDdmc27Gufyj/B9MPnUyeXl5DBw4MKo5WbFQy54qC3pfhyrFHWrsUIZC1WdVSCnjWk8+1Wvaa5HXmBLPwBQrEb5Opr40NzfT2NhoOyddZde4ZIiuD1cAJxqcqIpnVlP/3YwM/vjHP3LOOedglMu+9dZbmT17tpLzZ2Zm0tjYGDQy/oknnuC0xtPo6++L9Lbz2Hihv6s/+/+4P5WVlbz66qvsvvvuEZ/fSo35UPdfpNZvKEPB+Gy5o3IteQGd6MeR6jXttchrTIlnYIory/wSddKVb1haKqLrVYlyMkTXTy8qYnBmZgehdwsRcbtxp6rixbumfriguXfeeYffen7bUeBbcDW5OIVTePvtt6M+f9H0IkgLf0woaz9S6zecoSC9krof6ky9gE7ms6dyTXst8hpT4hqYEuW2cygPQ6SWgCpBbWhoUOauT4ZiOKEK4Py1f3+GZWV1EP8MIcgQosPrqqvitQ20M7u0gnkPPvzwQ66/PlAEVErJ8uXLefXVV3nvvfci3hcPJ/INDQ1kN2WH/fs88ti+fTtTp07dpd2sVdw5boqmF7VGyrcn3H50pNavCkMh1fPZnSL5lykaxzFrYuFkYIq/ProiH9DxwRFNMxpVrvGGhgZllnd9fT3p6elKIvWdJFR53OsHDGBmcTGPlpZS0dREd4+HSwsLubSwkEdLSzu8Pr2oSEnRHCPQLtg+fHtCeQ/WrVvHu+++y6GHHsp1113Ht99+2/pe9+7dueKKK7juuuss/TbhRH748OFUfV9FvswP+feVVDJ06FBee+01tmzZYnq+YAy4fgAVb1ZEVRI2kqZaKprIWNk2jFX57GQisZ8SmoQgnoEp7u7RP9zbPziisQSys7OZNGlSVHuebVHprh85ciTnn3++krHigSH+W8eOpXn8+Nbqd30yMoK+rqoqXqhAu/aE8x5kZWWxc+dOJk6ciNfl4qRXX6Vg0SLEggVUP/ccf1+7lvMuucRS5kM4kf/jH//I6/J1mt3Bw9ibXE285X6LKVOmhBzDCrHaj1YRwZ7q+exOoUVeY0o8A1O67G1SpzvEBm+wB0c0AYTdunXjr3/9a2s1tGhRKfJjxozhoosuMj2urWs6HhXkEo1wgXYGZjX1XS4X69evZ79DDiHtscf4oGdPdkqJFILG7Gzc55zD7EMPZf6CBabzCSfyRx55JP4z/Wz0bcSXtuvv1SSa2OTfxMiZI+nTp0/IMazi9H60r8aHv9GPvym4J9CqoWB329CJoL1kQLvrNZZQ3e/eKrXfm+Qku8DlcVlyNUZjCfh8Ppqbm0lPT0cIwcaNG/n000+RUjJy5EiGDBli6XOoFPnKykqEEOTl5YU8Jphr2qggN6e83LHGMDU+HzOLi5nVxuU+TaHL3Q5mgXQuYOvYsWGP+fLLL2lubmbwddfxVmNjh0WDLy0NCguZ8eWXnHT00WHHCifyQgie+u9T3NT/Jj59+FNOaD6BfPKppJKFOQs5+P8O5vyLz2+NzI+mGE4saLtF1iG3Pg36XdGPAdcPsLSgsLNtGM1WXaqgLXlNTIh2Fe3bbrLK9mPZwxCNJfDJJ58wduxYlixZwmmnncagQYOYNGkSkydPZujQoRx//PGsXbs2/BxRK/I33XQT06ZNC3tMuLKyTlWQK/N6GbRsGbds2NChZG2sStOGwywNz0qa3qZNm3C5XCzMzw/tFcjIYPVee5mOZVaS1u12c/u9t/PPin/S9FITax5fQ9bbWdy7/V5+f3GgIbHL5eKAAw6gW7dupueLB6G2yCCwOHeluyyLq51tw84ctJeaSxeNZWLRR9lb5uWLfb/At+3Xh3zTtiY23r3RdBVtGrDTw2PZwxCNJVBXV0dTUxPnnHMO9dvreWLMEwz5bgiyUtKU1cTcJXM56tCjWPTZorBlZuvr65XmyZsF8ZnlgD9aWqqsXzwELPj9li9nWxAh90rJmvp6ZhYXKz1npEwrLOSe4uKg34vVNL1BgwbhcrnYaeL2b+5i3g7WuB6MDoWhyM3N5ayzzgr5/pNPPml6rnihMljO2DYsnllM6aNtnleXmj+vOnPQnrbkExin95BU5p2Gmqu3zMvy/ZbvIvAG0iupX1MfdhWtsuRkNJZAXV0dmzdvprKskjl95jB0+VDkTgkSPHUefid/xy0Vt3DD1TeEPK+UUnl0vdmCIZIccBV79zOLiykPc06vlI6Upo2EULn7kaTpHX300fh8PnKaw9d1zWxpSBT2GBvNZZKFSLbIrDzvoo0f6MxBe1rkExQnCz8YqHJhhZvrF/t+QVN56BtIemXYinkqI/ujCSDcuXMnFRUV3DjsRkSp6GgNeKG/6E/m65ls3bo16HmNOvOqRN7KgsGqazpcS9hIXOyzLAi408VlzAiVux8u0K49Q4cOpVu3bvjmzCFk1QOvlwu6dzcdS5XIX3fldfzn2P+EFMd4BpxZ3SJz+nmX6k1owqFFPkGJxR6SqnK14eYazIJvT7hVtOrI/kgtgeLiYvx+PwduPDDkd5XWnMZJ8iR+/PHHoO+rrlBnZX8/XFnZtq5pVXv3VgRcVWlaK56HUMcAttL0Ghsb6dOnD565c2lcv5609osgr5e+wN0HHmg6lgqR99X4OPiZg+m9sHdQcfSWeR331oUbw6onzunnXao3oQmHFvkEJRb14lW5sMK2rLSA2So6niUn9913XwBc1eFvlXzySU9PD/peXV0dELnIb9y4kXvvvZcbbriBWbNmsW3bNgD+8Ic/MGHChLB/a9U1bWXv3gpWBFxFaVorngdV3olgZGRkkJWVxQN33cXUr74i7ZVXYMcO8PtJr6vj9+nprD76aEuLBqMCotmefDiKZxaTW52Lu3nX8xniuOp3qxz31rVfLLRdDGy4dUMgda5d+dz2njinn3ep3oQmHDrwLkGJxR6SiipUKuaSyKvoU089ld133526jXV08YUOpqoW1Yw5YEzQ9yItQ9vQ0MCll17Kc889h9/vRwiBlJKrrrqKq6++mltvvdW0oprhmg5WWa5tOpuq+u1T+/Th7uLikKViu7vdSkrTWvU8hDvmN99+y6q6uqhS/IzfMD8/nyceeIBHmprYsWMHXbp0oYuFYLu2GItCO5Z86azSDgJv4G/wU7m0MmRp6EgCzqxY2oNuHhQ0VY1mEG6BTJPgDwTLtg+Wc/p5ZydoL9lJ3U+W5EQiwGYR8qHe7zO1DyX3l9guV2s213C4e7gTehVdVVXF1KlTefW6VznHfQ5pvo4dPbx42TZ2W0gRN3KYs7PD1yKHQJDe7373O+a99x6jZ81i9V57scPvp6sQ9P/yS+64/nq2bNnCvffeGzZPHkKXlW1Ld4+HbWGEXKWLPe+jj2znzVvxPMiW/w51zJLKytb/j7R2gGF9NzQ04Pf7+eyzz9i0aRMFBQUceeSREfUnEEKQkZFhS+RNxc+k8J4Kb13bxULIbnO+QDvZohlFQRcVqgyOcMSr1ke80e76BMXqHpKZGy3cnlzFGxVkDMyw7cIKN1eRIfD09AR939PTw8HfHpzQq+hbbrmFb775hqbTm9jo20ij2DVq2ouXqi5VTH59csgxwrnrfT4fb7zxBueddx6nn346Z511FvPee4/ec+eycq+92O73I4EdUvLzyJEUvPACT/3nPzz++ONKPp/VvXszniwrC6snXojIbR5qT92K5yHSAL9I4g8yMzPZbbfd+Oqrrxg2bBiHH344kydP5oQTTqB///7cddddQVvHhhvPjrveVPzMWv5JLO2vW7W0o3W7d+Y9c6fRIp+gWN1DMnOjhd2TW9dAj1N7BILaengCDwQReK+xrJHimcWWAnPCzTVrSBYjvxnZIXBuwI0DOOSXQ8joo6Yzm1PU1NSQk5PDc688B4/Awt4L2cEO/PipTqumckIlJ208iezuoa10w5JvL/Jr165l33335dRTT+Xtt99m9erVzJ07FyZNYpvHE9TdXF9QAJMmRdV1LBh20sraCnE4b0B7zEQ13J662QOru8cTlffBavxBRkYGJ598MjNnziS7e3dOe+MNurbUrq989lmu/eknLrniCsvnzczMtGXJm4lj/uH5Id8HAisvC8F4VqPTo3W7d+Y9c6dJXBOqk2N1D8ls5Wy2J1f2VBmH/HII5XPKaa5pbh3LV+GzXPLRylyDucmMAJ322wiFlxZS+mipowV6rFJbW0uvXr1wuVycP+18mBawzKWUZGdnI4R5d/RgIl9VVcWxxx7LTq+X3/7vfyzKz2eVz0daTQ3S46E5hNvYC3DKKVQ88ECH96IpKWt17z7Yuax2dAtGuII84fbd0wj0pPcFaQDT1vMQquhNOKx4ACorK7nssss4YsIEyv/xD972egPnEYKm7GzSzjmHf23cyORlyzhy9GjT8TIyMmxZ8kXTiyifUx6yi9zwl4bz9TFfh6w615b2++ttsVpIyszt7sp08XHPj4Pe1511z9xp9DeXwFjZQ7K9J1fexIbbN1gKqolkrkYcwGeDPgsZJxCslvTGuzey8e6NCCF2eT1eNaZra2s7BFRZ2VtvS7A9+WeffZZ1mzcz8O23+Z/LRUOL69qXkwNmHczy8jrMyU6teit79+2x2tEtHKFENdy+ezOQJiWZLtcux7T3PMwpL494flY8ALNnz6a2thbX5Mn8Ygh82/m11K6/ctkyVloQebuWvDvHzaZrN/HDTT9wROUR+Lb7Oohje/E0rPdghArGM1tMGJZ2uMUAAmSjpKku8LsHu687456502h3fZJje0+OgMtfZfqKlXSbkAE6Xon0yoSpMR1M5CMl2J78888/T+FVV1HWTqwAMPMOVFZy5JFH7vJSrGvVW+noZkYoUTWzqP0QtqBNqKI34/LzyQjx3VqNP/jmm2/weDx81rdv2Nr13w8ebDpW4FB7gXcAjWmNvFbwGvv8vE/QFNP2KahmBDMcrNarCOV2N1LopG/X1UVnqB1vEK+iRNqST3LM3Gi5o3Kp/rw6vKsufIXOiNNXrKTbRJNbH48a0xdffDEDBgywNYYh8m0t+bKyMioOPxxvpELp9ZK/eDGTZ8zY5eVY16q34trOdrnw+v1BL69womoW8d/D4zH1PATzToTaYoikrK3H48Hv91NnEoXvs7gwtBt4B79eV/X19RQUFJgeH20kuxVLO5Tbvbm2GX9d56wdD/Htgqct+STHLGBl+EvDyRxsrzFKpOkrViJso817jXWN6TPPPJNRo0bZGqOurg6Px4O7jTD06NEDr1m6VXu3vdeLZ9s2PvnLXyhsJ5Cq8t2tYuba7unxsGXMGPbMzo44qE9VxH97VJS1PeaYYwKth02s72yLBXfs7snDrx6itu1mw1mNTkeyByte5a8Pv5htKm9K6f7u8eyCp0U+yTFzo2X0yWDEshFRjx/NTW8lwjbavNdY1phuamril19+abXEo6W+vr7DPv6UKVOgTb52UBoaSKuuBr8fd00NE3bu5OuxY6G+nsZ2DVBUtFGNBCtCbFVU26fLPVJSQm5amq1GMqEwLPxoy9qedNJJgd/y9ddDuv7xermoVy9L4zkh8mbbZYWXFsY8kt3Kfau6N0ciEYsKpqHQIp8CmJV9dee4Ayly4UhD2U1vJd0mnDURCisLDpX7Xps3b+ass85i8eLFEf9tW2prazuI/IUXXkjOhx9CqG5lXi8H/vwzvpNPRh51FE0nncTbv/sd61at4txzz2XLli27HO6U9RsKq6l3ZqIaLF2uwuejyucjx+WiR5QWt1O43W6mTJmC65VXaFy3Lmjt+v4uF7fts4+l8VTsyffp04djjjmm9RozsxpLHy1V2g/CClbv91Tdo49nFzwt8p0EMxdd0fQiZTe9FXdgqG0GkSEQGSKqBYfqTlbV1dUA5OTkRPR37QlmyXft2pUFf/wjnq1bob0l5/WSV1PD+1OnBh0LOpbIVdFGNRJUuL4hdMCgV0pq/H6mFRZGZXE7yb/+9S++X76cC1eswPXyy6216zPq6rggO5sfjjzS8jxV7MkPGTKEu+66i0Et8QdWrEan+kGEWmSH8h6Em6OVcZPF4o9nF7z43zGamGCWAjPg+gGtN75T54LADVzySAkA+3+wfyAfvl1ebGuefIT5slbra1tFlciHitA/eJ99KB00iIs++IC3mptpzMwks7GRKV26cP/RR5MbRChCdbSLNt/dDtGk3rUn1gGDqth9993514MP8qjPR2VlJTk5ORGVtDWwm0IXjHhZjWbBZbvc72HaT7efYzyD1lRhtc6AEyT2N6NRRiyLTexyrlmlHSJ52xfaCSa80eTLWq2vbRVD5M1qxJtRV1cXcqHQo0sXXjvlFMtjhbLkQY3o2iGaYjyxDhi0y9atW7n66quprKzktttuY7/99qO7hd7xoUhPT7dtyW/bto0zzzyTK664glNOOSUmdeCDYWWbwLivP+75seU5ql68xwOrdQacQLvrOxGxbNlqnCuU696JvTfVFowh8rm5uVHPCQIiH2kBnVA0NDTgdrt3idRPBKJt7xrrgMFoqays5A9/+ANFRUXMnj2bN998k/33359DDz2UL7/8MupxMzIyaG5ujqjefbAxqqurqa2tBeJXBz6S4LJI5hjPoDVVWK0z4Mi5HRtZo0G9dR0O1RbMiBEjuO666yzlHodDRUEdg+OPP55hw4YpGUslVorxBPMwTCssDFmC1omAwWiora3lmGOO4asff+Sg++/n60GD8GZk0KW5me/nzWPc8cez+J13GDlyZOvfSClZunQpc+bMYcuWLfj9fg477DCOOeYYhg8f3npc26520S4Eja0bQ+TjZTVGssiOZI7xDFpTSbwq+mmR1ziKihvUrJWugep9r4EDBzJw4MCI/iYYKi35oUOHMnToUCVjqSTavfXpRUVBS9A6FTAYDY888gjLv/uOov/9j288ntYCRrVuNxlnnEHzwQdzyZVXsnzpUiBQ6Oj000/n008/xe1242vxYrzyyisAHHbYYTzyyCPst99+rdsuXq836mvE7XaTnp7eupUTrzrwkSyyI5ljvLYfUgUt8hpHsXuDRhJ0o9qCWb9+PU1NTR1Edc2aNXzyySf4/X5GjRq1i2XWHimlUkt+9erVNDU1sffeeysZry3R7KkbRLu3Ho+AwUiQUvL4448z4Jpr2BKkM6BXStz9+vHlkCGsXLmSPffck+OOO461paXkXX45VUceBfl55FfBxNfhhBcrWbBsPscedizvf/R+qyWvIle+bTGceFiNkS6yrczRV+Mja1hWyGeIbkNrjhb5JMWqdRtv7FrXkQTdqLZgHnvsMX7++WfmzJkTmEtxMX/84x95++23dznuiCOO4PHHHw/qRm9oaMDv9ysT+ccee4zNmzfzwgsvKBnPwE6DGzAvRRtubz3eAYPhqK+v55dffiF77NiQngqfywUTJ/Ltt9+ycuVKvv35Z/L/8x8qu3SBFhGvzIeXJsHScQXcN+23HF53OFdPu5qrrr8KoENxo0g56aSTlGzj2HmuqF5k+2p8rBi1grofQxejyhiYodvQmhDXwDshxAQhxE9CiDVCiL8FeT9fCPGmEOJrIcT3Qojz4zHPREN1PriT2O0THWnQjcrgwqqqqtbI+s2bN3PYYYfx5Udf8sz4Z1jUdRELxULe6/Iee3+xN8eMPYY1a9Z0GCNY3Xo7NDQ0dEifU4HdBjexKMbTvjJez48/5qZ160IG9anACHA0q1VPfj7p6ek8++yzdP/Tn6jMyWkVeIPGDCgthNcmZdBX9qX/x/0pKysDsJ1Gd+WVV3LiiSfaGsPuc0V1cFnxzGLqf64P3UlTQI9TeySUUZOIxE3khRBpwCPACcBwYLIQor3f80/AKinl/sB44J9CiPSYTjQBiWcd5Eixe+PHM+imqqqqNbL+5ptvprKskld6vcKgZYOQOyRI8NR6OLP5TG7bcRs3XH1DhzGMYChVlnxDQ0PQ9Dm7WNlTD4eTxXhqfD6uXbuWgo8+4pYNGyKK3rdLeno648ePx1VTE/7AqiqOOOIISkpKqD7qKEgP/phqzIB5E8Hj9zCRiRS3LJ7sWvKArQh9UPNcUbnILp1V2qFr3S5IKHuqLOJxOxvxtORHAWuklL9IKRuBF4H2CcMSyBVCCCAH2A4kjpkaJ5ItpcTOjR/PSlFVVVXk5+dTW1vL7NmzuXn4zVBCx+/eC/1Ff7LfzG61zAwMkbdbUMfAKZG3m6+uqgJee4xthP/btCloNzunWum25fLLL8c/d27HErYGXi/7/vILffr0oWvXrjSa/D6V+YF/55Pf+lvaFfnLLruMqUEqJEaCneeKExXprCzgrQbuJnO1PLvEU+T7AW3vzE0tr7XlYWAvoBT4FviLlLLDVSiEuFgIsVwIsby8vNyp+SYMqZJSYoV45fxCIDc6Pz+fjRs3Ultbyz5r9wn5EExrTuNkeTKrV6/e5XVD5FW6650QebN89G4ej6mr3G7zl2AY2wi+9h352mDF02CHU089lb/06UNzcTGivRh7vWRu385b550HwJgxY6CqKux4+S19iaqoau1waNddn56ebruRUrTPFae2D60s4K0G7ibD1qZTxFPkg7Vwan8nHw+sBAqBA4CHhRAdyo9JKZ+QUo6UUo7s2bOn6nkmHPG0bmOJr8aHv9GPvyl40J7TlaJuv/12Jk6cSHqL69VVHf52ySe/Q2lT1e76v//975zXIigqMdtTR8qIC92oINw2QlucrIwnhOC+O+7gPwUF7PbJJ6216l1VVRy1dSvrTjyR/i1V72pra+GNN0jzBv9O0r0wcR748LFuv3X07dsXsG/Jd+nSxbbIR/tccWr7sM/UPuEVKg0lgbtWSGZvQDxFfhPQ9gndn4DF3pbzgbkywBpgHbBnjOaXcBgXWnNdMMdlgFRJKTFW4CX3l9DBT5sG/a7o53ilqMMOO4w99tiDQYMGMWTIEOrc4R+i1aKaAw44YJfXVIv8gQce6EgxnHB76rlpaVQ3N0cdlGcHq+LtdGU8IQRTTjuN9f/4B49t3cqBf/0rdccfz4e//z198vNbj6usrKTok0/oVypIb5cVl+6FwlKY9CIIBOe9dV7rAtKuyGdlZdkW+Wi9Zk5sH/pqfGx7fVvYoLusoVnKA3dDzSWZvQHxFPkvgKFCiEEtwXSTgHntjtkIHA0ghOgNDAN+ieksE4S2F5q/LvhFGwvrNlaEWoEDuDwuXOkuRwW+urqapUuXsmPHDlwuF3/5y1941fcqze7gCywvXrYfvr2DJV/TErAV6Z68lJINGzbw448/to4BsGDBAtavXx/Zh7FAuD11v5R4Q7jLnXaVWxHvWFfGy8rKwuVy0dzc8Vro0aMHO0pLeexPaUx6EQp2gPAH/j3pRZg1DbIawIWLbv26tYq83Tz57Oxs2yIfbSaME9uHxTOL8a73hhT5vDF5HPTFQTEJ3E2mQOdgxE3kpZQ+4M/Au8APwMtSyu+FEJcIIS5pOexWYIwQ4lvgQ+AaKeW2+Mw4voQTPQBXtiviVJVgLqi1165l7bVr4+6Windw4S+//MKVV17JTz/9BMC0adNwTXax0beRRrGr1eXFS3VONZNfn9xhnEgD76SUPPPMM+y///4MHDiQvfbai169enHhhReybt06ZsyYwXvvvWfz0wUn1J76dhN3vGpXedtUuXC59wBpEPPKeLvtthtHHHEEriDbG1OmTKGmpgaPy8f5z8Brp8OCowP/Pv+ZgMADyLyAehmLQruW/MiRI5k0aRIyTOyCGdFmwjixfRju/geoX10fs8DdeD+L7BLXBEMp5VvAW+1ee6zNf5cCx8V6XomI2UWf1iUtoupWISvJ3d2yKm15VsSrpWO8gwsrKwPRUfktrliXy8W/Zv+Ll455iaU3LWXEphHkk0+tu5bGCY2c/PzJZBR0bDVaU1PTWnbUDCklV155JY8/8Dh/6f0X7u1yL2m1aXillznPzeGIeUeQ1zvPkcC7cNgpdBMpwYryhCKNwDbD9QMGxLQy3vjx4xk/fnzQ98aMGcPRRx/NCwtf4GzP2biaOi4EGkUjgy8fDKDMkh87dixjx461NQZEVynPiTaqqu5/FXOL97PILrqKQJKg+kIL6RkIYgjEo6VjvOtV79y5E/hV5CEg9JMvmAwX0FqP3KwbXG1trWUr/t133+XxBx7npW4vUVBZ0PrbZDZkcnbG2Ry+/XCuqrsq5iIfyyYyoYryGAigR5zL3kopWbJkCY8//jjfffcd6enpHHvssVxyySUMGDCAV199lbNOPosNH22gkEIy+HXx1ygaydkjhwHXDABQtifv9/tbyycH8zA4iRMNcVTd/yrmFu9nkV10q9kkQbVLzMwz0J5Yu6XimToHv4p8qA50Vtu91tTUWBb5hx9+mAu7XEh+XX7QXPx+rn5M8J/GU83NMa365mShm/aYRdP38HiUpOZFS3NzM8cddxzjJ0xgTm4uP911F1/OnMldhxzC7rfeynOvvEJBQQHvLH6H/m/05/t9v6fWU4tE4s/zM/j6wYxaPqrVI6ZK5N977z2OPPJINm7caPszRko0bn6zaHVV97+KKnzxfhbZRVvySYJql1g0LibVbqlwdbJDrcAB/E1+/I1+fDU+x7YPdu7cSXp6uu0SspE0p1m6dCmXNV+GbAi+r9roTmPJrEmU9pQ0t7jPI6kvHy2xbCJjtyiP09xyyy188NFHuJ94ArHbbr8GJBYUwO9+x3mbNjHwiy8Yd/DBHDvxWI6deGzY8VwuF26327bIG3UY7AbfRYuZm3+Xe31bE6QFMhaMinbttwVVegfsNuuJV+teVWhLPkmwWwO+PdG4mFS6pczSUgBGLBtBvyv6BTZf29IMJfeXOJq+cuaZZ/Lwww8TKLYYPZFY8n6/n/SG0Hv3L06CLYUumtuJaixS2ZwodBMMs/19p1PlwlFbW8sDDzxA/7/+lebevTtkHPg9HigsZNrixRGNm56erkzk23aiSxQ63OsAzXQoWdt2WzBaC9yJfHbVNfljjRb5JEH1hRbOBRUM1W4pK2kp7hw3rnQXLk/HeTqdvtK3b19GjBhhe5xIRP7ggw+mxhW6Rvobp0BjRvBFh9OpbLEiFo1urBCsGc6FS5dS6fWyfdw4ZKhAyowMvh8yJGh6XShUiryRzZFImGUGtaXttmCk5bCdzGdXWZM/1miRTyJUXmihPAMIOtQidMItZTUtJV7pKwsXLuSrr76yPU51dbWpyK9bt45rrrmGX375hbn+uR1S9Ayq8sKnR8Xbla2CWO7/h8KI8G9f4W9uejrMmmXekS4vLyKLWqXIx8tdH45I43+i3RaMZz57IlfE0yLfSQnpGbimiKJrnHVL+Wp8YaNV4dcbPV7pKw888ACvvvqq7XHMoutfeeUVhh1wADPLyyl95BGeWXAuZ8xN419/8FHfJojei5cuVeEflHZc2fFo4xoMpxrdREKoCP8mlwsKC/GYpPaJ6uqIKhyqEPnu3btz8cUXM3jwYFvjOEGk92i024LxMggSvSJe4vsaNI4RLiBl8J3OPCyMG8IM40aPV/rKjh076Nq1q60x/H5/WHf9V199xeQLLiDjySdx9enTusdbU5DGS5N8LB3XzKPTBI0Nlfww5AfG1e/B29l5QV3FdlzZwXLTYxHQFwpj///mQbFJ12xP2Aj/jAyaGxvJdLtpCFZ4xuvlkLKyiGI50tPTabLphcnNzeXiiy+2NYZTmN3DbbGzLRgvg8CKByFWqcfB0Ja8JqYYN0Q42t7o8UhfaWxspLa21rbI19fXI6Vs7Unfnvvuu4+0KVPwtxF4g+YMNyX9/ZxyzgsM+34Y1/18HedkucmoqCCjnYDYdWWHslyNgL7bN2xICCs/Vphte/jdbtK2bKHDUquxkbQtW3jmhBMiOp+K6HqA8vJyqkw64MUDq/E/drcF49W4K9Er4mmR18QUK/tzbW901VkFVjBy5O2KfHV1NRC8pK2UkldffRXXaacFtwgJRGs3n3gi3333HQCioYE9H3qIv/TqpdSVHc5ybfD7mVlcHJcOdPHCbNsjq6mJuvPPp/HZZxGVleD3w44ddHv3XT4dMYJhu+0W0fkyMjKUiPypp57Kv//9b9vjqCZk/E9ayz9CzbZgvPLZE70innbXa2KKlQu+7Y1uxA4Uzyym9NE2+fSXBvLpnYhu3b59OwDdunWzNU645jRNTU2B4KyMjqVwdyE/n6pfAj2ZvF4vaY2N3DxoEHfvtZetubXFzHJtBprDdKCLl1vdKcwq/J3h8fDdHntw6sCBbH3vPdLT0znuuOM4fubMqKrNeTwe2+56CATfJWJ0fazu4Xjlsyd6RTwt8pqYYnpD9PR0uOntFrOIlN13352XX36ZXr162RrHEPlg7vr09HT69OnD9vp6Glsio4NSWcluLZbhqaeeypgxYzp0urOLWW36UBhpe6km8tOLiphTXt5hC8PYFplUU8NNaWlMnjyZPfbYw/b50tPTlYhzVlZWQubJQ2zu4XgYBOBM7X6VaHd9EpLI6RpmJEOJyPT0dHbfffeI28O2x3DXh9qTv+CCC2h89dWOe7stiKYm8hYt4uijjwYCdfSHDh1qu0BPe8LlppuRCml77Wkf4S+AbJcLAXxfV8fZQlB63HHUmkTZW8Xj8Shx13fp0iUhU+hiSTzy2eOxpRgJWuSTjERP1zAj0W8IgJUrV/LSSy/ht/kQD7cnD3D55ZdTuGQJzRs3dkjLcjU1ITdt4r7Ro0lLC5T8+/zzz3njjTdszSkY4XLT2xcbbE88K9A5iRHh/8shhzA8Oxs/UN/yG1UKQdn48fxu2zYlMQkq3fWJKvLJbJiYkegV8bTIJxnxLPiggkS/IQAWL17MAw88oKSkLYQW+d69e7P4nXfY86GHaHr+edi5szWIy/3qqzwsJRdM/rVH/bvvvstjjz0WdCw7hMtNn15UlBAV6OJFqMwDmZ7OxuZmJaWEVYn85MmTOfPMM22Po5pkN0ys0N6DcMgvhwDw2aDP4r6oif8TVRMRVtI14pmTaYVY77FHSkVFBd26dXNc5AGGDBnCt59/zuLFi3n77bfxer3svffeTP7nPzv8ndfrtdSXPhpC5abX+Hy8WVERcn86FhXo4km4zAOvlEpiElS564855hjbYzhBoueRq8ZY1LT9zO0b8MTSmNEin2QkerpGKmCIvF2qqqpIT083FWYhBOPHj2f8+PFhj/N6vTHvJR/LDnSJSCy64qkohgOB63bnzp0JV/UuFQyTSEi0RU1q36EpSKKna9glXPvZWK1+t2/fTt++fW2PU11dHTLoLhq8Xq/yyHorxLsCXTwxyzxQEZPgdrvxKdjbf+qpp3j77bdZuHCh7bFCEc392dkMk0Rb1Og9+SQjGaLToyVR9u5UWfLV1dXk5eUpmFGAhoaGuIh8ZyZc5kEGKIlJULUn36VLF2pra5EhiivZJdr7M16V6OJFoi1qtMgnGckQnR4tiRJUOHfuXC677DLb49TU1Ci15O+++27uvPNOZeNpzAmVeSAaG9nN7VYSk6DKks/KysLv90e9YDCLgI/2/kxlwyQYibao0SKfZCRDdHq0JEoN6JycHPLz822PY6XNbCR07dqVHj16KBsv2YlF57xgmQf5UtJn0SJe6dVLSUyCYcnbtcCNznfRpNFZsdKjvT9T2TAJRqItarTIJyHxKPgQKdHkxSaCm2vz5s089NBDFCtIjVLtrn/ppZdYsmSJsvGSmVA9352oqW/EJGwdO5bm8eN5xeej8L33yLUo8A0NDTz33HOcf/75/P73v+fee+9tLZ0MAZEHaG5utjVPOz3lrVjp0d6fqWyYBCPRFjVa5DXKSea9u3Xr1vHss8+yY8cO22NVVVUpddc/99xzLFiwQNl48caOJW7WOU9F/nooBg4cyLnnnktBQYHpsUuWLGHAgAGcd955vP322yxZsoSrr76afv368dRTTwEBdz1ge1/+wAMP5Oabbw7rhQq1+C55pMTUSrdzfyaDYaKKRFvUpN43rIk70aaQJEIN6G3btgHQvXt3W+NIKZXvyTc2NqZM4J3dHvZmnfOcrKk/dOhQhg4danrc999/z4knnki/IUM47oUXeCcjg+KmJgqEoNuSJUz9858pKChoteTt7sv379+f/v37h3w/XP62WWfIpoomBtwwIO73Z7KQSLVAtCWvUU4y791VVFQA2N77rqurw+/3p0QKnRPYtcRjkb8eisbGRqqqqkzLHt911124unRBzJrFq25367bCTikpHTeOjKee4vrbbmstW2xX5Ovr61m5cmVrq+T2hFt8m+Hp7kmI+1MTOVrkNcpJ5r27bdu2kZOTY1tMq6qqgNDNaaIhlUTeiiUeDrP8dCdr6r/33nscddRRbN68OeQxdXV1vPzyy+x5001s8Pk6LmakxN+nDz8dcAAbNmwA7Iv8pk2bmDp1KitWrAj6frjFdzhcmS76XNiH4pnFNJY1BsZoKQbp7uFO2b31VEH/Khrl2CnYE283V2VlpZIIdqM5jarAO7/fT3Nzs2NlbSGwJzx//nx++OEHMjMzmTBhAnsp7FvfFruWuFnPdydr6hsWfLje8du3b6exsZEf9tgj5GKmyeWCiROpXL4csC/yRuBdqLa1VgJXXZmujr3YB2Wy7fVteNd7f31PBt5L750e00JVmsjRv4xGOU7trZtV29rl/W1NuLJcIMBf77dcOe+2225TUkfcrM1spAghWLx4catrVzWvvfYaf/7znyltY0FfddVVTJgwgWeffZZevXopPZ/dSnJmPd+drKlvRMGH+y3y8/NxuVzUmP1e+fmtgXKqRD5UT3nTxXePwD3Svhe7v9FPyf0dA/NStfZ8qqHd9RrlOLF3Zxax7y3z7vo+AXH31/kjrpynwlo23PWqLHkhBF26dHGkdv0bb7zBGWecwYBeA3hn0jss7b6UhWIh72W/R/8P+jPhiAmtn0cV4SrJWbHEw3XOMwvas4sVSz43N5eTTz4Z0bLYC4WrpoZ99tkHcD6FzjR/e1ph0Aj4sifLEqJ+hSY6tMhrlOPE3rpZxP6q360K+n6wY0NV5pJScuONN7J06dKI59ce1ZZ8dXU1DzzwAKtWrVIynkFzczNXXnklB+9zMPd57yPr9Sx8FT6Q4KnzMMU1hct+vIwnHnhC6XnD9bC3aom3z1/fOnYsNw8a5HjTHCuWPMCMGTPg9ddxhfJYeL1MaGxsXbjZTaFLT0/H5XKFFPloF9+JUL9CEz1a5DWOoDov1ixiv3JppaWgonCWR1VVFW+99ZaSQjiqLfmqqiqef/551q5dq2Q8gwULFrBu3Tr+vsff8a7zdvgORaOgv6s/pfeptdbiaYnbZZ999uGSSy5ptZxDMWbMGJ454QRkSQl4vbu+6fXSs6mJF089tXWxYNeSF0Jwzz33cMIJJwR9P9rFdyLUr9BET+LeSRpNG0ythQgqgoYaq7y8HICePXtaHywEVVVVuFwuUyGwihEnoDq6fs2aNQDkL8ynuSG4yHj8Hg7fcTh+vz+sizpSkrW73fDhwxk+fLilY88980zGlJQw9f33+aRnT5qysshqauIPXbtyT8tiRpXIA6btikMFthpFcoLFuyRC/QpN9GiR1yQFZkFDCCwLfSjLQ6XIG3XrVYmi4cr1KE4NMxYhzTvCC0w++UoFPpmpqamhrq6Onj17IoQwPX5Iv34s+sMfQr6vUuS//vpr0tLSWvf5reAt87J8v+U0lf96fxkxLOVzytn/g/0pn1PeYTtM58cnB/qu1SQFZkFD+Yfnh3y//bGhLA9D5FVEkqsuaWtY8qpT6I4//ng8Hg/eDG/Y48ze70y88MILnHjiicpauhplbVV0ovvnP//JE09Yj5/w1fj4Yt8vdhF4AyOGpfTR0rjXr9BEjxZ5TVJgFjQ0/KXhQd8Pdmwoy6OxsZHc3FxlefIqm9M4JfJ9+vTh7LPP5qWGl/B7gsc0ePGSc7a6bnrJTlNTEy6XS5lnQ6Uln52dHVGDmuKZxfi2hV5cGDEsnan2fKqhRV6TFJgFDWX0ydj1fQGubBeu7ECuvBXL47e//S0LFy5UlkKnUuRHjBjB559/zkEHHaRsTIOHHnqI4rHFbGjaQKPYtUaAFy8UwqEPHKr8vMmKz+drtb5VEE+RL51lHlDZVNEUVVdJTWKgl2GapMGsGl68q+W1paqqir59+yod06k98ZycHOYvmM8LT7/A0tuXMrJkJLkyl8bMRvJ+n8eoe0dpi60NiSzyWVlZIYvhBMNK+punmydkY5vyOeXaZZ/g6F9Go2nh1ltvZcCAAZx77rm2x1Ltrv/hhx94/fXXmTp1asjAwBqfj5nFxcwqLaWiqYnuHg/TCguZXlRkmpKWnp7OeZecB5com3LK0tTUpDQA0li8xcOSNw1oBbKHZ1P9ebWjFe/Mqllqoke76zWaFpYsWaIkR15Kqdxdv3HjRubMmROyLrnRuvWe4uLWbmdG69bRK1ZY6tHuNHb6xycSRx11FH/605+UjWdY8mZd7axw9tlnM3PmTMvHF04rRGSEzhDw9PRQ+31t2BoVG27dYMt1b1bNUm8J2COuIi+EmCCE+EkIsUYI8bcQx4wXQqwUQnwvhFgc6zlqOgeNjY3s2LFDSWR9fX09zc3NjkTXh7Ig7bZudZpkWIRY5eCDD+b0009XNp5hyasQ+YEDB7LffvtZPr5oehFZQ7KCCr27h5uR34zEt93kt5HYEmSzapahKlRqrBE3kRdCpAGPACcAw4HJQojh7Y4pAGYBE6WUewNnxnqems7Btm3bAOjdu7ftsVRXuwPzPHm7rVudJtEXIZGwefPmXRr5hENKycaNG/nxxx9bSx23R+We/MaNG3nrrbcsl8g1Alp3u2a3XQJaB9w4gNHrRpPRJ8NSRTs7gmxWzTKZauMnYoBiPC35UcAaKeUvUspG4EXglHbHTAHmSik3Akgpt8Z4jppOwpYtW4DEFXkjhzqUyNtt3eo0ib4IiYSZM2fy17/+NewxUkqeeeYZ9t9/fwYMGMBee+1F7969ufDCC1v7xxuotOQ///xzbrzxxogaCpmlx4WrUdGWaAU5VWrjJ+q2QzxFvh/Qdtm3qeW1tuwBdBVCLBJCfCmECBoRJYS4WAixXAix3ChootFEgt/vZ/DgwUoi4p0QeQiUtA0V1W3WmtXsfadJ9EVIJHi93rDlhaWUXH311Vx6/qWcuPVE3u/yPgtYwFw5F9dzLg4feTg//fRT6/EqRd6sE100hKpREYxoBDlVauMn6rZDPEU+WLRH+xJSbuAg4DfA8cDfhRB7dPgjKZ+QUo6UUo5UUZJU0/k46KCDeOmll9htt91sj+WEyJ911ll8/PHHIff57bZudRpVi5BECN7zer1haym8++67PHrfo7zU7SVOrDwRd60bgSCzIZOz087mth23cdE5F7Uer1Lks7KyALUi37ZGRdCndhuiEWTTFrhJUhs/Ubcd4inym4C2pcf6A+2/hU3AO1LKWinlNmAJsH+M5qfRRIVTlnw4VLRudRIVi5BECd4zs+QffvhhLuxyIfl1+R0f+l7oL/ozePlgli9fDiS+JQ+/uvQH/H2AckGOtgVuopGo2w7xFPkvgKFCiEFCiHRgEjCv3TFvAIcLIdxCiGzgEOCHGM9T0wm44447uPnmm5WM5YTIf/DBB9x4440h30/01q0qFiGJErzn9Xpbe8AH46OPPuKk5pOQDcFr27t8LiYykaVLlwb+3wFLPpKCOJHghCBH2wI30UjUbYe4ibyU0gf8GXiXgHC/LKX8XghxiRDikpZjfgDeAb4BPgeelFJ+F685a1KXVatWUVFRoWSsqqoq0tLSWh+4Kvjxxx957733wh5jtG7dOnYszePHs3XsWG4eNCimAh/KnQ7YXoQkSvDeJZdcwplnhk708fv9ZDSEbwmcT36rqBud7FQ0vBk6dCizZ89m//2dcXg6Jchtg/8OqzyMwksLKZ1Vykd5HyVEhLoVEnXbIa5LJCnlW8Bb7V57rN3/zwSsV3fQaKKgrKzMco9wM6qqqsjPz7fUhtQqqkupOoHhTm9rbRvu9Dnl5SwbMcJW//hECd476qijwr4/atQoqhdWk+cP7cmppJJRo0YB6i35Pffc0/Y44XCyfLQRoZ6MJXSLphclZEteXfFO0+nxer3s3LmTPn36KBlPdZtZgFq/n03HHJPQ1eKcdqcnSgbBN998w9atobN5L730Ul7zv0azO3jee6No5NOen3LYYYcBai35xsZG5s6du0v0fjKRqBHqVkjUbQct8ppOj5Ejr1Lk8/PzlYwFAQv5oT33pHjs2ISuFue0Oz0RMgiklEydOpVXX3015DGnnXYa8izJRt9Gmly7ehe8eNnMZs589cxWcVcp8n6/nzvuuINPP/3U9ljxIFEj1K2SiC15tchrOj1+v58xY8YwcOBAJeOptuRnFhdTkZmJv52lmmjV4px2pydCBkFTUxN+vz9s4J3L5eKp/z5F+T/KmZc9jx3swI+fHezgyyFfcsAnB3DwuINbj1cp8hkZGbhcLuXR9bEiUSPUk5nE3NzQaGLIwIEDefDBB5WNV1VVxe67765svFmlpfhCWLCGhRztPrdKuns8bAsj5Hbd6UYGwcziYh5t02nvUoud9lRgRK2bBVWmpaUx46YZNF3XxFdffUVdXR0jB4/ktKLTOhyrUuSFEGRmZjoWXe80Zl3xkqUwTiKhRT7F0C0b44/qDnSJEnBmxrTCQu4pLg7qslflTjcyCOK1qDEsZCMf3QyPx9MaYBcKlQGaEJhbsop84bRCiu8pDuqyT6bCOImEdtenEIlaOznRueOOOzj//POVjNXc3ExNTY1SkU+UgDMzEsGd7jRWLfloUGHJQ2BuyequT5XCOImEFvkUIpkjU+OJih7yBkanMZUiP62wEHeIDmWJULLWINEL8qigV69e3HPPPRxwwAHKxlRtyT/yyCPMmDFD6ZixIlEj1JMZ/Y2lEFYiU53IbU12Nm/erDRHHtSK/PSiIh757jt2ZGXhbyOUiWghx9ud7jQ5OTmmefLxpjBBFn3R4mQefmdEW/IphI5MjRy/309ZWZnS9DlQK/I5bjeTly5lr5UrU9ZCTha2bt3Kp59+6sietyp3/YIFC3jjjTeUjKWaROy3nurop0MKoSNTI6eiogKfz6ekxSyoF/na2lpeeOEFFsyfT0NDA7fn5zNlyhS6dOmiZHxNZHzxxRfcdNNNvP766/Tv31/p2Krc9u+88w7r16/nlFNOUTKeKpK5ml0yoy35FCJRaycnOqeddpoyd31lZSWgRuT/97//UVRUxEUXXcSGDRsoKyvj4osvpn///rz55pu2x9dETm1tLUBCL7KysrISMrpexwzFBy3yKYSOTI2cnj17cv3117P33nsrGU9V4N3HH3/M6aefzoA99+T8xYvJevdd6ufPJ3/hQrIuvZTTpkzho48+UjFlTQTU1NQAakVelZveIFGj65O9ml2yokU+hdCRqZFTX1+vpDGIgSpL/uabb6Z7//403HsvL0BrOdtKYMfxxyNmzeLvd9xhe76ayKipqSE9PZ309HRlYxoir8pdn6iWvI4Zig/6qZ9i6MjUyLjvvvtYsmQJ77zzjpLxqqqqyM7OttUxrqSkhPfff5/xzzzDssbGjg1fpMRdWMii3r0pLi6mKIGi61OdmpoacnJylI7phCXf2NiI3+9v7XCXCOiYofiQOFeARhMHNm/eTM+ePZWNp6La3ebNmwFYUVQUsuGLLy0NJk6kNEY91DUBzj77bO666y5HxlZlyZ9zzjksWLBAef69XXTMUHzQlrymU1NaWsrgwYOVjadC5Lt16xYYy+whnZ/feqzGPjU+HzOLi5nVpi7+tHZ18QcMGMCAAQOUnle1u95qyd1Yk6j91lMdbclrOi1SSjZv3qy0eIgKkd99990ZOXIkaS1BXqFw19UxZMgQW+fSBKjx+Ri9YgX3FBeHbee7dOlSvvnmG6XnNmJCVLnWf/75Zx588EF27NihZDxV6Jih+KBFXtNpqaiooLGxMeFEHuC6666jee5cXKGaz3i9nOZyJZxLNlmZWVzM2oaGjvEP7dr53nfffbz44otKz616T764uJjnnnuObdu2KR1XBYnYbz3V0SKv6bS43W4uueQSDjzwQGVjVlVVkZ+fb3uc0047jXsOOgj/pk3g9e76ptdLH7+fp487zvZ5NAFmlZaGjH8w2vlCIHsiNzdX6bkNkVdlyRu97hMxwl4Te7TIa6IiFcpTFhQUMHXqVIYOHapkPCklVVVVykRg+p//zMqxYzl0wwbcNTXg95Pl9fLnHj34+dhjdTlbhVhp5yulpLq6Wskiri3NLc2HVIt8Q0ODkvE0yY1+SmgiJlXKU27dupW0tDS6d++uZDyv10tTU5NSEdh/jz34ZI89lI2nCU53j4dtYYS+u8dDTU0Nfr9fucirtuSNNrha5DWgLXlNFKRKecrHH3+cyZMnKxvPqFuv2p0LcNttt3GHLn7jGNMKC8kMIbJGO1+j0FGyWPKJ7q5PBW9gMpD45pYm4UiVlralpaX069dP2Xgq69a3Z8OGDaSlpSkfVxNgelERc8rLOwTftW3nm+7389///pdevXopPbcRXa/q9x0wYACffvopHo+64jK+Gh/FM4spnVVKU0UTnu4eCqcVUjS9KCqvXap4A5MBbclrIiZVylOWlJQoFXlVdetDoToKW/MrOW43y0aMYEZRUch2vunp6eyxxx4UFBQoPbfqFDqXy6Vc4FeMXkHxPcWBinXyV0FeMXpFVJZ3qngDkwEt8pqIMSs/mQzlKX0+H2VlZcrT58AZkdepcs6T43Zz86BBbB07lubx49k6diw3DxrUGuD4888/M2fOHOVucMNdr8qSb25u5p577uHjjz9WMp4Tgqyb1cQOLfKaiEmF8pRbtmzB7/cr7QnupMiDtuTjzWeffcadd97ZKsqqUC3yLpeLV155RVnRHicEOVW8gcmAFnlNxKRCS9vc3Fz+8Y9/cNBBBykb08nAu2HDhunqdnFm+/btuN1u5b3kVYu8EILMzExl0fVOCHIqeAOTBR3ZoIkYozxl8cxiSh9tE4hzafSBOLEmLy+Pk046SemYVVVVuFwu5SIAcPXVVysfUxMZO3fupGvXrsq3TlSLPKBU5J3oHlc4rZDie4qDegiSxRuYLCT+01iTkCR7S9uff/6Z5uZm9txzT2VjVldXk5OTk1DtPTXq2L59O127dlU+rq+lLr6d9sTtUSnyTgiyblYTO/TTSNMpefLJJ7nuuuuUjllZWenYfvztt9/ONddc48jYGmts376dHj16KB/XEHmVlrzKLSMntud0s5rYob9JTadEdfocQE1NjWMiX15enpANRzoTDz30EN72fQQU4IQl/9///lfZWE5tzyW7NzBZ0CKv6XRIKSkpKWHfffdVOq7KuvXtcblcrfnUmvigutKdgRMirxotyMmLdtdrOh1VVVVUV1crTZ8zxnXKkk9LS1OeuqWxTm1tLbNmzWL16tXKxzZEXmUBm//85z/MmjVL2Xia5EWLvKbTUVJSAqBc5Kurqx2z5N1ud6sYaGLPli1bePrpp1m/fr3ysZ2w5L/66iuWLFmibDxN8pK4/iGNxiEGDhzIrFmzGDZsmLIxjTakTlnye+21Fzk5OY6MrTGnvLwcwJHAu8bGRkCtJZ+RkaG70GkALfKaTkh2djajRo1SOmZDQwM+n88xS/7cc891ZFyNNZwU+aaWFrfp6enKxszMzFQaJKi6QY0mduhfR9Pp+OSTTxBCcOihhyob02hO45TIa+KLIfKqO9DBryKv0l2fkZGhTOR1x7jkRu/Jazod//73v3n66aeVjul0B7pZs2Zx1llnOTK2xpyKigpyc3Nbe7WrxAlLvqCgQNn2ju4Yl9zEVeSFEBOEED8JIdYIIf4W5riDhRDNQojfxnJ+mtRk06ZNjkTWg3OWfENDA1u2bHFkbI05V199NW+++aYjYzsh8hdffDHz5s1TMpbuGJfcxE3khRBpwCPACcBwYLIQYniI4+4G3o3tDDWpSENDA+Xl5RQVqS2b6bS73u12t4qBJvYIIRwLfDQC7xI1T153jEtu4mnJjwLWSCl/kVI2Ai8CpwQ57jJgDrA1lpPTpCabNm0C1KfP1dTUADgmBB6Ph6amJt1uNk7cfffdLFq0yJGxvV4vHo9Hac+Djz/+mCuuuILa2lrbY+mOcclNPEW+H9B2M2dTy2utCCH6AacBj8VwXpoUprg4cMklm7s+PT0dKaUuiBMHGhsbeeWVV/j5558dG19l+hwE8vo/+ugjJSJfOK2wQ916A90xLvGJp8gH69fY3ky5H7hGShn2ySaEuFgIsVwIsdyIgtVognHYYYcxd+5c5b3ZnXbXDx06lAkTJujStnGgrKwMgD59+jgyvtfrVR7Ql5GR0Tq2XZxoUKOJHfHcBNoEtL06+gPtIzhGAi+29G/uAZwohPBJKV9ve5CU8gngCYCRI0dqf6YmJB6Ph9122035uNXV1WRlZTm2rzpu3DjGjRvnyNia8Bgi37dvX0fG93q9SoPu4FeRN/b77eBUgxpNbIjnr/MFMFQIMQgoASYBU9oeIKVs7YYghHgG+F97gddoIuGll16ie/fuHHPMMUrHramp0TnyKcrmzZsBKCx0xi3d2NjYKsqqUGnJg25Qk8zEzV0vpfQBfyYQNf8D8LKU8nshxCVCiEviNS9NavPcc885UtO7pqbG0bKzH374IYcddhgbN2507Bya4NTV1ZGdne1IIRwIZHyoFvnc3Fx22203Wrygmk5MXP0sUsq3gLfavRY0yE5K+YdYzEmTuni9XrZu3ao86A4C7nonRd7lctHQ0KDrkceByZMnM2nSJMcE04k9+QMOOIC5c+cqHVOTnOiKd5pOQ0lJCVJKBgwYoHxsp931hqWnRT4+OGkRNzQ0OFJJT6MBLfKaToTh6lZdCAecd9dnZWUBWuTjwYwZM5RVjwuGEyK/efNm/vjHP/LFF18oHVeTfGiR13Qatm4N1FNyQuSddtcbIqBFPrZ4vV4WLFiAk6m5Toi8z+fjyy+/bL3mNZ0XLfKaTsNZZ53F0qVLlbvVpZSOW/I9evTgtNNOcyz4SxOckpISQH3xpLbU19c7lievIoVOk9zoBEdNp8Jwe6uksbERn8/nqMj37NmT66+/3rHxNcFxqkJiW+rr65Vfl0YFPd3vQKMteU2n4ZZbbuG9995TPq7TdesN/H6/LmsbY5yM44CAF6i+vp7s7Gyl4xrFdVTlyWuSFy3ymk5Bc3Mz69evp6KiwpGx99prL3r37q18bAO/38/vf/975s+f79g5NB1JT09n+PDh5OXlOTK+3+9n2LBhyqvpZWRkMGzYMAoKCpSOq0k+RKp1tRJClAMb4nDqHsC2OJw30dDfQwD9PQTQ38Ov6O8igP4eAqj+HgZIKXu2fzHlRD5eCCGWSylHxnse8UZ/DwH09xBAfw+/or+LAPp7CBCr70G76zUajUajSVG0yGs0Go1Gk6JokVfHE/GeQIKgv4cA+nsIoL+HX9HfRQD9PQSIyfeg9+Q1Go1Go0lRtCWv0Wg0Gk2KokU+CoQQZwohvhdC+IUQIaMjhRDrhRDfCiFWCiGWx3KOsSKC72KCEOInIcQaIcTfYjnHWCCE6CaEeF8I8XPLv7uGOC4lrwmz31cEeLDl/W+EECPiMU+nsfA9jBdCVLb8/iuFEDfGY55OI4R4WgixVQjxXYj3O8v1YPY9OH49aJGPju+A04ElFo49Ukp5QAqnjJh+F0KINOAR4ARgODBZCDE8NtOLGX8DPpRSDgU+bPn/UKTUNWHx9z0BGNryz8XAozGdZAyI4Dpf2vL7HyClvCWmk4wdzwATwryf8tdDC88Q/nsAh68HLfJRIKX8QUr5U7znkQhY/C5GAWuklL9IKRuBF4FTnJ9dTDkFeLblv58FTo3fVGKOld/3FOA5GWAZUCCEUFvmLf50huvcElLKJcD2MId0huvByvfgOFrknUUC7wkhvhRCXBzvycSRfkBxm//f1PJaKtFbSrkZoOXfodrFpeI1YeX37QzXgNXPeKgQ4mshxNtCiL1jM7WEozNcD1Zx9HrQXehCIIT4AOgT5K3rpZRvWBxmrJSyVAjRC3hfCPFjy8ouqVDwXYggryVdWke47yGCYVLimmiHld83Ja4BE6x8xhUEyo/WCCFOBF4n4LLubHSG68EKjl8PWuRDIKU8RsEYpS3/3iqEeI2AOy/pHugKvotNQNs2Xv2BUptjxpxw34MQYosQoq+UcnOL23FriDFS4ppoh5XfNyWuARNMP6OUsqrNf78lhJglhOghpexstdw7w/VgSiyuB+2udwghRBchRK7x38BxBILUOiNfAEOFEIOEEOnAJGBenOekmnnAeS3/fR7QwcORwteEld93HnBuS1T1aKDS2N5IIUy/ByFEHyGEaPnvUQSewepbIyY+neF6MCUW14O25KNACHEa8BDQE5gvhFgppTxeCFEIPCmlPBHoDbzW8vu5gf9KKd+J26Qdwsp3IaX0CSH+DLwLpAFPSym/j+O0neAu4GUhxIXARuBMgM5wTYT6fYUQl7S8/xjwFnAisAaoA86P13ydwuL38FvgUiGED6gHJskUrEgmhHgBGA/0EEJsAm4CPNB5rgew9D04fj3oincajUaj0aQo2l2v0Wg0Gk2KokVeo9FoNJoURYu8RqPRaDQpihZ5jUaj0WhSFC3yGo1Go9GkKFrkNRqNRqNJUbTIazSasAgh7hBCSCFEh1zmlmImi4UQXiHEPi2vHSuEeEwI8YUQoqHlb8fHet4ajUaLvEajMecfBCrz3SeEKGr33hXAOOAmKaVRve9s4AICBWF+iNEcNRpNELTIazSasLS0TT0P6AI8abwuhBgG3A58Bsxs8yfXA7lSyhHAf2I4VY1G0w4t8hqNxhQp5QrgTuA4IcTFQog04DkC3cTOk1I2tzm2RErpjdNUNRpNG3Tteo1GY5VbgZOB/wMOINBB7yop5U/xnJRGowmNtuQ1Go0lpJRNBNz2mcClwEfAA3GdlEajCYsWeY1GEwlVgOGKf0tK6Y/nZDQaTXi0yGs0Gku09L3+N5BOIGr+BiHE4PjOSqPRhEOLvEajscplBHpj3wycSSCm5+kW8ddoNAmIFnmNRmOKEGIogej6L4C7pZTfExD7cQTEX6PRJCBa5DUaTViEEC7gGQLFbdqmy90NLAfu1G57jSYx0Sl0Go3GjKuBMcA1UsrWCnZSymYhxB+AFQTc9uOllFIIsR8wseWwsS3//r0Q4rCW/35ISlkZo7lrNJ0aIaWM9xw0Gk2CIoTYi4CIrwQOa1v0ps0x1wJ3AH+RUj7YIvz/DjPsICnlevWz1Wg07dEir9FoNBpNiqL35DUajUajSVG0yGs0Go1Gk6JokddoNBqNJkXRIq/RaDQaTYqiRV6j0Wg0mhRFi7xGo9FoNCmKFnmNRqPRaFIULfIajUaj0aQoWuQ1Go1Go0lRtMhrNBqNRpOi/D/g+Qt+KcSr4AAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 576x432 with 1 Axes>" ] @@ -388,12 +400,6 @@ } ], "source": [ - "\n", - "set1=np.concatenate((np.random.normal([1,1], 0.25, (100, 2)), np.random.normal([-1,1], 0.25, (100, 2))))\n", - "#set1=np.random.normal([1,1], 0.25, (100, 2))\n", - "set2=np.random.normal([0,1], 0.25, (100, 2))\n", - "set12=np.concatenate((set1,set2))\n", - "\n", "plt.plot(set1[:,0],set1[:,1],'mo',markersize=8)\n", "plt.plot(set2[:,0],set2[:,1],'co',markersize=8)\n", "\n", @@ -414,19 +420,10 @@ "xy = np.vstack([grid_x.ravel(), grid_y.ravel()]).T\n", "Z = clf.decision_function(xy).reshape(grid_x.shape)\n", "\n", - "plt.contour(\n", - " grid_x, grid_y, Z, colors=\"k\", levels=[-1, 0, 1],alpha=0.8, linestyles=[\"--\", \"-\", \"--\"]\n", - ")\n", + "plt.contour(grid_x, grid_y, Z, colors=\"k\", levels=[-1, 0, 1],alpha=0.8, linestyles=[\"--\", \"-\", \"--\"])\n", "\n", "# plot support vectors\n", - "plt.scatter(\n", - " clf.support_vectors_[:, 0],\n", - " clf.support_vectors_[:, 1],\n", - " s=80,\n", - " linewidth=1.5,\n", - " facecolors=\"none\",\n", - " edgecolors=\"k\",\n", - ")\n", + "plt.scatter(clf.support_vectors_[:, 0],clf.support_vectors_[:, 1],s=80,linewidth=1.5,facecolors=\"none\",edgecolors=\"k\")\n", "\n", "plt.title('dataset', size=20)\n", "#plt.xlim(-2,2)\n", @@ -438,6 +435,1887 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Utilization of SVM for real datasets\n", + "\n", + "For more realistic problems, we can now use SVM to classify a real dataset of materials. Below, you can find a dataset of 576 materials that are experimentally characterized as perovskite and non-pervoskite at ambient conditions by $exp$_$label$ label that is a Boolean variable, for which the value 1.0 (0.0) means stable (unstable) as perovskite. For these materials some common properties such as Shannon ionic radii (r), oxidation satates of ions(n), nuclear charges(Z), HOMO, LUMO, electron affinity(EA), ionization potential(IP) (columns of the dataframes) etc are calculated with DFT-PBE using the FHI-aims all-electron full-potential code. Here we consider these properties as the primary features and try to classify the dataset using SVM. Below the perovskite data set and the chosen primary features are domentrated as a dataframe. \n", + "\n", + "We have already classified this data set with other machine learning techniques (SISSO and decision tree classifier) which for more details you can visit the folowing link:\n", + "\n", + "[Finding a tolerance factor to predict perovskite stability with SISSO](https://nomad-lab.eu/dev/analytics/staging/user/8aae636a-3dc1-4620-8cff-e109c16f27f8/notebooks/tutorials/perovskites_tolerance_factor.ipynb)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>exp_label</th>\n", + " <th>rA</th>\n", + " <th>rB</th>\n", + " <th>rX</th>\n", + " <th>nA</th>\n", + " <th>nB</th>\n", + " <th>nX</th>\n", + " <th>rA_rB_ratio</th>\n", + " <th>rA_rX_ratio</th>\n", + " <th>rB_rX_ratio</th>\n", + " <th>...</th>\n", + " <th>LUMO_B</th>\n", + " <th>EA_B</th>\n", + " <th>IP_B</th>\n", + " <th>rS_X</th>\n", + " <th>rP_X</th>\n", + " <th>Z_X</th>\n", + " <th>HOMO_X</th>\n", + " <th>LUMO_X</th>\n", + " <th>EA_X</th>\n", + " <th>IP_X</th>\n", + " </tr>\n", + " <tr>\n", + " <th>material</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>AgBrO3</th>\n", + " <td>0.0</td>\n", + " <td>1.28</td>\n", + " <td>0.31</td>\n", + " <td>1.40</td>\n", + " <td>1.0</td>\n", + " <td>5</td>\n", + " <td>-2</td>\n", + " <td>4.12903</td>\n", + " <td>0.914286</td>\n", + " <td>0.221429</td>\n", + " <td>...</td>\n", + " <td>0.055110</td>\n", + " <td>-3.678151</td>\n", + " <td>12.554312</td>\n", + " <td>0.4608</td>\n", + " <td>0.4333</td>\n", + " <td>8</td>\n", + " <td>-9.030485</td>\n", + " <td>-0.068724</td>\n", + " <td>-3.078804</td>\n", + " <td>16.431366</td>\n", + " </tr>\n", + " <tr>\n", + " <th>AgCdBr3</th>\n", + " <td>0.0</td>\n", + " <td>1.28</td>\n", + " <td>0.95</td>\n", + " <td>1.96</td>\n", + " <td>1.0</td>\n", + " <td>2</td>\n", + " <td>-1</td>\n", + " <td>1.34737</td>\n", + " <td>0.653061</td>\n", + " <td>0.484694</td>\n", + " <td>...</td>\n", + " <td>-1.157118</td>\n", + " <td>0.948262</td>\n", + " <td>9.271930</td>\n", + " <td>0.7514</td>\n", + " <td>0.8834</td>\n", + " <td>35</td>\n", + " <td>-7.858439</td>\n", + " <td>0.055110</td>\n", + " <td>-3.678151</td>\n", + " <td>12.554312</td>\n", + " </tr>\n", + " <tr>\n", + " <th>PbAgBr3</th>\n", + " <td>0.0</td>\n", + " <td>1.49</td>\n", + " <td>1.15</td>\n", + " <td>1.96</td>\n", + " <td>2.0</td>\n", + " <td>1</td>\n", + " <td>-1</td>\n", + " <td>1.29565</td>\n", + " <td>0.760204</td>\n", + " <td>0.586735</td>\n", + " <td>...</td>\n", + " <td>-0.246293</td>\n", + " <td>-1.475587</td>\n", + " <td>7.755963</td>\n", + " <td>0.7514</td>\n", + " <td>0.8834</td>\n", + " <td>35</td>\n", + " <td>-7.858439</td>\n", + " <td>0.055110</td>\n", + " <td>-3.678151</td>\n", + " <td>12.554312</td>\n", + " </tr>\n", + " <tr>\n", + " <th>AgCaCl3</th>\n", + " <td>0.0</td>\n", + " <td>1.28</td>\n", + " <td>1.00</td>\n", + " <td>1.81</td>\n", + " <td>1.0</td>\n", + " <td>2</td>\n", + " <td>-1</td>\n", + " <td>1.28000</td>\n", + " <td>0.707182</td>\n", + " <td>0.552486</td>\n", + " <td>...</td>\n", + " <td>-1.945848</td>\n", + " <td>0.149995</td>\n", + " <td>6.309260</td>\n", + " <td>0.6785</td>\n", + " <td>0.7567</td>\n", + " <td>17</td>\n", + " <td>-8.594666</td>\n", + " <td>0.019724</td>\n", + " <td>-3.935230</td>\n", + " <td>13.876021</td>\n", + " </tr>\n", + " <tr>\n", + " <th>AgClO3</th>\n", + " <td>0.0</td>\n", + " <td>1.28</td>\n", + " <td>0.12</td>\n", + " <td>1.40</td>\n", + " <td>1.0</td>\n", + " <td>5</td>\n", + " <td>-2</td>\n", + " <td>10.66670</td>\n", + " <td>0.914286</td>\n", + " <td>0.085714</td>\n", + " <td>...</td>\n", + " <td>0.019724</td>\n", + " <td>-3.935230</td>\n", + " <td>13.876021</td>\n", + " <td>0.4608</td>\n", + " <td>0.4333</td>\n", + " <td>8</td>\n", + " <td>-9.030485</td>\n", + " <td>-0.068724</td>\n", + " <td>-3.078804</td>\n", + " <td>16.431366</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>RbUO3</th>\n", + " <td>1.0</td>\n", + " <td>1.72</td>\n", + " <td>0.76</td>\n", + " <td>1.40</td>\n", + " <td>1.0</td>\n", + " <td>5</td>\n", + " <td>-2</td>\n", + " <td>2.26316</td>\n", + " <td>1.228570</td>\n", + " <td>0.542857</td>\n", + " <td>...</td>\n", + " <td>-1.995273</td>\n", + " <td>0.546862</td>\n", + " <td>5.590258</td>\n", + " <td>0.4608</td>\n", + " <td>0.4333</td>\n", + " <td>8</td>\n", + " <td>-9.030485</td>\n", + " <td>-0.068724</td>\n", + " <td>-3.078804</td>\n", + " <td>16.431366</td>\n", + " </tr>\n", + " <tr>\n", + " <th>SmTiO3</th>\n", + " <td>1.0</td>\n", + " <td>1.24</td>\n", + " <td>0.67</td>\n", + " <td>1.40</td>\n", + " <td>3.0</td>\n", + " <td>3</td>\n", + " <td>-2</td>\n", + " <td>1.85075</td>\n", + " <td>0.885714</td>\n", + " <td>0.478571</td>\n", + " <td>...</td>\n", + " <td>-4.219539</td>\n", + " <td>-0.313899</td>\n", + " <td>7.119307</td>\n", + " <td>0.4608</td>\n", + " <td>0.4333</td>\n", + " <td>8</td>\n", + " <td>-9.030485</td>\n", + " <td>-0.068724</td>\n", + " <td>-3.078804</td>\n", + " <td>16.431366</td>\n", + " </tr>\n", + " <tr>\n", + " <th>SrTeO3</th>\n", + " <td>0.0</td>\n", + " <td>1.44</td>\n", + " <td>0.97</td>\n", + " <td>1.40</td>\n", + " <td>2.0</td>\n", + " <td>4</td>\n", + " <td>-2</td>\n", + " <td>1.48454</td>\n", + " <td>1.028570</td>\n", + " <td>0.692857</td>\n", + " <td>...</td>\n", + " <td>0.193946</td>\n", + " <td>-2.575489</td>\n", + " <td>9.729526</td>\n", + " <td>0.4608</td>\n", + " <td>0.4333</td>\n", + " <td>8</td>\n", + " <td>-9.030485</td>\n", + " <td>-0.068724</td>\n", + " <td>-3.078804</td>\n", + " <td>16.431366</td>\n", + " </tr>\n", + " <tr>\n", + " <th>SrTiO3</th>\n", + " <td>1.0</td>\n", + " <td>1.44</td>\n", + " <td>0.60</td>\n", + " <td>1.40</td>\n", + " <td>2.0</td>\n", + " <td>4</td>\n", + " <td>-2</td>\n", + " <td>2.40000</td>\n", + " <td>1.028570</td>\n", + " <td>0.428571</td>\n", + " <td>...</td>\n", + " <td>-4.219539</td>\n", + " <td>-0.313899</td>\n", + " <td>7.119307</td>\n", + " <td>0.4608</td>\n", + " <td>0.4333</td>\n", + " <td>8</td>\n", + " <td>-9.030485</td>\n", + " <td>-0.068724</td>\n", + " <td>-3.078804</td>\n", + " <td>16.431366</td>\n", + " </tr>\n", + " <tr>\n", + " <th>YTmO3</th>\n", + " <td>0.0</td>\n", + " <td>1.08</td>\n", + " <td>0.88</td>\n", + " <td>1.40</td>\n", + " <td>3.0</td>\n", + " <td>3</td>\n", + " <td>-2</td>\n", + " <td>1.22727</td>\n", + " <td>0.771429</td>\n", + " <td>0.628571</td>\n", + " <td>...</td>\n", + " <td>-1.072406</td>\n", + " <td>0.522244</td>\n", + " <td>6.424662</td>\n", + " <td>0.4608</td>\n", + " <td>0.4333</td>\n", + " <td>8</td>\n", + " <td>-9.030485</td>\n", + " <td>-0.068724</td>\n", + " <td>-3.078804</td>\n", + " <td>16.431366</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>576 rows × 31 columns</p>\n", + "</div>" + ], + "text/plain": [ + " exp_label rA rB rX nA nB nX rA_rB_ratio rA_rX_ratio \\\n", + "material \n", + "AgBrO3 0.0 1.28 0.31 1.40 1.0 5 -2 4.12903 0.914286 \n", + "AgCdBr3 0.0 1.28 0.95 1.96 1.0 2 -1 1.34737 0.653061 \n", + "PbAgBr3 0.0 1.49 1.15 1.96 2.0 1 -1 1.29565 0.760204 \n", + "AgCaCl3 0.0 1.28 1.00 1.81 1.0 2 -1 1.28000 0.707182 \n", + "AgClO3 0.0 1.28 0.12 1.40 1.0 5 -2 10.66670 0.914286 \n", + "... ... ... ... ... ... .. .. ... ... \n", + "RbUO3 1.0 1.72 0.76 1.40 1.0 5 -2 2.26316 1.228570 \n", + "SmTiO3 1.0 1.24 0.67 1.40 3.0 3 -2 1.85075 0.885714 \n", + "SrTeO3 0.0 1.44 0.97 1.40 2.0 4 -2 1.48454 1.028570 \n", + "SrTiO3 1.0 1.44 0.60 1.40 2.0 4 -2 2.40000 1.028570 \n", + "YTmO3 0.0 1.08 0.88 1.40 3.0 3 -2 1.22727 0.771429 \n", + "\n", + " rB_rX_ratio ... LUMO_B EA_B IP_B rS_X rP_X \\\n", + "material ... \n", + "AgBrO3 0.221429 ... 0.055110 -3.678151 12.554312 0.4608 0.4333 \n", + "AgCdBr3 0.484694 ... -1.157118 0.948262 9.271930 0.7514 0.8834 \n", + "PbAgBr3 0.586735 ... -0.246293 -1.475587 7.755963 0.7514 0.8834 \n", + "AgCaCl3 0.552486 ... -1.945848 0.149995 6.309260 0.6785 0.7567 \n", + "AgClO3 0.085714 ... 0.019724 -3.935230 13.876021 0.4608 0.4333 \n", + "... ... ... ... ... ... ... ... \n", + "RbUO3 0.542857 ... -1.995273 0.546862 5.590258 0.4608 0.4333 \n", + "SmTiO3 0.478571 ... -4.219539 -0.313899 7.119307 0.4608 0.4333 \n", + "SrTeO3 0.692857 ... 0.193946 -2.575489 9.729526 0.4608 0.4333 \n", + "SrTiO3 0.428571 ... -4.219539 -0.313899 7.119307 0.4608 0.4333 \n", + "YTmO3 0.628571 ... -1.072406 0.522244 6.424662 0.4608 0.4333 \n", + "\n", + " Z_X HOMO_X LUMO_X EA_X IP_X \n", + "material \n", + "AgBrO3 8 -9.030485 -0.068724 -3.078804 16.431366 \n", + "AgCdBr3 35 -7.858439 0.055110 -3.678151 12.554312 \n", + "PbAgBr3 35 -7.858439 0.055110 -3.678151 12.554312 \n", + "AgCaCl3 17 -8.594666 0.019724 -3.935230 13.876021 \n", + "AgClO3 8 -9.030485 -0.068724 -3.078804 16.431366 \n", + "... ... ... ... ... ... \n", + "RbUO3 8 -9.030485 -0.068724 -3.078804 16.431366 \n", + "SmTiO3 8 -9.030485 -0.068724 -3.078804 16.431366 \n", + "SrTeO3 8 -9.030485 -0.068724 -3.078804 16.431366 \n", + "SrTiO3 8 -9.030485 -0.068724 -3.078804 16.431366 \n", + "YTmO3 8 -9.030485 -0.068724 -3.078804 16.431366 \n", + "\n", + "[576 rows x 31 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#load data\n", + "df = pd.read_csv(\"data/svm_classification/data_perovskite.csv\", index_col=0)\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below we first perform SVM in a 2D feature space (two features are chosen). In this regard, we consider all possible pairs of the chosen primary features. Then we divide the dataset into training set and test set and then use the training set to fit the SVM model. For each pair, we fit the SVM and obtain the prediction accuracy." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# splitting dataframe to training and test sets\n", + "\n", + "# 80 percent of materials for training set\n", + "training_df = df.sample(frac = 0.8)\n", + " \n", + "# the rest for the test set\n", + "test_df = df.drop(training_df.index)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Features</th>\n", + " <th>Training Accuracy</th>\n", + " <th>Test Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>(rA, rB)</td>\n", + " <td>0.845987</td>\n", + " <td>0.904348</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>(rA, rX)</td>\n", + " <td>0.800434</td>\n", + " <td>0.747826</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>(rA, nA)</td>\n", + " <td>0.707158</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>(rA, nB)</td>\n", + " <td>0.741866</td>\n", + " <td>0.678261</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>(rA, nX)</td>\n", + " <td>0.694143</td>\n", + " <td>0.634783</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>430</th>\n", + " <td>(HOMO_X, EA_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>431</th>\n", + " <td>(HOMO_X, IP_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>432</th>\n", + " <td>(LUMO_X, EA_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>433</th>\n", + " <td>(LUMO_X, IP_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>434</th>\n", + " <td>(EA_X, IP_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>435 rows × 3 columns</p>\n", + "</div>" + ], + "text/plain": [ + " Features Training Accuracy Test Accuracy\n", + "0 (rA, rB) 0.845987 0.904348\n", + "1 (rA, rX) 0.800434 0.747826\n", + "2 (rA, nA) 0.707158 0.652174\n", + "3 (rA, nB) 0.741866 0.678261\n", + "4 (rA, nX) 0.694143 0.634783\n", + ".. ... ... ...\n", + "430 (HOMO_X, EA_X) 0.691974 0.652174\n", + "431 (HOMO_X, IP_X) 0.691974 0.652174\n", + "432 (LUMO_X, EA_X) 0.691974 0.652174\n", + "433 (LUMO_X, IP_X) 0.691974 0.652174\n", + "434 (EA_X, IP_X) 0.691974 0.652174\n", + "\n", + "[435 rows x 3 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "n=2 #dimension \n", + "primary_features_list =training_df.columns.values[:]\n", + "primary_features_list =np.delete(primary_features_list, 0)\n", + "all_pairs_combinations=[comb for comb in combinations(primary_features_list, n)]\n", + "\n", + "train_labels=training_df[\"exp_label\"].values\n", + "test_labels=test_df[\"exp_label\"].values\n", + "accuracy_training=[]\n", + "accuracy_test=[]\n", + "for i in range(len(all_pairs_combinations)):\n", + " primary_feature_pairs_train=np.array(list(zip(training_df[all_pairs_combinations[i][0]].values, training_df[all_pairs_combinations[i][1]].values)))\n", + " primary_feature_pairs_test=np.array(list(zip(test_df[all_pairs_combinations[i][0]].values, test_df[all_pairs_combinations[i][1]].values)))\n", + " clf = svm.SVC(kernel=\"rbf\", C=10) # kernel{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or callable’\n", + " clf.fit(primary_feature_pairs_train, train_labels)\n", + " pred_test_labels=clf.predict(primary_feature_pairs_test)\n", + " accuracy_training.append(clf.score(primary_feature_pairs_train,train_labels))\n", + " accuracy_test.append(metrics.accuracy_score(test_labels, pred_test_labels)) \n", + "\n", + "features_and_accuracy_list=[[all_pairs_combinations[i],accuracy_training[i],accuracy_test[i]] for i in range(len(accuracy_training))]\n", + "combinations_df= pd.DataFrame(data=features_and_accuracy_list,columns=['Features','Training Accuracy','Test Accuracy'])\n", + "combinations_df.style.set_properties(subset=['Features'], **{'width': '300px'})\n", + "combinations_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then we choose the pair with the highest prediction accuracy for the training and test sets and then fit the SVM model for this pair and plot the hyperplane, margin and support vectors." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The 1st combination has the highest accuracy (training accuracy * test accuracy) with the following features :\n", + " ('rA', 'rB') \n", + "\n", + "SVM highest accuracy for the training set: 0.845987.\n", + "SVM highest accuracy for the test set: 0.904348.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAGQCAYAAACtTRl2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3hURReH39lsGimkQUij99577wKCIFV6BxFUigICgqKgwCcqTZpUBcVCL4IivfeSUEIIoYX0ns3uzvfHJktCCiEkgDrv8+yz2XvnTrm7ub8pZ84RUkoUCoVCoVD8+9C87AooFAqFQqHIG5TIKxQKhULxL0WJvEKhUCgU/1KUyCsUCoVC8S9FibxCoVAoFP9SlMgrFAqFQvEvRYm8QvEvRAhRVAghhRCrspl+enL6pnlasRzwrG1RKBSPUSKv+NeRLAipXwYhRIgQ4k8hRO+XXb9/Esn3b//LrkduIIRomtye6S+7Ls+DECJACBHwsuuh+GegfdkVUCjykBnJ75ZAGeANoJkQooaUcuxLq9WryQJgAxD4siuiUChyDyXyin8tUsrpqT8LIVoAfwDvCSG+kVIGvIx6vYpIKUOAkJddD4VCkbuo6XrFfwYp5T7AFxBArZTjQghvIcQCIYS/ECJRCBEqhNgihKj1ZB6p166FEG8JIY4LIWJST58KITyEEAuTp1V1QohHQohfhRA1nshrUnJeYzKqrxDCM3mp4WSqYw5CiKlCiEtCiCghRLQQ4qYQYuOT+WeSp0YI8U1yub8KIWyebFfy5wFCiBSf102eWP6Y/kSedYQQm4QQD5Lbe0cI8Z0QwvNp9XkiHwchxP+EEEFCiAQhhK8QYiyZPKeEEKWFELOFEKeS73GiEOK2EGKpEML7ibSrgL+SP378RHtS2pxfCDEheVknKNV3t0UIUfcZ2+IuhJgrhPATQsQKISKS/14lhCieQfo2QogdyctKicnf6RwhhFOqNE2Tv5MiQJEn2rDqWeqn+O+gRvKK/xoi+V0CCCGqA3sAF2A38Cvghmlq/5AQorOUckcG+YwDWgFbMYlH/uT8igGHAE/gT+BHwAfoBrQXQrwppdyWnMcaYCbQH/gmgzL6YBK41cl5C2AXUB84CiwH9Mn5NwUOAqczbbhJ0NcBbwILgTFSSmMmyc9hWu74GLgNrEp1bn+qPAcCy4BEYAtwBygFDAFeF0LUlVI+dQlACGEN7MPU+ToPrAecgKlAk0wu6wKMwHT/jwA6oEKqsmtKKe8mp/09+b0/8HfqNgABye/lgM+AA8B2IBwoDHQEXhNCvC6l3JWNtuQDDgMlMM0cbcX0uysCdAI2Af6p0k/DdK/DgG1AMFAZGA+0E0LUk1JGJddzBvBe8qXzUxV77mn1UvxHkVKql3r9q16YBFxmcLwlYEx+FcHUyb0BJABNnkjrCdwF7gPWqY5PT84/FqiWQRm7k89/9MTx+pgEORSwzyB9xQzyuoxJuFyTP1dKTvtbBmk1gHOqz0WT065K/uyCqRNgBD7M4PqUdjXN4F7uz+Q+l06u3w3A64lzzQFDRnXNJK/JyWX9AmhSHS+GSfzMbUl1ziv1d5PqeOvkshc/cbxpcj7TM6lDfsAtg+PewD3gajbb8npyOV9lcM4KcEj1uVly2iOA0xNpB2SUDyaxD3hR/0/q9c9+qel6xb+W5Cno6UKIz4QQmzCNggUwX0p5G2iPabT1rZTy79TXSinvAV8ChYAWGWS/VEp59onyvDEJTGDytanzO4JpVO+CaQSawurk9/5P5FUTKA9sk1KGPlF2/JOVkVIapZThGdQTIUQRTCPLOkBfKeUXGaXLASMxGTW+Kx+PmFPq8yemkf3rQgiHbOQ1EFMH5AOZanZBSnmLjGc5kFLelVImZnB8D6YOUpvsNiT5ukhpsk148ngQptF3WSFE4WfIMqPvSSeljE51KGWpZqiUMuKJtKswjdDVjhBFjlHT9Yp/Mx8nv0sgAtNIdoWUcl3y8XrJ70WeXGdOplTyezngySn7Exmkr5b8flBKmZTB+T8xTcFXwzRVD/AbEAn0EUJMlFIako+niP6qVNdfwfTQ75Us3JsxLQ2cklLqMigPTLsKjgJ2wGvSZJeQW6TcvyYZ2S8ABQELTCP+rJYRHICSwB0p5c0Mkuzn8XeZ+jqBSQAHAFUA5+TyUsjsnmSKEKIB8C6mthXENPJOjRdP34HwN6ZZoInJy0E7MHWyzqX6flOoByQB3YQQ3TLIywooIIRwzaCzp1A8FSXyin8tUkrxlCSuye8ZPVxTY5/BsQcZHMuf/H4/k3xSjjulHJBSxgshfgKGYpoF2CmEsAR6AY+AnanSGoQQzYFpQFcgZUQeLYRYDUySUsY8UWZpTLMH54AzmdQrp6TcvwlPSZfR/UtNyn17mMn5jO41wP8wrU/fx7TscZfHo+cBmJZkso0QojOmEXsCprX0m5iWZYyYpvqbANZPy0dKGZVsqDcD03p+yoxCiBBiETAzVSfQFdNzOF0n5gnsMS31KBTPhBJ5xX+ZyOT3TlLKLc94rczgWEp+hTK5xuOJdCmsxiTy/TGJegdMD/+vn5wRSJ6Sfx94XwhREpPwDAfewdR56PtE3lsBP+BzYJ8QonVGU9I5JKUd+aXJMOx583HP5Hy6+ymEKIhpqvsSUP+JKXCEEL1yUI9PMY3+a0oprz6R33dkbgCYjuQp/sHJsw3lMdkojMLUQdNgMigEU9s1UkqXHNRXoXgqak1e8V/mWPJ7o1zKL2WNvqEQIqMOdLPk9zQjainlYeA60EkIkZ/HU/WryQIp5Q0p5QpM4hODyXI7o3SzMHUMqgF/CSEyE9OMMJJ2Cjw1uXL/kgX6BuAlhCiRQZKmGRwrjun5tScDgfdOPv8kKVPlmbWnJHAlA4HXAA0zbUAWSBOXpZTfYtqNAaadGykcA5yFEBWeIVsDmbdBoUiDEnnFf5nNmKZkRwkh2mWUQAhRL3lL1FNJHr39gcmy/b0n8qkDvIVpW9ZvGVy+GrAB3gbaARcyMOwrlokYOGOaRk5n6JWqbvMxGcpVAP5+hj3soZi26GXEAkzryV8JIUo/eVIIYSWEyG4H4HtMz6MvkkU1JY9iPDZOS01A8ntDIYRFqvT2mLb0ZdTJSpnuzsx4LgAolfreJI/EP8Y0Gs8WQoiKQoiiGZxK6VzFpTr2VfL7soy+EyGEXQZ79EMxrdPbZrdOiv8uarpe8Z9FSpkkhOiCaT13uxDiCKa16zhMwlYL04jQg7QP5qwYgcnIao4QojVwisf75I3AwCdHnsmsAT7BtI5rScaj+CrAb0KI05imqe8BBTCN4C15vEafWXuXCCESgBXAASFEc/n0Pez7gJ5CiK2YjOf0wAEp5QEppa8QYhCwErgshNgFXEuuS2FMI/xHQNmnlAEwD9MI903gjBBiN6a1+h6Y9q13fKItD4QQG4CewDkhxJ7k9K0wramfA6o+UYYfpnX7nkIIHSYDOgmsTd5t8RWwBDgrhPgFUwemASaB34ppa1x2aAn8L/n35Itp37s3pu/JCMxJ1Y59QoiJwCzguhBiB3AL0xp8EUyzNIeAtqnyT/EnsEsIcQCTj4LzUsqt2ayf4r/Ey97Dp17qldsvMtknn0X6gsBsTMIZh2nq+zomI6w+gDZV2ulksJ/8ify8gMWYnMjoMLmL/R2o9ZR67E3OOwlwz+C8N6a19cOYjNESgSBM6/ivPZG2KBnsLU8+1yu5jACgeFbtSr43P2AyijOQwT5zTPv3VyW3NxHTvvZLwHdA82f4HhwxGdPdxSTUvpicDhXPqC1APkzOa1J8HdzB5OTHFZNFfrrfACZx3IdpLdz4ZJsxGeydw2RwF4Jp1qVSdr73VHmUS27HKUydnMTke70Jk/1ARtc0BH7C1HHTJV93Ljmfmk+ktUv+fQVh6nRl+D2rl3pJKRFSZmQ/pFAoFAqF4p+OWpNXKBQKheJfihJ5hUKhUCj+pSiRVygUCoXiX4oSeYVCoVAo/qW8NJEXQqwUQgQLIS49JV0tYYqp3fVF1U2hUCgUin8DL826XgjRGNNWpTVSyoqZpLHA5FwkAVgppdz0tHzd3Nxk0aJFc7OqCoVCoVC8kiQkJGA0Grl69WqIlLLAk+dfmjMcKeWBTLxCpWY0pvjSGUW4ypCiRYty6tSp56maQqFQKBSvNFFRUSxatIhffvmFypUrc/Xq1dsZpXtl1+SFEF5AZ0weqJ6WdpgQ4pQQ4tSjR4/yvnIKhUKhULwEpJTs2LGDrl278uuvv9KjRw++/vrrTNO/ym5t5wMfSlN4zSwTSimXAksBatasqbz7KBQKheJfyYEDB5g2bRoVK1ZkwYIFlC6dLmxEGl5lka8JbEgWeDegnRBCL6X8/aXWSqFQKBSKF4jBYMDf359SpUrRqFEjZs2aRYsWLdBonj4Z/8pO10spi0kpi0opi2Ly+fy2EniFQqFQ/Je4du0a/fv3Z9iwYURFRaHRaGjVqlW2BB5e4kheCPEjpjjRbkKIIEzhHC3BFC3rZdVLoVAoFIqXTVJSEitXrmTlypXkz5+fKVOm4Ojo+Mz5vEzr+l7PkHZAHlZFoVAoFIpXhri4OAYPHsz169dp164d48aNI3/+/DnK61Vek1coFAqF4j+DlBIhBPny5aN27dqMHDmSxo0bP1eer+yavEKhUCj+OdwNj2fo6tN0+OYIPb87wdEbIbmav8EoOXg9hOUHb7HqyG2uP4zJ1fzzmpCQEN7o0Qc7Zzes7Rwp4F2Mbxd9h9FoBODWrVsMGTKEGzduAPD+++8/t8DDS/R4l1fUrFlTKmc4CoVC8eLou/wEl++nF107Kwt2jKmHg63Vc+V/7k4E43+6SILeSLzOgEYj0GoEZQrZ81X3yjjbPV/+ec2aHzbQv09vkEbQWKCxtMaYGAeAo6s7X8+dzdKlS7G1teXzzz+nTp06z1yGEOK0lLJmuuNK5BUKhUKRU4auPs3pwMhMz9tYajgysWmO87/+MIb+358iIcmY7pxWI/BysmHj8DpYaV/NiWk/Pz/KlisHCDxbDaFA/W5oNBp0USEEbPyU2DuX0FpZM2rkCKZOnYqrq2uOyslM5F/Nu6JQKBSKV554nSFLgQdISDKy/cL9HJex4K+bJGYg8AB6oyQ4Rsfeq8E5zj+v6TVoBEhJkS4f4t6wh3nrm5WjGy5VW6KxtEavS6R37945FvisUCKvUCgUihzxzb4b2Uq34C//HOUfrzNwzD+MrOab43UGNp4MylH+L4LzJ46gsbbDpUpLAIxJOhLDTZ0e1+qv4fPGBADemzgtT8pXIq9QKBSKHBEUHp+tdNEJ+hzlH52gR/MUt+YAobG6HOX/IjAakrC0dwYgITSI27/OImj7AqRBj7DQ4lShCQAPg/Mm7ooSeYVCoVDkiOIF7LKVzilfznZrO9pqMWbDbszdwTpH+b8ILLRW6KJCCL/0N4G/foEhIY5CTfsiLEz3JOraMQC8vTzzpHwl8gqFQqHIEaOaF89WurGtsg6ikhk2lhY0Ke2GJovBfD5LC3rV9slR/i+CGvUbIZMSuLt7Cfk8y1C0+xTsvMuaz9/dbXLwunDerDwpX4m8QqFQKHKElYUFzcpkbSzmaKOledkCOS7jnWYlsLG0yKR8DT6utjQp45bj/POaDd8vBSApMhgpNGi0plmH+If++C4eji70LsXKVqJChQp5Ur7aQqdQKBSK52LMj+c4dCMs3XE3O0u2vVsfK4uMRTq7XHsYw4SfLxISk4hRghBglFCnmDOfda6AvfWr5bxVSsnPP/9M06ZNKViwIDv37KFDu/YYDXpAICwskAaTnYJHkZIEXLuMldXz7fVX++QVCoVCkWfE6JKYudWP26Fx5Le1ZHybUpQsaJ9r+UspuXA3Ct/70VhaCOqVcMUjv02u5Z9bREdHM2PGDPbv38+wYcMYNmwYADqdjrETp/Ljjz+iS0zEzb0QX8+ZRccO7XKlXCXyCoVCoVDkIX5+fnzwwQc8ePCAMWPG8NZbbyGysTsgp8THx7N69WocHR3p3bt3hiL/as1xKBQKhULxD+T48eO8//77ODk5sWzZMipXrpxnZUkp+eOPP5g/fz7BwcF06dIl07TK8E6hUCgUiuekQoUKvPbaa6xfvz5PBd7f35+RI0cyefJknJ2dWb58OZMnT840vZquVygUCoUiB9y7d49ly5YxadKk5zacexoJCQksX76ctWvXYmdnx9tvv02XLl3MbnIzW5NX0/UKhUKhUDwjR44cYcqUKUgp6dmzJ2XKlMnTsmbPns29e/d4/fXXGTNmDM7Oztm6Vom8QqFQKBTZxGg08v3337NkyRJKlSrFl19+ibe3d56UFR4ezrx589i1axdFihRh6dKlVK9e/ZnyUCKvUCgUCkU2+frrr1m/fj3t2rVj8uTJ2Njk/jY+KSW7d+9mzpw5xMbGMmzYMAYMGJCjJQEl8gqFQqFQZJM333wTLy8vunXrlifb40JCQvj88885cOAAFStWZNq0aRQvnj33wRmhRF6hUCgUiiz4+++/OXLkCBMnTqRw4cIULlw418uQUrJz507mzp1LQkIC77//Pr169TIb1uUUJfIKhUKhUGSA0Whk2bJlLFu2jPLlyxMXF4edXfYi7z0L4eHhfP755/z1119UrlyZ6dOn51pHQom8QqFQKBRPEBsby9SpUzlw4ACvv/56nm2TO3DgADNnziQ6OpoxY8bQp0+f5x69p0aJvEKhUCgUqZBSMnr0aC5dusSECRPo3r17rq+/x8fH89VXX/Hrr79SunRpFi1aRMmSJXO1DFAir1AoFApFGoQQDB8+HAsLC2rWTOdf5rm5evUqH330EXfu3KFfv36MGDEiz5zpKJFXKBQKxX8eKSXr1q1DCEGfPn2oU6dOrpdhNBpZt24dCxcuxNXVlSVLllCjRo1cLyc1SuQVCoVC8Z8mMTGRzz77jB07dtC6dWuklLk+PR8aGsq0adM4fvw4zZs3Z8qUKTg6OuZqGRmhRF6hUCgU/1mCg4MZP348V65cYeTIkQwaNCjXBf748eNMnTqV2NhYJk+eTOfOnfM0BG1qlMgrFAqF4j9JfHw8AwYMICYmhnnz5tGkSZNczd9gMPDdd9/x/fffU6xYMZYsWfJcjm1yghJ5hUKhUPwnsbW1ZcSIEVSoUIESJUrkat7BwcFMmTKFM2fO0KlTJyZMmJAnLnCfhhJ5hUKhUPxnMBqNLFiwgBo1atCgQQM6duyY62WcOHGCjz76iPj4eD755BPatWuX62VkFyXyCoVCofhPEBMTw+TJkzly5AhCCBo0aJCr+RuNRlauXMl3331HsWLFWLp0KcWKFcvVMp4VJfIKhUKhyBWiE/SExCTiYKPFzd76ZVcnDYGBgYwdO5Y7d+4wefJkunTpkqv5R0VFMWXKFI4cOUK7du2YNGkStra2uVpGTlAir1AoFIrnIig8nvl7b3DoeihaC4HeYKRkQXvebVmSWkWdX3b1uHfvHv3790ej0bB48eJnjsn+NHx9fZkwYQKPHj1i4sSJvPnmmy/Mev5pKJFXKBQKRY4JCIml38pTxOkMGCXoDKbjV+5HM+bH88zoWI7WFdxfah09PDx46623aN++PZ6enrma99atW5k1axbOzs6sWLGCChUq5Gr+z0vuecFXKBQKxX+OKb9fITbRJPBPkqg3Mn3rVeJ0+hdeL51Ox5w5cwgICEAIwdChQ3NV4JOSkpg1axYzZsygSpUqrFu37pUTeFAjeYVCoVDkkICQWG4+iiUDfTcjgJ0XH/JmDa8XVS3CwsKYMGEC58+fp3DhwhQtWjRX8w8JCeGDDz7gwoUL9OvXj1GjRmFhYZGrZeQWSuQVCoVCkSNuBMei1QgSs0gTn2Tk8r2oFybyfn5+vP/++0RGRvL555/TunXrXM3/4sWLTJgwgZiYGGbNmkWrVq1yNf/cRk3XKxQKhSJHWGk1pqF6FgjA1vLFjHIvXrzIoEGDAFi5cmWuC/zmzZsZNmwY1tbWrFq16pUXeHiJI3khxEqgAxAspayYwfnewIfJH2OAkVLK8y+wigqFQqHIghpFnNAbspqsBxtLC5qXK5Ar5QUHB3Ps2DFsbW1p1qwZWm1aCStTpgydOnViyJAhuLi45EqZAHq9nv/973/89NNP1KlTh1mzZuUouIzRaOTo0aMEBwdTvXp1ihQpkmt1zIyXOV2/ClgArMnk/C2giZQyXAjxGrAUyP3YfwqFQqHIEXbWWjpX8+T3s/dI0BvTnbfQCDycbKhe2Clb+emNRub/cYNfz5jyE4CPsy1vFElk+vsjuH3Tz5xWaCxo0qIVv278gWXLljFixAgcHR354IMPcql1JiIiIvjwww85ffo0ffr0YfTo0Tlafx8+fDhr1qwhISHBfMzb25vvvvsuxx7xdDodP/30E3Z2dpmmeWkiL6U8IIQomsX5I6k+HgO887xSCoVCoXgm3m9VkvuRCZy4FUZCktFshJfPygLnfJYs7l01W3vGdXoj7b4+TFhckvmYBHwvn2fgu++A0YCVsweOpepgSIwh0vco+//YRSEPTypXqkjdunVp3Lhxrrbt+vXrjBs3jpCQkOdyT1uvXj2OHTuGlZUVLVu2xNPTk5MnT3L16lXat2/P2rVr6dOnT7bzk1Jy4MABvvrqK4KCgnjttdcyTftPWZMfDOx82ZVQKBQKRVosLTT8r3slvuxakTKF7HHOp8Xb2YZ3mhXnl5F1KeCQPc937208n0bgU7i57iMwGnCt9ToaSxvCzv9B1LXj2LgVRmNthy4xAfv8zrku8H/99ReDBg0iKSmJZcuW5VjgFy1axLFjx/D29qZVq1acPn2aX3/9lZiYGPr3748QgkGDBmE0pp8JyYigoCDeffddxo0bh6WlJd9++y2ffvpppumFlFmvp+QlySP5bRmtyadK0wxYBDSUUoZmkmYYMAygcOHCNW7fvp0HtVUoFApFRmw4cYev991EI0zW9FYWAhC0Kl+Qaa+XxdIi6/GkTm+k3qz96bbixQRe5vryMQhLG2SSaZpbY50PY1ISGJM7BEKgtbQiKTGB3EBKycqVK1m8eDEVKlRg3rx5uLm55Tg/Hx8fgoKCEEIgpcTS0hIbGxuio6MBsLGxISEhgdmzZ/Phhx8+JTc4efIk48ePZ/jw4XTv3t1slyCEOC2lrPlk+lda5IUQlYHfgNeklNeyk2fNmjXlqVOncq+SCoVCociUzefu8cWuayQkpR+JWms1NCntxuw3Mx3HAXDsZihv//DYrjru/g0SHgUSdmEf0deOmfIqUBiv1iMw6mIxJumIvHacyGvHQK8D4OHDhxQsWPC52pKQkMAnn3zCnj17aNeuHVOmTMHKyuq58tRoNEgp0Wg0jB8/nqJFixIXF4ejoyOrV6/m8OHDADRo0IBDhw5lmMeFCxe4evUqPXr0AEyBduzt7dOkyUzkX9l98kKIwsCvQN/sCrxCoVAoXhwGo2T+3hsZCjyYPN79fS2EwNA4CrvmyzSflKtj71whaMdC4u76pk0gNGBhif/6yY8PWVjiWKo2Ub4mkczudHdmBAcHM378eK5evcro0aPp169frvifTxlIN2vWjIULFxIbG2s+V6pUKby9vQkKCiIyMjLdtYmJiSxatIgffvgBDw8P3njjDaytrdMJfFa8zC10PwJNATchRBDwMWAJIKVcAkwDXIFFyTdan1EvRaFQKBQvh7OBESQ9ZQudwSjZduE+bzcrkWmaoi62xARe5saq8WjtnPBu9w4OJapzZ9cSYq6fAGkk8YE/Vs6F8O7wHlobe8Iu7CXk5FZzHs8ifE9y5coVxo4dS1xcHPPmzcv19X2Affv20b59e7p3706BAgU4e/YsK1euJCgoCIDY+LTLDVeuXGHq1Kncvn2bN998k3fffRdr62eP7Pcyret7PeX8EGDIC6qOQqFQKJ6RsFjd03zhoDdKgqOz8olnWse/s/UrLB1cKT1sAZZ2TgBY5U89/S5xqd6O/KVqAWDnU46EhwHEBJwDIDQ0NEdCv2fPHqZPn46bmxsLFiygZMmSz5xHdihYsCBz585FozHZJ5QoUYLSpUvTrVs3APLZOZjTRkREMGzYMBwdHVm0aBG1a9fOcbmv7HS9QqFQKF5t3B1tsvRbD2BlIfByzjquuu+FkyQ8vIVPp7FmgQdIfBSYJt3Dv9chhMAQF0XYhX3oY8LM5woVKvRMdTcajSxbtoxly5ZRtWpV5syZg7Nz7ofFFUKDlEaCg4OpVasW7du3x8fHh4MHD3Ly5ElzOktLLVFRUTg6OuLk5MTs2bOpUqUKDg4OWeT+dJTIKxQKxStGTIKerRfuE68zULuYMxW98r/sKmVIZW9H7K21xKXEl80QQccqHlnmc/bcBQAcS6UdsTqUqkXs7Qug0SK0lkhdPPf3rjCfty5YnMRgf8C0fp3d6eyEhASmT5/O3r17ef3115k0adJzG9hlhpWVJYmJiZQtW5Zr166xceNG8zknJyc0Gg1hYWF4uhegU6dOTJ06lebNm9OwYcNcKV+JvEKhULwi6I1GRqw9y5nAVEZYf4GjjZb5PSpTNZue414UQggmtyvDxF8uZejxzsZSQ+dqnrg72mSZj02ywBp1CUT7nyUhJJACtTth45oc1MaoR5rD1QpInj9IEXgAS0vLbNU5ODiYcePG4evry7vvvkufPn1yxcAuM1xdXbl//z6+vo+NCTUaDUajkcjISLNh3tmzZ2nZsiVlypTJ1fL/Kc5wFAqF4l+N0Wik04JjaQU+magEPYNXn+FiUPpzL5vGpd34rHMFnPJZYmdlgbVWY37vU8eHca1LPTWPN19vC8Cd7d9yd89S4u76YdQnYV+kMmiekCmNBp4Q5SJlKmNrm/WSAMDVq1fp378/t2/fZt68efTt2zdPBR6gRYsW6Y6lrMun3sLetWtXVqxYgZdX7kbrUyN5hUKheAX47dx97kdm7tBFAh/+cokd7zZ4cZXKJs3KFqBxaTeO3wrjXkQCjjZaGpZyJZ9V9iTGzs4Ot0JehPifwbV6O3w6jEFYaBF2TmgsbTAmxgFg61EafVwkQmOBQ4ka6OOiibyyn0KF3J9axr59+5g2bRrOzs6sWLGCUqWe3vnIDXx8fJBSUqFCBRo3bsyuXbtITEzE3d2d8uXLs379eoQQzJw5M9uzEc+CEnmFQqF4BVh+MOCpaR5EJfIoKoECT5n+fhlYaAT1S7g+83VJSUkMGTKEEkW8SdIbCT29naTIYOxLVCf+wS2zwANY2NjhXKkZRl084Rf2kRh2FysXL86dPoHRaDSPkFMjpWTFihUsWbKEypUrM3fu3FyNUPc0du/eTYECBbh8+TIPHz6kY8eOWFlZcevWLTZs2ICzszPh4eGsX7+ekSNH5nr5SuQVCoXiFSA8VpetdNcexrySIv+sGI1GhBBYWloybtw4ChcujLOzMxM/mc36Vd9z78Zjy3PPNiOQeh0hp7Zxb893ANj5VMCj5SB0EcHc2/Md0dHR5M+f1kAxMTGRTz75hN27d+eaB7tn5c6dOzRp0oTXX3+dlStXsnLlSgAcHR0ZMGAAAwYMoEmTJty4cSNPylcir1AoFK8AlhYadIasrNRNuGYz4MurTEhICFOnTuW1116jY8eONGnSxHxuyf9ms2ju50RHR7N5+y769+5JPo+SOBSvhnvjtzAmxiI0WjRWpo7O3V1LEEKTbk3+0aNHjBs3jqtXrzJq1CgGDBiQ5+vvGWFnZ0dwcDClS5fGycmJChUq0KVLF3r16oWFhQWPHj3CaDQ+91a5zFCGdwqFQvEK0KbC0/2uW2k1lC2UN2Lwojh+/DhvvfUWFy5cMAdXeRKNRkP+/Pnp0rE9lrZ2hJzeDpis+S1s7M0Cb9QlEH5hLzUatUwzQvf19aV///7cunWLuXPnMnDgwJci8AAdO3bk4MGDvPvuuwQFBTFx4kT69OljjkmfsqWuZ8+eeVK+EnmFQqF4BRjTsiSap+jQoAZFXkxl8gC9Xs+3337LqFGjcHJyYu3atU8N32pvb0/vAUOJuPgXDw78gDTozef0cZHc2vgJSbERfDp1ovn4vn37GDx4MBqNhhUrVqSZJXgZvPfee2i1Wi5fvszo0aPN3uuMRiPbtm1jyZIltGnThrJly+ZJ+S81Cl1eoKLQKRSKfypnA8MZtvYcBmP653L7SoX49I3yL6FWucOJEyd4++236dKlC2PHjsXGJnt2BUlJSbTo8CYH92zF0sEV++LVMeriibp+HGkwMGveN0x8fxRGo5Hly5ezdOnSl2JglxGRkZHkz5+frVu30qNHDxITE6lfv77Zd31AQADVqlXjzz//xMnJ6bnKeiVDzeYFSuQVCsU/GZ3eyIpDAey4+ACd3kgpd3vGty5FUTe7l121Z0ZKya1btyhevDgAfn5+OXL2YjQa2fTbFmZ9tYCbflfQWlrSsHEzPpk8lqqVKxMfH8/06dPZt28fHTp0YPLkyS/cwO7J+s6fP5+9e/eybt06XFxcuH37Nl9//TVbt24lNjaWIkWKMHToUHr37p2jwDNPokReoVAoFC+M6OhoZs+ezd69e1m/fn2eBX558OABY8eO5fr164wePfqFOLjJCp1Ox8cff8wff/xBjx49GDduXIZb+3Kbf1w8eYVCoVD8Mzl58iTTp08nJCSEYcOGmUfyuc25c+f44IMPSExMZP78+TRo8HIdBcXGxjJu3DhOnTr1QlzmZgcl8gqFQqHINb755hvWrFlD4cKF+f777ylfPm/sCH777Te++OILPD09Wbp0KUWLFs2Tcp6Fb7/9lrNnz/LJJ5881ajwRaFEXqFQKBS5ho2NDd26dWPMmDHZ8if/rOj1eubNm8fPP/9MvXr1+Oyzz3B0dMz1cnLCO++8Q8uWLalZM92s+UtDrckrFAqFIsfodDqWL19O1apVqV+/PlLKPJuiDgsLY+LEiZw5c4a+ffsyevToF7LenRW3bt1i2bJlTJs2Lds7BvKCzNbk1T55hUKhUOSIK1eu0LdvX1auXMnp06cB8kzgr169St++fbl06RIzZ87k3XfffekC7+fnx9ChQzl16hTBwcEvtS6ZoabrFQqFQvFMJCQksHTpUtatW4erqyvz58+nYcOGeVbetm3b+Pzzz3FxcWHlypV55jjmWbhw4QJjxozB3t6eRYsWUbhw4ZddpQxRIq9QKBSKZ2L//v2sWbOGzp078+6772Jvb58n5SQlJfHVV1/x008/UbNmTWbPnv3cTmNygzNnzvDuu+/i5ubG4sWLKVSo0MuuUqYokVcoFArFU4mIiODatWvUrl2bNm3aULhw4TyznAdTgJkPP/yQCxcu0KdPH0aPHk1oaCgHDhzA0tKSatWqvbQ1cBcXFypUqMDMmTNxc3N75uvz0m7hSZThnUKhUCgyxWg0snXrVr7++muEEGzfvj3PxfX06dNMmjSJ+Ph4pk2bRsmSJRk/fjxbtmxBrzf5r3d2dmbIkCF8+umnueIxLjsEBARQpEiRHAl0YmIiYWFhxMTEIKXEwsICZ2dnnJyccsW2QDnDUSgUCsUzce3aNWbPns2FCxeoWrUqkydPzlOBNxqNrF27loULF+Lj48OSJUuQUlK3bl1iY2Pp06cPjRo1Ii4uji1btjBnzhzOnDnDjh078tyN7eHDhxk/fjzvvvvuM0eMi42N5d69e6QeVBsMBkJDQ4mKisLHx8cclS63USKvUCgUinTcvXuXPn36kD9/fj7++GM6dOiQp1PMUVFRTJ8+nQMHDtCyZUumTZtGvnz5aNGiBYmJiWzcuJFSpUqZ07du3Zqff/6ZKVOmsGjRIt577708q9uRI0cYP348xYsXf2YnN0ajMZ3ApyClRKfTERwcjIeHR25VNw1qul6hUCgUgGl0ef78eapXrw6YrNobN26c585mrly5wsSJEwkODua9996jR48eCCG4ceMGpUqVYsyYMYwaNSrDa7t160Z8fDx+fn550gk5cuQI48aNo0SJEixatOiZ70V4eDghISEZinwKQgiKFy/+XKN5tU9eoVAoFJly5MgRevXqxYgRI7hz5w4AHTp0yFOBl1Lyww8/MGjQIHOo2J49e5rF+sSJEwC0bNky0zxatWrF9evXiY2NzfX6RUREMHHiRIoVK5YjgQeIj4/PUuDBJPKJiYk5rWaWqOl6hUKh+A9z7do1vvnmG44dO4a3tzdffPEF3t7eeV5uZGQkM2bM4MCBAzRu3Jjp06enE9EUsTcajZnmYzAY0qTNTZycnJg9ezYVKlR4ZVznPitK5BUKheI/SlRUFAMHDsTa2pqxY8fSrVs3LC0t87zcM2fOMGXKFMLCwhg7diy9evXKUKTr16+PRqNh165dlCtXLt15KSU7d+6kYsWK2NnZ5Vr9zp07R0REBE2bNqV+/frPlZednR2xsbFZjuallHlm0KhEXqFQKP5DhISE8Mcff9CrVy8cHR358ssvqVy5Mg4ODnletl6vZ/ny5axcuRJvb2++//77DMU7hSJFivDaa6+xZs0amjdvTpUqVdKcX7FiBX5+fixevDjX6nj58mXGjBlDoUKFaNSo0XNbvTs4OPDo0aNMRV4IgaOjY5656FWGdwqFQvEfICwsjDVr1vDTTz9hMBj46aefKFKkyAsrPygoiKlTp3Lx4kU6dOjABx98QL58+Z563d27d6lfvz7379+nXbt2NG7c2LyF7uTJk3Tu3Jmff/45V7agXbt2jeHDh+Po6MiyZcsoWLDgc+cJpnX5oKCgdEIvhMDa2hpvb+/nFvnMDO+UyCsUCsW/mOjoaJYvX86mTZtISkritddeY+jQobm+7h4QEMCcBcvwD7iNs5MTowb1oUH9ukgp2bJlC3PnzsXCwoLJkyfTunXrZ8r7wYMHTJs2jR9//JGYmBgAChcuzDvvvMPYsWNzReADAgIYOnQolpaWLF++HE9Pz+fOMzVJSUmEhYURHR1tdobj4uJC/vz5c8WeQIm8QqFQ/IfQ6XRYWVkRHx9P586dqV27NkOGDMn1QCoGg4G3Br/NT2uWAxJLOyf0CTFIfRKlq9SiWd3qnDp1iho1avDJJ5/g7u6e47JiY2O5ffs2VlZWFC9ePFenuJctW8bPP//M8uXLc/0eSSkJDQ0lPDwcIYR5RK/VailUqBC2trbPXYYSeYVCofgP4Ofnx5o1a/Dz8+Onn35Co9EQHx//3EKye/duzpw5Q9myZencubP5eM+BI9i46jvcanUkf9kG6OMj0VjbEel7lLAz27GytmXZd4vp06fPc4tydHQ0/v7+WFpaUrp0abTa3DMrk1ISFhaGq6trruWZwsOHD4mKispwXV4Igbe393N/P8qtrUKhMOP/KJbVR2/zl28ISQYjPs629KtXmLaV3NG+5BjdrwJSSg5cD2XV4dv4PYhGCEHtYs4MbFCEyt75n3r9TyeD+O7ALcLjkgCws7agb93CDGtc7KnX/ukbzLw9N7gfmQCAtVZDpyoejG1dCittxt+N0Wjk0KFD/PDDD5w6dYp8+fLRpUsXEhMTsbW1fS4BGTBsFGtWfIc0Gh4fFBravdGVJV/PZePqZTgUq0a070FCTm5JlUZg5eCKLiqERKl5LoG/d+8eH330ERs3biQ+Ph4AT09PRo4cycSJE3Ms9hEREXz00UeMGzeO4sWL54nA63S6TAUeTL+14ODgPLOPUCN5heI/xsHrIXy46RJJBokh1f+/raWGSl75+fatKlha/HeFXkrJzO2+7Lr0kPikx/uzBSbBfbdlCXrU8sn0+jE/nufQjdAMz5UqaMePQ2tlKnjz/7jOmmN3MjznnM+S7e/WwyYDQTt06BDvvfce7u7u9OjRgy5duuRK+NcmrdpzYO8OAKycPLAtVIKEkNskhpjq6FzQk/Dge+b01gWKYNQlYEyMxZAYD9KAxtKK8tXqcvH43zmqw507d6hXrx4hISG8/vrraXzXHz16lA4dOvD7778/87p8bGwsI0aM4ObNmyxYsMDs5S+3CQ4OJiIi4qnpihYt+lz+99V0vUKhIDxWR/tvj5CQlLFzERuthj51fXi7WYkXXLNXh50XHzBzu28agU+NtVbDqoE1KFMo/Zaz38/e45Ntvlnm36+eD++1LJXuuO/9KN5anvWzq04xZxb1rsrVq1f55Zdf8PHxYcCAARiNRvbv30/jxo1zbQr70qVLVKpUCYSg7KgV2BZ8PNLURT7i8le9IWV0r7HAuVJzEh7dxqZAETya9cPSwY0r3/QnKTIYRxd3IkMf5Kge7dq148CBA6xevdpUn1SsWrWKWbNmsXDhQt5+++1s55mYmMjo0aM5f/488+bNo2HDhjmqW3a4c+eOefYhK7y8vJ5rr79ya6tQKPj17D2y6tcn6I1sOBlEkiFzD2P/dlYcCshU4AGSDEbWHA3M8Nyi/f5PzX/jybsZHv9y9/UsrzMkxLJ762+89VZv+vXrx+7du4mLiwNAo9HQvHnzXF2j7tClBwCFmvVPI/AAVvkLUKTLh+bPlvYu6MLuUbDemxTp/AHWLp5oLK0oOWAOAHExETmqQ0BAALt27aJfv37pBB6gf//+lCtXjoULF2Y7T71ez4cffsjZs2f55JNP8lTgwWRVnx2eZ8CdlUdAtSavUPyHOHQ9hER91gJulBAYGkeJgs8/3fs8xCcZCI/V4WBjiYPNi3lU6fRGAkLjskxjlHDiVniG50JidE8tI1FvRG80prN9uHo/Ol1aaTQiktM9PPgjUTdPE1ajEh988AHt2rXLlSn5zAi6beqweDTtm+F520KPZ3ssHQtQpOskIq4cJHDLV2jtHClYryuGOFObjAZ9jupw9OhRpJS0bdsWgO3bt3P8+HGsrKzo0qUL5cuXp02bNsyfP5/Y2NhsjYR1Oh2JiYlMnDiRNm3a5Khez0JWApwane7pv50nCQ8PZ86cOTg5OWWaRom8QvEfIrtjhZe5iHc3PJ4Ff93kL99HaDQCvUFSxSc/o5uXyJbR2/MgX2rLk+tgNJIQfIuoG6eIvnkan45jsXYuhGuNdrhUbc0n73WkTnGXl1Y/Q0Isj05sJvLKIfOxuKArXJnfl9TTRMEHN4BGCwiEJmf72FNGt/v376dXr17mmQuAtWvX4unpae4APG0kLKUkKSmJfPnysXDhwjzzMPckeRmeV6/Xc/LkSXr16pVpmpc2XS+EWCmECBZCXMrkvBBCfCOEuCGEuCCEyBurCIXiP0SDEq5Ya7N+6AgBhV2e7oksLwgIieWtZSf540owOoMkIcmI3ig5fTuCEWvPcuh6SJ6Wb621wMPx6cZPVbwyHkG72D3d77uVVpPhDoYi9gaCj2zC/4cp3P59LpFXD2HrURKkaSRo7eKJTYHCVCn8YgKleHqbpugfHPwRMHU+Iq4cxP/Hj4m8eggrtyeMD6VEWNqSz7s8WvtkK3WjHpAU8srcUDEr6tSpgxCCr776ioSEBFq3bs3y5cuZM2cO5cuX5969e3z//feUKFHiqaP4pUuXMmLECOLi4l6YwAPZ3tmQ3VmZgIAA5s+fj9FopECBAmzZsoVBgwZlmv5lrsmvAtpmcf41oFTyaxiQe86JFYr/KF2qeyHIXOSttRq61vDKdKtWXjP5tyvEJOoxZjAoS9AbmfjrZRL1hvQnc5GI+KdPLYfEZrzOOjwbW+S6Vjd5UtPpdBw9epTjx48DMLZtOSKuHsLaxQuP5gMo0f9LvFoPw9rlsee1GkWcMrSuzwu2/LIBgPt7VxJx9TC3f5nFgwM/YO3iiedr7xB5Oa21vGebkTgUq4IxKQEbVy88XxuJsDB1ehrWq5OjOpQoUcIsyHPnzuXbb7+lUaNGdOzYkd9++42mTZsipUQIkeWI+ccff2TZsmUUK1YsVxzPPAtZTaWn5mmW9Tqdju+++46ePXuyefNmgoKCgKd3Il7adL2U8oAQomgWSToBa6RpDuaYEMJJCOEhpbz/YmqoUPz7cLW34tM3yjP19yvoDMY0YmpjqaFcIQdGNin+Uup2MziGgJDYp06Y/3ElmA6VPfKkDnq9nljd09dQL9xNv34O0K2mN3uvBnMyICLD8x5WCRSPvcSECcs4fvw4cXFx1KxZkzp16lC7lCeTvlnPL+cfZXitg42Wb3pWznZbnpeqVatSuUY9Lpw+yq0fp6GxtCGfTzlig64Qeno7APkcHImLjgLg3p4l2BetinOFxiSE3OH+HyuRBlNnaO+f+3NUh02bNmEwGLC2tmbKlCmcPn06je/6/fv3o9Vq8ff3x2g0ZjhC3759O/PmzaN58+ZMnjw5T6fPMyIsLCxb6RISEjKNRHfkyBG+/PJLgoKCaNu2LWPHjsXFJXtLNq/ymrwXkHrDaFDyMSXyCsVz0KJcQXycbVl5+DZ/XwtBb5R4OtnQr25hOlb1eGl75K89jEGjyfoBHKczcOVedJ6J/J2IhOfO47u+1Vl95DYrDwUQER1DYsgdXIqUpUctb/x++R+f/3wCd3d32rZtS+PGjalVq5b52o86VqJasQd8vfcGj5KN+LQawWuV3JnUrvQLG8WHhISwbNkyrDV6XAsUJPTRI4xJCcT4nzUlEIImrdoT4H+D29FRFO30Pvf2riDm1llibpnSaLSWeNTpQPDlI0SE5WyZZd++fQB8/PHHHD9+nJ9//pn169cDUKBAAfM2uAMHDnDv3r10/vgPHjzIjBkzqF27NjNnzswVH/fPSmJiYrbSxcXFZSjySUlJzJ49G0tLSxYtWkTt2rWfqfxXWeQz+m/PsJMvhBiGaUo/130OKxT/RkoXcmD2mxVfdjXSYGmhyWIhwYQArC3zrhPi9JxW/DExMZw7d47IM2coduUMV65cwUpKdn2xD0dHR654vIO1tTXFixfPdETZrlIh2lUq9Fz1yClRUVGsXbuWH3/8kaSkJLp27cqQIUNwcXFh48aNnD59mjJlyjB48GAASpU3zSw4VGhKhRodiL1zlbgHN7B0cMWxdF00Gg0Pz+9HiJx9ZylT0VJKvvzySyZPnkxAQACWlpaUKlUKKysrevfuDZBhRLsiRYrQvHlzpk2b9lyOZl4EqWchdDodmzZt4s0338Ta2ppvv/0WDw+PHLXhVRb5ICC1tYY3cC+jhFLKpcBSMDnDyfuqKRSK3KZmUWeSMlqMT4WNpYYmpd3yrA7O9hlPlz6JlYXAaDQSEBDApUuXqF+/Pm5ubuzatYvZs2ej1WqpUKECAwYMoFatWmaxKl++fLbyl1Jy7949EhMT8fT0zHQaN7eIiYlhw4YNrFu3jpiYGNq0acPIkSPTjIzbtm1LjRo10kwT9+zelZkzLnJ/70p8OozBzqccdj6P48PH3rmKISGG8lVyZjc9dOhQvvrqK1avXk3Xrl1xcnKiatWq5vN6vZ6zZ8/i4OCQpl4PHjzA3d2dwoULM3v27ByVnVs4ODhky+Odg4MDUkoOHjzIvHnzuHv3Lm5ubrRu3fq5XN6+yiK/BXhHCLEBqANEqvV4hSLnBIXHs/74HfZdDUanN1KioB396xWhUSnXF75OmRFO+SxpW6Eguy8HZ7iX30Ij8HSypUoeb6OrW9yZY/4Z74NPigkn/MKflLaOoGnTj81bumbOnEnbtm1p2rQpRYsWpWLFijkSZikl8xZ8x7z/fcWDgGsAWNra0bHrWyz48hMKFcrdEX50dDQbNmzgxx9/JCoqiiZNmjB8+HBKly5tTnP42AnGTp7Oyb/3mPzXC0Hluk348pOP+XjKZGZ9NpOQk1twKFkTp7L1zdfpIh5yY80HAHy34Osc1a9cuXIUK1aMa9euMW/ePMaNG/c4f52ON998E4PBYJ5ZAPD392fo0KF07dqVkSNH5qjc3MTNze2pIm9jY8Pt27f53//+x7FjxyhWrFiOpuYz4qW5tRVC/Ag0BdyAh8DHgCWAlHKJMD11FmCywI8DBkopn+qvVrm1VSjSc/RmKON+vojeINEb0/qrb1jKjVldKqB5BYQ+UW/gnR/Oc+VeVBqvc7aWFjjls2TVwBoUcLDOs/KllDx69Ij2n/3Go3uBJIbeJTHsHvnL1MW5YlOSYsIJ/vUT2tavSvny5SlfvjwVK1akSJEiz70tS0rJm30G89sP35PPoyTOVVpjYWtH9M0zRFw+gINLAS6ePkZhn5xtR0tNWFgYP/zwAz///DOxsbE0btyYoUOHUq5cuTTpNm3eRo+ub6KxssGlWlts3IuRGHqXsDM70cdGsGj59xR0cuDNN7uAlFg6FsDGvRhJkY9ICL4FwKBhI1nx3aIc1zUoKIjSpUsTHx+Pvb09VatWJTY2lgsXLmAwGKhatSqnT59Go9Fw7949Bg8ejNFoZMWKFenW6F8WsbGx3L2bsadDCwsLihUrxogRI7h+/TrDhg2jW7duz+y9UPmuVyj+o4TF6uiQlb96Sw1vNy1On7qvhj2LUUqO3AjlhxNB3IuIJ7+tJV1reNGqfEFsLHPHcCouLo6goCACAwMJDAykUKFCtGvXjqSkJBo0aIDRaCQ4OpFIgxVWLl7kL1ufQuXr8mHb0rxWsWCuuo9NYdX6jQzs05OCDbrj2XpYmtmVuLt+3Fg1ngrVanH+6P4clxEYGMi6devYtm0bSUlJtGjRgkGDBqUZuacQExODq7sn2vzulOj/Jdp8j2dQDIlx+K//iLggX+4FBXI7MJC+A4Zw7cpFUkynXN09+XzmJwwbMjhd3s9KSEgIvXv35s8//0SvN21xdHBwYOjQocyZMweNRsOjR48YMmQI0dHRLFu2jBIlXq34C3q9nocPHxIXF4eU0hw5sFOnThQoUIA7d+7g4OCQ7S13T6JCzSoU/1F+OXM3a3/1SUZWHbnNW3V8XonRvEYIGpZyo2GpnK+9x8fH8/DhQ+7fv8/9+/extramffv2APTu3Rs/P7806du0aUO7du2wtLRk+vTpFCxYkOLFi2d7m1JuMGvefKydC+HZaki65ZN8XmUo2KA7F/5chd+1a5TJQJQzQ0rJqVOn+PHHHzlw4ABWVla0b9+evn37Zmmo/O3S79HFRVP0rc/SCDyAhXU+fDqO5eo3A/jsfwv45otP8bt83tQ5Cg7GxcUlVw3d3Nzc2L17N0ajkbCwMGxsbNI4jzEajbz33nuEh4ezePHiV07gAbRaLV5eXkgp+fvvv/nmm28IDAzE1taW3r1745MLMzQZlpsnuSoU/yKMUhKbqMdaa/HSnMQ8D3/7Pd1ffZzOwN3weHxekqe7J5FScvzESW7euo17AVeaNG6EpaXJsUpUVBTBwcE8evSIR48eERwcjNFoZNiwYQCMGTOGI0eOpMmvVKlSZpFv27YtrVq1wsfHBx8fH7y9vdNYZrdr187898KFC1m5eg2WWis+nTGNVq1a5Ul7jUYj18+fpEC9NzN1AetUqRn3/1zF1t1/Zkvk4+Li2LFjBz/99BP+/v44OzszdOhQunXrlq3Oy84//sQqf0Hy+WRsLGjj5kM+j5Ls+2s/YBqpjhgxgjPnzuHh7s6KFStybEMwffp0tm7fjoOdPf/73zxzGNg///yTPXv2YG1tzZAhQ8wGaRqNhlGjRmFtbU2FChVyVOaL4OjRo4wZM4Y7d+5QtGhRvv76a+rXr//0C58DJfIKRSZEJySx8vBtNp2+i05vchxTvXB+RjYtTlUfp5ddvWxjeIrFOoBAZOhl7kURHx+PjY0NQghmzf2K2V98QVTIQ/N5rZUNEz76mM+mfsgXX3zB7t2701zv4+NjFvkWLVpQtWpVChUqRKFChfDy8qJAgQLmtH37ZhxwJTWfzf6SKZMmknrXbuvWrREWFuz/808aN278nC1Oj5RGs4e4jNAknzM8xeOfr68vv/32Gzt37iQuLo6yZcvy8ccf06ZNm2caXRsMRoSFNmujTAtLjAYDdes34PjRxx2rs4CHhwfOLi4EP3yY7eWNIcOGs2LZ0jTHatSogVZria2tDdHRj50QzZw5k5IlS/K///2P119/Pc/F8nnQ6XS0aNGCQ4ce+/t/+PAhrVq1Yvr06XzwwQd5VrYSeYUiAyLikui74iTB0YkkGR4/6E8GRHBh3Tk+fr0sbSu+nL3Mz0qtos74h8SmaceTWGjA0yl3t2kZDAZCQ0MJCQkhNDSU2rVrY21tzYEDB9i2bRshISGEhYURFhZGXFwcf//9NyvWbmDyhLEIrRVWTu5o7Z0RGi26iIfM+ngStwPvMH7UEJo1a0aBAgUoUKAAbm5uacSrU6dOz1Vvk8CbwqhqrPLhVLEJxsR4In0PIw1JNGnShBMnTqRxYvO8aDQavEqUJ8zvKB4tBmYorBG+hwFo1qhuunORkZHs3r2bzZs34+fnh5WVFa1ataJr165UrFgxR7sn6tepxZE/thAfHIBtwaLpzuuiHhF3z497sc74hocC4O3tTZMmTbh8+TLnz58nPCyMfHZ26LLhEKbfgAGsXb0aAGdnZ9q2bcv9+/c5cOAAen0S0dFJ1KhRg27duhEZGcn69eu5ceMGb7zxBpcvX6Zs2bLP3Ma8JiwsjGXLljF//nwePHiAi4sL3bt3p1SpUuzdu5c//viDDz/8kNjYWGbMmJEndVCGdwpFBkz69RJ/Xn2U6b5ta62GHe/Wxznfq+1gA0xR3bouOZ7plL21VsNbtb0Z3aJktvPU6XQ8ePCABw8e8PDhQ4KDg3n99dcpWLAge/bsYd68eYSFhaWJDPbzzz9TrFgxfv/9d9avX4+Liwuurq64ubnh4uJC27Zt8SlaAuuCxSjafSqWDi7mqWspJUHbvyXkxGaOHjtO3TrPv7UoM4RGA1Li3qQPni0Gpjl3/ftxxNw6h7WtHQlxMbla7pyvF/HBe6Pw7vAuBWp3THNOF/GQa8tG4+nlTcDVc6ZjOh0HDx5k586dHDp0CL1eT5kyZejUqRNt27bF0fH5AtmEhITg7uFFPu9yOJaqTfjFP0mKCUNr64hTxWbE3b9GlO/j0fvOnTspXvyxS2S9Xk/16tVJTEyke4+ebNzwY6Zl6fV683LMvHnz6NChg/lczZo1zSN4D08v9v/1Jzqdjs8++4y9e/cSEhJC69at083uvEzi4uJYt24d69at48aNG9y/f586deqwZs2aNOnu379PmzZtSEpKIjo6OkOHPtlFWdcrFNkkKj6J1l8dRmfIfB3bWqthWOOiDGxQ9MVV7Dn47cw95uy5ls7C3lqroVRBe5b1r4a19vFacIoB1Z07dwgKCjL7zC5VqhSHDh3ivffeS1dGyr7eCxcusHnz5jQjbTc3N0qWLIm1debb32bO+ZqpH7xH6eELsfNKPyozJMRwaU4PWr3ehV2/rM/5zciCFStWMGTIEDRWtlSZsi3DNGentQQk4eHhObaEzgi9Xk+dpm04c/hPnMo3wqVqayxs7In2P0PIiS0IaeDvv/ZhSNKxZ88e/v77b2JjY3F1daVNmzZ06NAhQyv55+HDqTP4cuZ0AKycPbApWJTE0CASQ0wex/PZOxAXE81rr73G/Pnz013v6+tLp06d0FhYYNBnHvinT99+rF9nCh37119/mY//9ddfjBgxgoYNG5qnui9evMisWbO4cOECY8aMYezYscTHx6PT6V5odLnM+PXXX1m8eDHh4eE0b96c5cuXExkZyenTpzMU8fnz57N48WLGjRvH3Llzc1yusq5XKLKJf0gsVlqBLoulz0S9kVMBEQxs8OLq9Tx0ru5JEbd8LDtwi5MB4UgJBRys6VGzEHXcDPz95z6KFi1K6dKluX79Ov3790en05mv12q1lC5dmlKlSlGiRAlGjhxpXvN2d3enYMGC5inzypUrU7nyswdSOXz8JJZ2ThkKPICFjT12RSpx6eL5nN2EbLBylWm62LFMvUzTWOYvSFLkQ37//XcGDBiQa2VrtVqO/rmTEWMn8sPqlfhfOWg+V7x8FVo0qMPEDyYQGxuLg4MDLVq0oG3bttSsWTNPxM1gMPDbxvXks7PD2t6J8Id30YWb/JE5uBZCJMUTFRUJkKk4lS1bFiEERkPWdgR/Jgv76NGj0xw/eNB0D3r16sXZs2eJjY3l77//5sKFC4waNYomTZpQvXp1Dhw4wIMHD/D09EyX94vAYDCg0WgQQvDw4UNKlizJO++8Q4UKFZg3b146487UjBgxgsWLF3P48OE8qZsSeYXiCSw0IsstZylYWrz87WbPQlVvRxb3qUZsXByffz6LG5euseTHABYmP4BT9kt7eHjQrVs3ihQpgre3Nz4+Pri7u5uFxMPDI42HsdxCq7XEaEhCGg2ZWphLvQ6L5/QvnxXWyR0VY0JspmlSIqtlN/73s2BlZcXKBf9j8ntvs3bdOs6dPcudO3fQaDTcvHmDFi1a0Lx5c+rUqWOe3s4rtm7dyvXr15k/fz5t27bFz8+PBw+DcXVxpmLFipw4cYJ+/foBJpsAV1fXHJelTQ4c8/DhwzTHU9oYHR1t3h/frFkzSpYsSbFiprC+CQmmoEIvwze90Whk7969LFmyhPfee4/GjRszbNiwNIFwhBBpOsxPkrIUkVffpxJ5heIJyrg7PDVNPisLWpYr+AJqkzNS/KqfO3eOCxcucOnSJSpXrsy0adPIZ2vL9Wt+eHp60rhxY0qWLEnx4sXN25Hs7e15//33X3id3+zQhm0bVxF17Tj5y6a3lNZFPCTm9kXeHDEmz+rw2cxPqV9/H1E3M17y0+v16GNMoUPfeOONXCs3JiaG06dPc/z4cY4dO0ZgYCBgCrjVp08fmjZtSpUqVV5oFLVNmzbh5OREq1atEEJQtmzZNMZttWvXxsrKCp1Ox9ChQ/n111/T5bFt2zaklFg/xcXvO++M4sMPPmDFihVpXNF26tSJVatWsWLFCnM0N61WaxZ4o9HImTNnyJcvH25ueRfT4EmklBw4cIDFixdz48YNSpQoYY5P8OR3VLhwYW7dusX9+/fx8EgfPXHOnDkAdOvWLU/qqtbkFYoMWPDnTX44foeETIzV8ttq2fVegzTr2C8TKSUhISHmrWL9+vXjypUrgMlSuWLFijRp0iRXhSm3SUpKwtWzMDqDoOTAeVg5uZvPGRLjufXjVGICLnDzxnXzQz4v0FpaYdAnkc+7HGWGLTAf1+v1XJnbDUNcFK7uHoQ8yDBeVraIjo7m/PnznDlzhlOnTuHr64vRaMTGxobq1atTv3596tev/1Kjanbu3JkLFy6wc+fOTNP06NGDc+fOATB58mT69+9vPufv70+7du2QUvL5rFlMmjgxy/I0Gg1SSjp06MC8efPMxxs1akRwcDAAJUuVZvu2rYBJ4Hv16sW5c+cYPHgwy5cvz2lTn5nx48ezf/9+ChcuzPDhw2nVqlWmSyZr1qyhf//+uLu7s3PnTuzs7Mzn/vzzT95++22sra2JjY19rmUXZXinUDwDeqOR8T9d5GRABPFJj9cTrbUaLC0ES/tWp6zH00f8eUlsbCzHjh3j8OHDHD16lKSkJPbs2YNGo2HLli0IIahatSre3t6vRACa7HDg8FFatmqNwaDHuVIL8nmWIjH8PuHn9pAUG8k3i5cxevigPK3DmTNnqFGjhvmzpYMrRoMeQ5xp/VloNMTFxmY7AI3RaCQwMJBLly5x4cIFzp8/j7+/P1JKLC0tqVChAjVr1qRWrVpUqlTplQmJOm7cOL755hv279+fxs9ACjExMTRu3BgPT09uXL8OmEbZBQoUIDIy0hy8p0jR4gTcuvnU8n744Qdz2FghBO7u7sTGxqbZG+/i4kKdOnWIjo7mxIkT6HQ6SpYsiZ+fX54a3UkpOXHiBNWqVcPKyoq9e/cSHx9Pu3btsjW70r59e3bs2IGFhQXVqlWjYMGCXLhwgaCgIDQaDVu3bk3jhCknKJFXKJ4Ro5Qcuh7KumOBBITGYWtlweuVC/FmdS+c7V7ug/inn37if//7H3q9Hnt7e+rWrUvdunVp3759nq/V5jWXr/oybsqn7N32CwZdIggNNRq24PPpk2ndvOmLqcPly9Su24C4mMg0xwt6eHPb/3qmAp8i6H5+fvj6+nL16lWuXr1KbKxpjd/e3p5KlSpRpUoVqlatSqVKlbLccfAy8fX1pVy5cvTt25cpU6akO79w4UK++eYbDh8+zIFDh5j60RT0+iTzeSEEr7XvwPatW7Jd5q5du+jc5U0S4uPSHC9cpAiF3N05deoURqNpds3GxoaePXuyYsWKPBN4KSXHjx9n6dKlXLhwgY8++ojOnTvnKK/p06fz9ddfp4lIV758eZYvX069epkbemYXJfIKxT+UuLg49u3bx65duxg1ahTly5fnwoUL/Jnsee1Fr9W+KBISEggLC8PR0TFPjNyyW4cdO3aQL18+WrZsafbcJqUkODiYW7du4e/vz40bN7hx4wY3b940rx1bWVlRsmRJypUrR4UKFahYsSJFixZ9JbZ5ZZfhw4ezdOlSOnfuzODBgylZsiSBgYGsXr2a9evX06VLFzZt2mSeKQoKCuLAgQNUrFgxRzssUoiIiGDXrl3s2bOHKVOmmPff63Q6fH19sbOzy1P/9FJKjh07xrJly7hw4QLu7u4MHjyY119//bk70UFBQYSEhFCyZMlc/V0rkVco/kFIKTl79iy///47f/75JwkJCXh6ejJx4sRX2n1nZkgpuXDhAg8ePsTTwyPHXthyk3v37nH16lWsrKyoVatWutG5lJLIyEizn4CUiHW3b9/m9u3b5uloMNk9lCxZklKlSlG6dGlKly5N8eLF8yRa3YvEYDAwYcIEFixYQFLS41G6hYUF/fv3Z/Hixbm6vCCl5LfffqNZs2Y4OzvnWr45qUf//v0JDQ3NNXHPa9Q+eYXiH4CUEiEECQkJZgv3du3a0aFDBypVqvTShTEnLFu9nqkfz+Dh7evmYx7Fy/L5pzMY8Fb3F14fPz8/xo0bx44dO8we+ezt7WnSpAkNGzYkODiY+/fvc/fu3TRCLoSgUKFCFC5cmNdff52iRYtSvHhxihcv/lIFKS+xsLCgcePG7Nq1i6tXr5qPFy5cmKZNm+aqwCcmJvLZZ5+xY8cOQkNDGTp0aK7l/TSklBw6dIh169bxxRdf4OTkxBdffIGbm9srL+5PQ4m8QvEKEBwczA8//MDFixdZvnw5tra2LFiwgFKlSmXbwOtVZPrsecyYNB7bQsXx6TgWGzcfEh7dJuT47wzs3YOHDx/x4fujcrVMo9FIREQEoaGhZt/5Ka+rV6+ybt06jEYjBQoUIF++fOb027dv5/Dhw7Rs2RJvb2+qV6+Ol5cX3t7e5terYhT3oli+fDlDhw6lRIkSTJs2jdKlS3P79m3Wr19Pv379uH//fq4EVwkMDGTixIlcv36dYcOG5YkfhoxI2Qq3bNkyfH198fT05O7duzg5OWW43e2fiJquVyheIkFBQXz//ffm/cQtW7ZkypQpz+XD+lUhMDCQosWK41i6DsV6fIyweDymMOp13PphGjEB57gXdAd3d/cscjJtrwsPDzcHtAkPDyc0NNT8OeUVGhpKeHi42TgrIiKCR48ekZCQgFarxWg0YjQaadiwIffu3SM0NBRra2vq1KlDwYIFWbx4Md9++y3vvPNOnt6bfwIhISF4e3tTtWpV2rZty/bt23n06BHOzs60a9eO48eP89dff3H9+vU0PuufldOnT/P++++j1Wr59NNPadDgxbiRTExMZODAgVy7dg1vb28GDRpEu3bt/rFLLGpNXqF4xThz5gwjRoxAq9Xyxhtv0Ldv33/N6AFg6LsfsPzbuZR/bx3Wzukj9sUH38Z3wSD6DhnJsP5vmaPVpRbvFNGOiorKsAwrKytcXFzMwW5cXV1xcXHB0dGRb775hpMnT+Lq6kqNGjUIDg7m3LlzCCGQUuLi4kLt2rWJiYnh2LFjCCEoWLAg+fPn5/Lly3l9e155Zs+ezaRJk/Dy8uLu3btmt8YBAQFcvnyZggULEhISwvvvv/9cPtcjIyOZNWsW77///lM7e8+L0Wg0O4YC+OqrryhdujRt27b9xxuvqjV5heIVICYmhoCAALP18eDBg3nzzTef6q3rxKnTbP9jP0ajpE3TBjSoX/eVXp/X6/UcPnQIG1cvEh7dJubWWZJiItDHhqOPjUAfG4khIRqhteKXDeu5cvaE+VoHBwezcJcsWdIs3Klfzs7OuLq6Ymtrm+F9GDJkCCdPnmTSpEn07t0bS0tLfvvtN86dO4eUEo1GQ/v27bl//z6Ojo58+eWXbNiwgZMnT3L37l10Ot1/bmr+SU6cOIGlpSWRkZEsX76chg0bmu/16dOnGTNmDBYWFhw7duyZ8pVSsm/fPrZt28bcuXPJnz8/s2fPzosmmDEajezZs4fly5dz+/ZtfvnlFwoXLvxSPDvmJlJKtm7dap65yggl8grFC8BoNLJlyxYWLlyIhYUFW7duxdLSkuHDh2d53aUrV+nYrTe3rpw1H5sJeJeswG8b11KzerU8rnnmxMXFERgYyJ07d9JEq7t37x7BwcEE+PmSmJjI/T9XAWBhnQ+tnROWds7YuPmgtXPiwV9rKFyqFKtWLTePxJ9XXIODg1m7di09e/ZME0AmxX944cKFCQwMZO3ateZzO3bswNnZGa1WS1JS0j9qm1teERwcTFJSEjNnzqRRo0ZpztWoUYNZs2YxdOhQQkNDs51nYGAgc+fO5ciRI5QrV47w8PAMHe3kFgaDgd27d7NixQpu375NiRIl+Pzzz/H29s6zMl8UUVFRfP755+zduzfLHTdK5BWKPOb69et8/vnnXLx4kapVqzJ+/PhsWeze9L9F7XoNSTIY8Wo3CqeyDUEIoq4d48Hf66jfsDGnThyjcsUKeVr/2NhYfH19CQwMxN/fH39/f27dumV2NZqCm5sbXl5eVK9eHQ8PD3b9eZAtm37Es+Vg7ItURmOZVrzj7l0jKSaMbl3fpGLFirlW3y1btqDT6ejVq5f5mE6nMwc4CQwMRAiBpaUlv/76K6GhoSxcuJATJ0yzCUKIXBN5vV5v9mz3TyNly1yKIEopzTMcQgjzcX0WIWRTSEhIYMmSJWzYsAErKyvGjh1Ljx498nyKPDw8nJkzZ1K4cGG++OILmjVr9q/owJ05c4apU6cSEhLCO++8Q79+/fj2228zTiyl/Fe9atSoIRWKV4WbN2/K2rVryxYtWsht27ZJo9GY7WtbduwuNVY20rPVUJnPu5wEJCBtPUpKj1aDpYWtg6zVtG2u1jcuLk6ePn1arlmzRvbt21d6eHhIIYQEpFarlV5eXrJr165y6tSpcsWKFXLv3r3y2rVrMi4uLl1ewcHB0sLSWtoXrigrT94iq32yz/yqNGmztPMuK7XW+WR4eHiutuHLL7+UgNy3b598//33pZeXlwTM7QBkqVKlzH9rNBrZoEEDWbZsWfOx+Pj4HJdvNBrl6tWrZc2aNc35lS9fXi5YsEDqdLpcbGne0q5dO6nRaGSpUqVk9+7dpYODgwRkvnz5ZOfOnWXlypWlEELWqlUr0zwMBoOUUkq9Xi+7desmZ8yYIUNCQvKszgaDQf7xxx/y008/Nf+vXbt2zVyPfzp6vV4uXrxY1qpVS77xxhvy8uXL5nPAKZmBJr50Uc7tlxJ5xatAbGyslNL0wP/xxx9lRETEM10fEREhNVorae1qEihrt8LSvUkfWahpP2njXsx0zMVLIjTy3r17Oa7no0eP5O7du+UXX3whe/XqJWvVqiVr1KghixQpIgFpZWUl69SpI7t27Srr1asnAenj4yP9/f2zlf/SVeuk0FhISwdXWahJH1nkzUnSvfFb0tLeWQoLrVzz4885rntmbNq0SQLS09NTArJevXryvffek+XLlzeLboq4t27dWtarV09qtdo0556lM5Yag8Ege/fuLQFZtGhROWLECDl69GhZrpypk9ayZUuZmJiYyy3OG8aMGSM1Go35npQoUUK2bds2TWfIyspKvvXWW+mujYyMlMuWLZOdO3c2/y8kJCTkWV2NRqM8dOiQ7NWrl6xRo4bs2rXrM//PvercvXtXDhw4UNaoUUN+/PHH5vuaghJ5heIFYDQa5caNG2WzZs3krVu3cpzPhQsXzA9SjxaDZNUZe82j4Koz9krvdu+Yzx86dChbeer1erlhwwbZrl07Wa1aNVmhQgVZpUoVWaNGDdmwYUM5cuRIuWjRIrl69Wrz6Pa7776Tffv2lV26dJFjxoyRixcvlg4ODrJmzZrZFsJdf/wlK9drKkkZSQshqzVoIfftP5Dj+5MVCQkJ0tLSUgoh5Lx58+S4ceNkly5dZLFixdKJfMrfBQsWlKVLlzZ/zunswjfffCMB+fbbb8urV69KPz8/6efnJ319feWMGTMkID/44IPcbXAecerUKfPIvX79+mnuV61atWT+/PklILdu3SqllPLa9euyx4ChskS5StK1gLssXbqMfPfdd+WDBw9ypT6hoaFy8iezZas3esp23frJVes2SJ1OJ+/duyeHDBkia9SoITt27Ci3b9/+So7cDQaDnPHZLOlZvIx08SgsK9ZqII8cOZKta3fv3i0bN24sGzduLHfv3p1hGiXyCkUeExMTIz/88ENZo0YNOWbMGBkaGprjvPz8/EwjJRfPNNPcqV+2hUpIQB49ejTLvO7duye//PJL83SrRqORlpaWEpAWFhby/fffl3q93px+8ODB0srKSpYpU8b8kC9UqJAUQkiNRmMe0T+t3Cd59OiR9PX1zdPpWimlvH79ulmMUqbo3d3d043WAeni4iLz5cuXTvRzMto2Go2yRIkSsnLlytLX19cs8KlfrVu3ls7Ozs+1HPCi+P777833o0+fPvK3336TO3fulFu2bJHDhw83n/viiy/kG28NfHzPLbQSjYVpWaRKrVwR+Zlz5ksLS2sJSEsHV2lhYy8B6ejmIf/8+4Ds1auX/Omnn17Z5ZBDR45ICyubx7898fi3Vrx8FZmUlJThdbGxsXLGjBmyRo0acuDAgfLu3buZlpGZyCvDO4UiFwgMDGTs2LEEBgYyZswY+vTp81wGPqb/WcBoREqZ4TYxKTPfNvPgwQP27NnD3r17OX/+PFeuXEGj0dClSxe6detGxYoVCQwM5KuvvuKrr76iRIkSjBpl8jy3Z88etFotQUFBfPbZZ3To0AEbGxuCgoJYvHgxmzZtAkwW6XXr1s12m9zc3J66VTA32LVrl/lvjUaDwWAgOjo6QwOxhIQEs9V96nucE4OwwMBAbt68ybRp0zLd3tipUyf27NnDqVOnaNiw4TOX8SLZuXMnBQoUoHnz5vzwww+sW7cOOzs74uLikFLSsGFDrly5wiczPyM2OooCdTtj414cp3INERaWhJ3bzc09S6nZqAU3L53J8a6JhctWMWXCeziWrIVH66FYO3sQcnIrkb6HiY98xGvtXufiudOUKpl3AWuehwcPHtCoUWOkQY9LtTZ4tRmBNp8j0QEXCdw8B/8r56lUuwFXzxxPc52fnx+TJk3izp07DB48mGHDhuXod6lEXqHIBX755RciIiJYvHhxmljkOSXFslkX8YB7e5bi2XIIIvkfXBoNPDzwIwkPbwGmbUJg2tK2d+9etm3bxpkzZwBTKEtPT08uXrzIb7/9RunSpc1llCxZkm+++YYBAwYwY8YMhg4dipWVlTkW+MqVK9N4H/P29mbmzJkkJCSwbds2wsPDn7udeUFKWNc6deqwYMECduzYYY4Wd+DAgTRpu3fvjpWVFVWrVmXq1Knm7WB6vf6ZH6gpnQU7O7tM06REHUuJVPcqo9PpsLOz45NPPmHkyJFs3bqVa9euERYWRmJiIuHh4SQkJBAXF4db7Y54t0vrJbBAnTfQ2jsTsPETvl+3geGD+j1zHQwGA1OmTiWfVxmKvfUJUdeOc3fXEowJseQvW5/85erj993bfPDx5/y2fkVuNT1XeWvQCKRBj0eroRRq1NN83KFoJcqNXsXV+X3wPXuCmzdvUqJECaSUbNiwgW+++QZnZ2eWLFnyXM+Uf/5eAoXiJZISwGT06NH88MMPuSLwAEWKFEFjaY21W2GCD//E5a96E7R9AUE7FnJlfj/u//k91m4+IDRoNBo+//xz2rZtyyeffEJISAgjR47k999/Z82aNZw5c4bmzZunEfgULCwsGDJkCI8ePWLHjh2AaRbB0tKS2rVrp0svhDAfj4yMTHf+VSDFO17VqlVxdHSkZ8+eTJo0icaNGwOkcVt66tQp9u7dy6hRowgNDUWr1aLRaHI06vT29sbe3p7Dhw9nmubw4cNoNBrKlSv3zPm/aMqWLUtAQAA///wzbm5uDBs2jEqVKhEXF0eVKlUYOnQo8QkJALg37JlhHk7lGmHt4sk3S5blqA779u8n4mEQrjXaE7j5fzw48APWzh4U6TqJQk37YOteHKcKTdn+60ZzZ/dV48C+3QhL6zQCn4JGo8GztclXxvB3JxAREcHYsWOZN28e9erV48cff3zuZ4oSeYUiB0gp+f777+nZsydhYWFotVoKFiyYa/k7ODjQtlM3dOH38XrtbWwKFCH07E5CT+/AyskdzzYj0UUE4+7pzejRo9m+fTstWrRgxYoV/PLLLwwePBhvb28MBgPBwcGUL18+07JSBOfOnTuA6cGTlJTE+vXr06VNSEjgl19+AcDV1TXX2pubODo6AqZlh9TucG1tbdO8A1y6dAl/f3/c3d3p0aMHer0eo9FIQrJ4PQu2trb07t2bnTt3cuHChXTnb9++zcaNG3nttdfw9PR85vxfBLGxsfz111/MnTvXPBv05Zdf4uvrC0CXLl1YvXo1EyZM4MSJE0ijEQsbO6ycMnZHKzQabAuVIPj+vRzV57p/IAB2RSqizeeIR/MB+HR8Hxs3H3OafIVKkJQQS3R0dI7KyGsMSYlY5c/82ZC/vMnRkJ+vL7169eLYsWOMHz+eefPmkT9//ucuX03XKxTPiJSShQsXsmrVKtq0aYODg0OelPPd/NmU/2svD/5aTYF6XfFu9zZSSh4e3MD9vctASsqXLsGgQYPo2LGjWdxSY2FhgYODg1nAMyIoKAh4LNru7u4IIZg1axZ+fn50796dAgUKcPbsWVasWGF+4OdmpyY3SVn3DwwMpFu3bgwZMoS6deuaZx6io6PRaDTY2NiwZcsWYmJi2Lx5M+vWrcPZ2Zm4uLgcR/6bPn06O3bsYMCAAQwYMMAc8GTv3r2sWLECjUbDvHnzcq2tz4PRaMTf35/Lly9TunRpypUrx40bN5gwYQLW1taULVuW1q1bs2fPHr788ksGDRpE6dKlCQgIYO3atfz111+UKleJG35X0MdFos2XsSDpwu/j4vrsoXhPnz7NLxtMHc2kiId4v/Z2hukSIx6gsdBmuUzyMtFYaNHHZL60FXvnEgDhwXexrVyW+fPnU6ZMmdyrQEbWeP/kl7KuV+QlRqNRzp8/X9aoUUN+9tlneb5Vx/9WgKxSr2k6q3BHZze5dPnyNFbxmTFgwABpY2MjDx8+nKHFd4cOHaSdnZ2MjIyUUko5depUCchOnTpJW1vbNOUWKVJEtmzZUgohsr1XPickJSXJ7du3y8WLF8uffvpJRkdHZ/va0NBQaW1tLRs2bJhmW1zKy8XFJd0xrVYr27RpI/Ply5dm3/epM2fkvG+XyK8XL5c3b97MVvl37tyRbdq0SeN8B5D169dP47zkRZKy3TEhIUF+8cUXctCgQbJhw4ayRo0askaNGnLhwoVSSikTExPl2bNnZWJiogwNDZW+vr7y448/lgUKFEjTFicnJzlu3Dj562+/P97m+fEeWaLvbOnTaaws2n2arDx5iyw1xLSlcPqsudmua3x8vHz77VHSy6ewrFSlqrSytZeOpevIStN2S/emfaVd4QrSvlhVWeytmbLSpM3SwsZONmrbKS9uW65QsWZ9Cchib30qSw78n7RxLy6tnAtJx9J1Zbn3f5DafKatiP3790+39/1ZIBPrehWFTqF4BjZu3MicOXPo3r07EyZMyPMgMVJKjhw5wmeffcaly1co6F6I0e+Mol/fPtku+/Lly9SoUYMSJUowd+5cSpQwWSHHxsaydOlSlixZwvjx45kzZw5gsgYuX748dnZ2zJw5k4iICGJjY/Hw8OD69evMnj2b7t27s2HDhjxp8/Lly5k6dSoPHjwwH7O3t2fUqFF89tln2TKIGz16NAsWLOCdd96hZs2a3Lt3DxsbGw4dOsSvv/6KVqvl888/R6/XY2Vlhaenp3nm4vjx4+iNku59B3HryrnHmQpBjYYt2LpxTbaiBd68eZMDBw5gNBqpU6dOrrruzYorV67g7+9PQEAAt27d4tatW1StWpVp06YhpaRDhw4UKlSIcuXKUb58eSpWrIiPj0+631NERITZdXFSUhJHjhwhODgYZ2dnGjVqhLW1NQDdBwzn/LEDWNjYYYh/PGUutFYIjQX57B24e+t6hjNNT7J81WreGfUOiXExjw8KAZnplBCA4NCRIzSoW+fZbtQL4ty5c1SrlnWMCXtnN6LDHj1XOSrUrEKRC0RFRfH777/Tt2/fPBf41ME8fHx8eOedd2jevHmOyt2+fTvdu3c3G005ODhw7tw5YmJi6N27N6tXr04jnsePH6d9+/aEhoZStmxZChQowOXLlwkLC6Nly5Zs3rw5T2Lez58/n/fff5/q1aszePBgypcvz927d1m/fj07d+6kT58+rFmz5qn3ICkpid69e/Pzzz/j6OhIlSpViIiI4OLFi2i1WvR6PXZ2dlSrVo2YmBjOnTuHjY0NP/74I0WLlaB2vfqgtaZgwx7kL1MPaUgi/MKfBB/dhJNrQXzPn8rTwCpZERAQQGBgIA8ePOD+/fvcvXuX/Pnz89FHHwGmHQP+/v5otVp8fHwoVqwY9erVo3PnzgCZbsl8ksTERG7fvv3UdGt+3Mhn06cBYGHrgK17cXSRD9GFmzpptRs25diBP59a5vbde+nwWhuE1pKCdbvgVut19PHRBG2ZR+zda8mpBNYFi2JMjCMp8qH52itXrryyxowxMTFPLOkJ0FiA8fGWzmKlyuJ/7epzlaNEXqF4Dk6fPk2lSpVeSPhRnU7H999/z6pVq7CysmL48OF069btuYOcBAcH891337F9+3YSExMpX748I0eOpEGDBhk+gCMjI/n+++/55ZdfiImJoVixYgwbNozWrVvnSZCP0NBQvLy8qFevHgsXLkxjBQ+m2N9Llizh77//NlvKZ4WUkoMHD7Jw4UKuXbuGra0tHTp0YNiwYVy/fp1FixZx6dIlrK2tadu2LcOHD8fDw4PKdZtw9dIFygxflM6gLCbwMtdXvkevgSP4YfnC52qvlJLY2FiioqKIiYkx7344fPgwFy9eJCwsjLCwMEJCQrCwsGDFCtMWsTFjxnDkyBEArKys8PDwoFKlSkyfPh0wCZ69vT1eXl7PHQAmMDAwSyPE+Ph46tarR7WqVenaszerN/xC8IP72Dk48Mbr7YgJecB3333Hlu07eb1d2wzziIuLIzY2lgo16hEVG0/xfl9g4/LYMPHcxy3NfiNKlKtEnM6AVmtJo4b1Cb8XwM6dO/HyKUxQ4NM7JC+D8pWrcfXiOSzsnLDzKkP0zdNIowGNlS0uVV8j5LjJkPXOnTvPFR1PibxCkUNOnjzJO++8Q58+fRg9enSelnXp0iVmzJjBrVu3aNu2Le+///4ra8We28ydO5cJEyawefNmypYtm+58XFwcjRo1on379nm2VODv70+JEiUo1LQvBRv0QBr1SIMeadRjaeeMsNByc/1HxAdeYt/uHUgpSUxMJDExkZYtW2JjY8Pp06c5duwY8fHx5ldsbCxz5szBysqKpUuXsmHDBmJiYsxxwDUaDceOHUOj0TBz5kw2b95M/vz5zeF3CxUqxLRpptGyr68vBoOBQoUK4ezsnKdR1ZKSkggMDMSY7JQpNRqNhnU//cqMjz5k06ZNVKpUKd31iYmJNGrUiKq1G7B/z/Z052/fvs348eOJjolh965dFO48AddqjzsDwYc2cHfPMsqUKYO1tTXx8fFs27YtTR4VKlRAr9fnyLfBiyClA12832yCD25EGvUUavwWjqVMW1FvrP6A6JunKVm2PNevXn6ecjIUeWVdr1BkwZ07d/jwww8pUqQIAwcOzLNyDAYDy5cvZ8WKFRQoUIBvvvkmyxjR/0YuXbqEm5tbGoHX6/XExsYSFxeHg4MDNWrU4NKlS+zZs4e4uDiziCYkJNC2bVuKFy/OtWvXWL16NTqdzvxKSkpi7NixlC9fniNHjvDll1+i1+tJSkoiKSkJvV7PkiVL8LtxE4DwS/uJvJbWA1mx7lOxdvFEa+dMUnwMo0aNSjOzU6NGDTw8PDh//jyrV6/G1taWfPnymd8TExOxsrKiRIkStG3bFnt7exwdHc2vFMaPH8/kyZMzFe+MOkB5haWlJUWLFiUiIoKIiAgMBgMWFhY4Ojri7OzM+YuXcHB0zFDgAaytralVqxbXblxLd+7gwYNMmTIFS0tLSlaoArt24VgirUYl3j4LQM+ePQkODmbJkiUYjcY096Zw4cL4+/tz7dq1V3bKHiG4v3cl1q5eeLUammaGqGivT7g4sz13srE0khOUyCsUmRAXF8e4ceMQQjB//nyzt7Lc5uHDh0yaNIkLFy7Qvn17JkyYkGdlvQro9XoCAgIIDg4mJCSE0NBQQkNDiYiIID4+ntu3b/PZZ58RExOTZqp41KhRREdHI6Vk8uTJafLUaDSULVuW4sWLExcXx5UrV7CyssLKygpLS8s0Ypw/f34qVqyIVqvF0tISS0tLtFotTk5O5EveOudYui75PEoiLLQIjQXCQmveImbpYJpZmT9/Ph4eHlhbW2NtbW3eUjhgwAAGDhyY6Rp0ixYtaNGiRab3J6fb9/IKCwsL84zCk1hZWaFLTDTHmc+I6OhoLFOdk1Kydu1avv32W8qUKcPcuXP5YdNmAAyJsViSyvWxhem6+/fvEx8fj6WlZbr7muKQytn52bfp5TWPHiUb00mJU9kGFGzYHY027X1KeGDqWGryaBZCibxCkQFRUVF89NFHXLt2jaVLl+aZ85ITJ04wadIkkpKS+Oyzz2jTpk2elJOClNK8zurj45MnxnNSSu7fv282EAsKCiIoKIjGjRvTpUsXIiMj6dkzrfevfPnyUadOHTZv3sypU6eoVKkS9vb22NnZmV/29vacOXOGiRMnMmzYMPMo2cbGJs3Dv2rVqvz222+Z1q9ChQrMnDkzw3P58+fH0tYOfUwYLlVaYtTr0EUGI4QGjZUNUkqi/I7gVbI8zZo1y1DI83L6/FWjx5tv8NOaFezcuZNOnTqlO3/37l1OnjxJ/2GjzMfi4+PZvHkzLVu25OOPP8bGxoauHV9j3BgNYef+wLPVEIy6BHRRj7Cv1IaQK0fYsGEDWq2W+vXrExAQgFarxcvLi8TERB48eIDGwoJChQq9yKY/lRMnTjBlyhRAABJbz9JotFbooh5hTIzH0sEVCxs7AjZ+AkCPHt3zpiIZ7av7J7/UPnnF8+Dn5yd79OghrayszHuCq1WrJn/44YdcLcdoNMr169fLWrVqyW7dusnbt2/nav4Zlbdw4UJZqlQpc7vs7Ozk4MGDZVBQkDmdTqeTDx8+lDdu3JDXr1+XAQEBMjIyMtOwsjExMfLUqVNy/fr1cseOHVJKU0jbunXrmvdgN2zYUHbp0kV+/fXX8tq1a/LGjRty06ZN8vTp0/Lu3bsyISFBGgwG+ejRI1m0aFFZoEABuX379jR7+Y8ePSorVaokbWxs0tQ3L3hryChT+NlytaVlPkfz/crn4i6di1eRgPzfgu/ytA7/FAwGg/QpWkK6uLrKzZs3p/nOTpw4IatWqyatrKykv7+/jI6ONkf3CwsLS/ebqt+qg0SjlT6V6kmbVP4ZUvsbSO23wdvbW1pbmyLTvda+w8tofoYYDAa5fPlyWatWLdm1a1c5aNgwc52t3Io8bpfWUlo6eZg/Py+offIKRdak+HhPSkqic+fOVKtWjUePHrFp0yZu3rzJlClT+PTTT5+7HIPBwJw5c9i0aRPNmjVjxowZeTKiTkFKycCBA1m9ejWVKlXijTfewMHBgWPHjrFt2zbc3Nw4fPgw7u7uBAUFpTOwEkJgY2ODl5eXeZQ6f/58Dh8+TEBAgDl9kyZNzN7c9u7di6urK56enuYp9tT5CiGwsLCgcOHCCCEIDAxEr9fj5+fHgAEDiIiIoEWLFuYtdNu3b0ev17NhwwbzVrC8IigoiOIlS5OUGI/Gxh6HolUw6nXEBJxH6nU4F/TkwZ1bL2SnxT+BCxcv0ax5cyLCQmnWvDmVKlbk/v37bNu2jcTERBZ8t4LOHdoyevRoypUrZ94F8CRnzpyhdp06GPR63NzcqF69OpGRkRw/ntY2wtnZGZ1OZw5EZG1tTVxc3CsxgxIZGcnUqVM5cuQIbdu2ZfLkyeTLlw87RyfiopNjPWg0aCwsMSY9DlI0YeJEvpw167nKfiWt64UQbYGvAQtguZRy9hPn8wPrgMKYlhbmSim/zypPJfKKZ0VKyd9//03Hjh2Jj4/Hzs4OBwcHPDw8sLe3p3nz5pw4cYKtW7dy5MgR6tWrl+OydDodkyZN4u+//6Zfv3688847ef5w2rhxIz179mTAgAF4eXlx8OBBEhMTKVmyJDVr1mTatGlUr16d5cuXm629UwgPD+fcuXNcuHCB6Oho1qxZA8Ann3xCeHg4FSpUoHz58pQtWxYXF5d0Zd++fTvLiGs2NjZoNBrzuiqYbBRWr17Nr7/+Snh4ODY2NnTp0oUJEyZQtWrV3LkpWdCqUw/2bf8N15odiAk4Z4r2JwT2hSth5epF2JmdfDBtJl/M+CjP6/JP4c6dOwweOZq//9iJTqdDaDRUqFyNb7/+isLeXrzzzjvExMQwd+7cDAMfATRt2pQzZ87QuXNn9u/fT2BgIBYWFjg7OxMaGpqu84kQFC5SlMCAWyxdupShQ4e+gJZmzpUrV/jggw8IDQ1l/PjxdOnSBSEE+w8eolnjRljmL0hSZHCaa4SFJdLSioIFPXgQcO2ZfWA8evQIe3t7bG1tXz2RF0JYANeAVkAQcBLoJaW8kirNZCC/lPJDIUQBwA8oJKXUZZavEnnFsxAfH0/Xrl3NEdisrKzMIUOtrKxwdXXl/v37uLu7ExUVRceOHXO8fSsuLo6xY8dy+vRpJkyYQPfuebQG9wQNGjTg+vXrJCYmEhUVRcmSJXFwcODKlSskJiZStWpVzp07x86dOylevDgAR48e5bfffuPGjRsAODk5UalSJebPn2/2dPY0EhISuHPnTvqHcyqEEFmeTzHo8vb2ztPZjhTCwsIoUMgDl6pt8Xn9XQCkQQ9CIDQmw6hry9/FUhdJ6N2AV2L0+LKJjY3ljTfeYO/eveTPn58SJUrw8OFD7t69i4eHBz4+Pjg7O/PNN99kGAkR4OrVq5QvX55x48YxbNgwwPTdP3r0iJYtW+Lm5mb2vmdjY2PeMgeYZ4wyCgr0IpBSsmnTJubNm0eBAgX44osv0gSEatr+TQ7s2Y40JIFM7kRbWIPB1Pm1sHXAEB/N9l17aNemVbbLvXz5MuPGjaNevXp8/PHHr+QWutrADSmlP4AQYgPQCbiSKo0EHISpe2MPhAH6JzNSKHLKoEGD2LlzJ/Xq1ePo0aPodDpq1qzJwIED+fjjjzEajSxatIgZM2ZgNBrTxSPPLnFxcbz77rucP3+eGTNm0K5du1xuScZIKc37r4sUKcLKlSvN250iIiJYsGABa9euBWDp0qWMHz8eNzc3kpKSsLCw4K233qJGjRoUKVIErVabbqSfFXFxcVkKeEr9siJlSjwuLi6dyEspOX7yJFd8b+Di5Ejrls0z7AhIKTEYDGg0mqeK8uEjxzAm6XCq2MR8TFikfUw6V2xK0I4FPHjwIEuDTCllmn3wee0hMa/J7D726dOHP//8kw8//BArKytu375No0aN8Pb2ZtKkSURERHD+/HlKlSqVad779+8H4LXXXgPgjz/+4NSpU9y9exej0UhwcDCOjo5ER0dTt25drKysKF++PEuWLDHvzoiNjX3hQWri4+OZNWsWO3bsoEGDBnz66afp3PeePHIQqU8EocGjxWCs3YuBPhEL63w8PPQTMbdM2wQ379qXbZHfuXMnn376KW5ubvTu3TvLtC9T5L2A1KGxgoAnnQ8vALYA9wAHoIeUMt1TRggxDBgGpj2TCkV2uHnzJhs3bmTw4MEkJiZy9OhR3N3dWbhwIU5OTri6utKzZ0/u3LnDkiVL6Ny5MzExMU/P+Al0Oh3jxo3j/PnzzJw5k9atW+dBazImZS3caDSycuXKNBbIdnZ2NG3alL1793L//n2OHTvG5cuXadKkCY0bN86WV7kXxZOdgV+2bOed98bx4Jaf+ZhVPgf6DR7O4v/NMndIQkNDiYyMNN8Ha2tr3NzcMhUDg9EUkzxl1J4hyecy6/BIKYmKiiIsLIykpCTAtA3NxcUFJyenf5zY63Q6QkNDzb99KSV2dna4ublx8+ZNfv/9d6pXr87//vc/c3vBNEtTvHhxbt68yZ49e7IU+ZR7uWfPHhYuXGheb09Nim1HSodgz549aTp1z9IBzQ0CAwOZMGEC/v7+jBgxgkGDBmXYiUyIiQDAsUxdgg9vxJDw+BliW6gEVk6F0EU84MG9u08tM2XQsWrVKqpXr86XX36Jk5NTlte8TJHP6Jf+ZLe+DXAOaA6UAP4QQhyUUkaluUjKpcBSME3X535VFf9G1q9fj5SSfv36MSvZ6KVp06bmf5pq1apRuXJltm3bRq9evXLkTctgMDBp0iROnjzJJ5988kIFHh6PIPPly4e7+2MHHImJibzzzjuEhoaaH0xvvPEGTZo0ySwrpJTPZGxmY2Pz1On4p51PSZM6Bvy6jb/Q760eWLt44tPxfex8KpAUHUro6e0s/3YuN27c4I8tP3Pnzh30en2a/BMTE7l37x5ubm4Z7quuU6smQmNBpO8R7Itk7OAl8uph7JwLZBikRkrJw4cPzYKUgsFgICQkhNjYWLy8vP4xQp+YmMidO3fSCWiKg6Lvv/8eIQRnzpzBysqKrl274uDgQFBQEKdPn+bmzZtYWVmxbt06Ro0alUkpmO1cvvzySzQaDS1atKBTp06sW7eOEydOAKZ7a2lpyXvvvUdISAi//PILUVGPpeBJN8h5yf79+/n444/RarV8++231K1bN9O0RoNp8jnK9whOFRrjWqM9lg6uxN65TPDhn9FFmHz8+155ure7kJAQfv31V7p06cIHH3yQrTa/zAWlIMAn1WdvTCP21AwEfk3eIXADuAW8OHdPin81jx49wtbWFnd3d3x8TD/FY8eOERYWZk5TpEgRwsLCmD9/PgaD4ZkeJFJK5s6dy99//82ECRNe2BR9agwGA0ajkZiYGBYvXsy+ffsAk0VymzZtGDJkiNnoLXUnICMcHByeqaNja2v71PtlaWn5VOcvGo3GPPLW6XQMHz4c64KFsXEvxt2di/FdOISbayeRGHYPl6pt2b/zd75fu57Y2FhW//gzLTt2o3L12lSv24gR4yZz5aovISEhaUadKbi7u1O9QXNCTm4l7l56L20Rlw8QffMUb3TtnuG9iIuLSyfwKUgpiY+PN8e1f9WRUnLv3r0sZyxu3ryJlBJ7e3sOHDhAlSpVOHHiBD4+Phw8eJBKlSqh0+m4efNmlmVVrVrV3PH57rvvWLRoEW3atDFHTEyhfPnyDBkyhIkTJ3Ly5EkqVKhgPpeyZp+XGI1GFi5cyPjx4ylSpAjr1q3LUuABcwQ9uyKVKNp9Go4la2LrXgy3mh0o0Xc2CNPvSJ9FXzcsLAwpJQULFmTDhg1MmjQp28+ilzmSPwmUEkIUA+4CPYG3nkgTCLQADgoh3IEygP8LraXiX4uHhwfx8fEcPXrUHFHs3r17dOrUid69e1OlShVOnTpFdHQ0K1euxNXVFS8vr2znv3HjRn7++Wf69u1Ljx498qoZWWJhYYGTkxN6vZ6vv/4aR0dHJk2ahIeHB4GBgWzcuNEsdiVLlsxwZC2EwNLS0uzRLbsIIfD09MxwJAgm8fb09DRvoTMYDBmmST3yXbfxF+IiQxExkSQ8uIXQWmFTsCj6+Gji798g/v4NNFa2/O/b70hMTODWlbPYFCiMQ/km6OOj2L9rK/t3/MZHMz5nzPBB6SLJSSmZ++lHvP5mD66vfB/Xaq/hWKauKQrdxb8Iv/gXPqUrMWFUxpbcKQ/jzJBSEh4e/tQp1leBhIQEs3FbZly9aoqcNnToUDZv3syWLVto1qwZb7/9NhYWFixZsoQGDRqkGXFnxJKly5BSotVqmTBhAj169KBevXpcvHgxTbpLly5x9OhRYmNj2bJlC5cvPx79Puvv81mJiIhg8uTJnDhxgs6dOzNhwoTszWwlh8qNvX2RG6vGm0by9s7E3rlCyInNpExgW1pkPOa+dOkSY8eOpXfv3vTv3//Z25nR5vkX9QLaYbKwvwl8lHxsBDAi+W9PYA9wEbgE9HlansoZzstBpzfIc4ER8ph/qAyOSnjZ1UnHrUcx8tjNUOl7P8rshCMwMFBqNBrp5uYm3377bWlhYSGLFCkifXx8zA4qAGlvby/79OkjATl37txslXfy5ElZq1YtOXbsWGkwGPKyaZmi0+nk2rVrpZeXlwRk5cqVpZOTk7ldGo1GNm/eXFavXl06OzvL+Ph4mZCQIO/evWt2aHLjxg0ZGhr6XG3Q6XTywYMH8tq1a9LPz09ev35dPnz4UCYlJZnTJCUlyeDgYHn9+nXp5+cnr127Jh88eCB1Ol2avAa8PdZcf/fGb8kq0/+Q1T7ZJ6t9sk+WHr5ICktrs6MRhEb6dBwnC3f5ULo36SM9WgySJQfOkw7Fqkmh0cjNW7elq2tSUpL08/OT+//+W9Zu2lYKjYW5PAsrG9mua2959uxZ6efnl2FbU+rv6+srl674XvYcNFJ2HzBcfvXtInnlyhXzfc3MuVAKy79fJSvVbihLV64lew8cJsPDw5/9xj8n4eHh5u9s27Ztsm3btrJ69eqyRYsW8ueff5Z+fn6yWLFiZodRFSpUkBMmTJBXr141t3Px4sUSkFqtNsuyXu/8pgTk/PnzZfPmzaVGo0nzP6jRaKSjo2O6/8tOnTqZP1+5ciXP7sXly5dl+/btZb169eTmzZuf6VqN1uRYK3/5RtIyf8E0bXAoXl1aOhaQgOz8Vv901+7evVvWq1dPduzYUfr7+2dZDpk4w3npHupy+6VE/sViMBrlsgP+stEX+2XDL/bLRl/8Let89pccue6MvBcR/7KrJ8/cDpddFx+T9T7/Szb6Yr+sP2u/fG3+Ibn3ykMppZS1a9c2PcAtLNL88z350mq10tvbW0ZERDy1zODgYNmqVSv55ptvytjY2LxuYpb1aNSokRwwYIB0cHCQnp6ectGiRfKHH36Qa9askRs2bJAdO3aUgJwzZ06aa41G41OFKCdkJ8+s0rRo39n0gC9R3SzuqV+lhy54/AAtWVNa2DqYPqfymmZXuKLUWNnIRm3fSJe/wWCQfn5+csF3y6Wdc8F0v4OChUvKzVu2ZSnym379Xbp6FUt3rYNrIbl05eosRf7IsWPS0tYug9+gkD36D33qvctNIiIi5KVLl2TFihUz/J8oXry4LFu2rPlzo0aN5NGjR6Wfn5+8ePGi/OKLL6SdnZ3UaDTS2to6y7Le7PGWBOTy5culn5+fPHDggFyzZo2sXr16lv+XqV955Qlx8+bNsl69erJ9+/by8uXLz3y9g3NBCUKCkAXqdpElB38lSw6YK4v3+VzaFiphrv+IsZPN1xiNRrl8+XJZo0YNOXjw4Gx18jITeeXxTvFcfLzlCn9cCSYhKe10rEaAo40lPw6rhbvjywm4cSognDEbzqerG4CNVsPQmk5MHtDBbNWa0VS1xsICY/I0sneJsty4fC7LfeJGo5G3336bS5cusXbtWooVK5aLLXo6cXFxbNmyhR49eiCE4N69e3h6enLq1Ck6duzI/fv3KVCgAPb29gQEBCCEYNKkSXz66af/CGOw4uWqcMv3AoWaDcCjWd905/Xx0Vyc9Yb5s32RyhRq3h/7IpUxJMQQenYXD/5ajRAWWGgEiXHR6fJYuXodQwYPwsbNm0LNB5K/dPJ0/aW/uL93BRoh2bV1M02bpN99cPDwEVq2eQ1pYYVHy8E4V2hiNuS7v28lusiHbNz4E107d0p37fXr1ylTrjzSoCd/+YZ4tRmJpYMbj479woP9azHq4uk39B1WL/32+W5iNklKSqJChQpcv36dIkWKMHHiRJo2bcrJkyf57LPP8PPzw9bWlvj4eIoXL46/v7/Zp0FISAhRUVHm41WrVuXs2bOZlvXX/v00b9aMmjVrsn79evPx48eP069fvzRpLSws0oW+FRqN+f80t9DpdMybN49ffvmF2rVr8/nnn+domaXtm73ZvflnBNLkcwGBsLBI/hu09q7oY0L56+8DNG3cCIAbN27w1ltv0bZtW6ZMmZKtZYFXzhlOXqFE/sVx6W4Uw9aeyVBEwST0rcoXZFaXii+4ZqYZqnbfHOFhVObe1h7tX0PQX2twKFkLj6Z9ubbifbT5HLHzKY+TrZbEiIc88L+KV+MeaAuW5Pamz/h68XLGjBicaZ6rV6/m22+/Zdq0aXTs2DEvmpYply9f5qOPPuLu3busWrUqjVESmB5aP//8M1u3biUxMZHy5cszfPjwf9S205KVanDz0hk0to6UHvQ/bN0fd6KMSToCfv6USN8jAOTzLEOpIV+j0VqmySPa/yw3Vo1HCA1GY3phKFKuKg8ePKTMyCVobR3SnEsIuYPvomG0er0Lu3/9Md21zTt05e8/dlD27aVYu6TdQ6+PjcR38TCKlyyF7+kj6a6tXLshF08exvv19yhQ6/W018bHcGlOdzDqSYiPeyEudbds20Gn19tTpkxZtmzZnOZcfHw8rVu3Jjg4GCEEQghmzJiBv78/9+7dw8HBgXr16jFjxgyioqLYt28fzZs3z7I8F7cChIeGMGXKFPr2NXXgpJSUK1fOLOje3t7muPF169bljz/+ICoqCm+fwtwJzL1QrcHBwUycOJELFy7Qr18/Ro0aleNY9SdOnaZO7Vo4lP4/e2cdHsW1xuF3VuKeECEJEtytaIECxYq7e5EWKE4p0hYoFVocipfi7hSHQoHixS1IgLh7Nqsz949ttoRsDBKgvXmf5z6X7s6cObO7me+cT35fHawLFSX+nrFuXulQCJdqzQn/fS1ehX157n8rXXLvgwcPKFOmTI4X3wVGvoA8Z8qeOxy7G4mYxU/IUiHjxLj62Fq+2RzPa4HxjNpyE5XW/OpeEg08XDkCVegjyny6gtTQhwTum0vpIYux9S3/9zEi9xb2w9LZixL9f+TBkkF4e3rw+NZls2MGBATQu3dvGjRowOzZs9/YzliSJLZu3cqCBQsoVKgQM2fOpHr16m/k2m+adt16cWDHFmSWNkh6LY7lG2DrWx59UiwxN46hT4ohreuXR8NeFG5qfkF289u2SHotoj59hv3du3epWLEi3i0/xb1eF7PnPt/zE4n3/iApPjZdZUBSUhJOLm64VPtHLe9lwv/YRNjJNTx58sSkLpiGIJcjt7Sl8uS9Zs8NPryMqAs7mfb1N3wzfZr5DygP8Stflaf3b7J8wy7qVCuPtdKYGJaUlMT0GTN54P+Qxw8fYO/sRnK8UXbW19fX1G/g7t27SJLEoEGD+OWXX7K93q1bt6hR4z30eh2urq5Uq1aNkJAQU3IfGMvkihcvblJTBFAoldjZ2qYrB30dbt68ycSJE0lNTeXrr7+madOmrz3m19/NYebUiSgd3HCp0gyFvQspgXdJuHcWG0cXrlw4i4OdHWPGjGH48OE0btw419fIzMgXaDIWkCuC41LZfjWYTZeCuBOclKWBB5DLhCx30/lFYGzWamuCTI5N0coICktsvEqiiQsDQYaNT7kXjpGhdHAj6fkt7vzUFU18JM8f3jEriCOKIjNmzMDW1pbJkyfnqYF/+vQprVu3xtPTE09PT5o1a5buwTdnzhzmzp1L/fr12bx5M9WrVyclJYXQ0FBCQkKIi4vLlVCIXq8nPj6euLg4kpOTs61jzytEUSQpKYm4uDji4uJM0qjh4eEmqeHlC+YAIAhyXN9rS9KjK4Qc+pmIc1ux8SyJQ5m6pGUrJz66gqjLqICd+PgqokaFZOYzue//CADbIhXRJcUQfnoDAVu+4unW6URd2otBnYJtkfLoNakZSrZCQ0MR9Vpsi1TIMG4atkWMXq3HL5WUabVaEEWsPfzMnQaAc2XjTvjStRuZHpOXREWEIcgVrH7uxMorcTyM1vA4JIqxn0/hr/sBKBoOQ2Zpg0aj5vTp03j9XUlx9OhR7ty5g7W1NQsWLMiRgQeoXLky9+7dpUTpMsTExHDixAnT77xx48amKpFHjx6ZDHyVKlUYO2YM8fHxJCVlDL3kBkmS2L59O0OHDsXOzo5169bliYEHmDFlAjv3HsDD3Z2Is1sIOfQziQ/+pHm7zjy4fR2DTseAAQOIiYnB0dExT66ZxmtvrwRBKAs0wqhI95ckSb+/7pgFvHskqXV8sesufwXGG/dJkoQ+OwsP6EUJW8tXc3O9DrYWCmSZGFrJYBRIUVjaIhl06FOTkFnYgCSiT4lHaeeMqNfiv+wT1FFGF6BBnYKk16IHHByd2LZjF107/RNX3blzJ3fv3mXWrFlmRVZeldGjR7No0SLAuIsRBIETJ05Qvnx5+vXrx7p162jUqBEuLi4MHDgQvV7P48eP0xn1lJQUoqKi8PT0zCC5+SKiKBIREZFO2UwQBGQyGZ6envkqGRofH09UVJTpui+TmJiIpaUlvr6+NGrZjtNH9hN36wSejfriVL4BmthQwk7+SkrQXeRKCww6Lalhj3i8djyejfph71cNvSrRGJP/YyNyKzvksoy/D2cn4+cT89chYq4fAdGAlXsxRL2W+HtnCT2xBseyRuEWOzu7dOfa2xtd+7qkWDJDnxwDgIN9+jBAmotWlxKX6bma6EAAXF2cMj0mL7G0tCbZYECnVnMhCC4EpRJ1eR9xT8LwaTkcS69SiDoNgtKeTt16EBMRZjxRpgBRj0qlYsLEz6lR4z3q138/2+uJokjn7r148vBvFUO5Av6OW586dcrsOTdv3iQ+Ph6ZTJZOMCm3aLVafvjhB/bv30/9+vX55ptvTN9nXnD3/gOGfjqC2LBAlHbOKGwcUceGcHTvdrrGxiLoUihUqBCLFi2iaNGieXZdyKG7XhAEGTAXGABogeWSJH0tCMKXwFcYPQJGHxkcBdpLkpRRaeINUOCuz3t0BpHeq6/wPEaFzpC7XV2JQrbs+ORlteL8J1mj54Mfz2SQUARIeHCeyIt78KjfgyfrP6dwi2E4lq7N/cWD8PpwEJ4f9MZ/xXBUIcaHjWutdnjW78Hd+X2w9S1HStA9QODB/XuUKVOGuLg4OnbsSPny5fn555/zbBc/d+5cJkyYgK2tLd999x0tW7YEjA+8iRMnkpSUxJQpU/j2228B40MyraFMZnh7e2dqrENCQjLVmxcEAW9v73xpEpOQkEBkZGSOPAYWFhYUK1aMD1t34vdDezK8b+/qwamjB6lZqzZ2ftVJDXuEPiU+3TF2xauREnSP5u06c2TXpnTvabVa7Jxc0KWm4Fi2Ht4tP8XGrTCSBEnBDwjcNw91+BO8S5Qj+PE9XqZo2SpExiZQdsSqDNK4kiTxZN1ESAgjNjwog5iJk7s3CVGhVBi/FQvH9PX7APcWDUQTHcjDhw+zlIjNK0aOm8TP83+kUN0ueLf8xJiYKoroEqOwcPIg4s8dhB5djqW1DZpUFXbFquLRsBdy9EgyC2LvnSXm8j5kCgVRERFmuxS+SIMmzTh36gQWrt641++BITkOEYGIk/94Atq0aUPJkiVRKpVcu3bNJO5U3M+PgGwEdzIjIiKCiRMncu/ePYYMGcKQIUPytPFQXFwcRUuVJ1WtxrfdOBzL1EGQydGrEgg5upLY60coWqI01y5fyPYzyorXbVAzBBgNhGFsEjNNEAQDMB04gtGwK4EOGKVoxwGzX3m2BbxT/H4/ipB4da4NvJVCxmdNSmR/YD4gFzJqJKcRd/cMCmt77EtUp3S1ejw6+SuWLt44lK5N+OkNyCysUYX4I8gUCAolrlWaE7D5K2QKC4p1mUry89s83/U9PQcO49r506xYscK4a5kwIU/d9LNmzUImk3H48OF0anQVK1akatWqnD17lvnz55uMfNpOOCvCw8MzqIiBUfgkq4YykiQRGRlJsWLFXu1mMkGSJKKionIcEtBqtaSmpnLy4G6io6MZOW4Sd+4/wMHenlnTPjcldzVv15Wj+7bj03okCmsHNDEhCAoLbHzKEP77WhD1fDttYobxlUolCoUSHVCmTGm+614Rb2fjDvFOkDUTLvvwPPwJVlbmKyymfjGRYQP7Erh3Dj6tRyG3NJ4r6rWE/b6OpIDrTJ7xvVm1su9nzWT4sME8WDqE0oMXY1XI13Tu892z0UQH4lWs1Bsx8ADzfviGZYvmEXVhJynPb+PX51uUds5YOHkQe/sUocdWAqBJVWFVyBdnpY4n6z83ne/q7kmh8nWJuneBT0aOYfvm9ZleKzY2lnOnTiCztEWfkkjwvrlmj/vtt9/S/belpSUajYbnz18t6e7atWtMmjQJjUbD3Llzs5R1flVmL1xGUkx4unwfAIWNI0U6TECXFM3zgOtmFRjzgpzu5C9i3K3XlyRJKwjCbGAssE+SpK4vHXsWcJAkqUp+TDg7Cnbyec/AX//iZnDOpTgtFTIkYHyzknR9zyf/JpYFK/4IYMWZZxleV0cH8Wznd3i83xXnSk2o7SXjwA/DCXlyH6tCRdClJGBQ/X2vgoCNdxlUoQ+RyS0o3mM6DqVqAnDru3ZIOi1PAx7TpUsXunTpwueff57heq/KjRs3qFatGnXq1GHdunWm1+Pi4pg6dSpJSUnIZDIuXrzIkSNHaNGiBY8ePcqRsfTz88tgZMLDw7NVJRMEgaJFi+ZpZndycjJhYWG5ivtbW1ubZIgzIyUlhdqNmnP36nksXQpjV6wK+tREEh9eAmDpqjV8MjBjCd7FS5eoW6cO5SpV4/7t67i5udGgQQO0Wi2nTp1CpVIZE9Ie3CYhPs6sS3fEhKksnfsdcktbHMrUQZDJSHx0BX1KPO2692PP5l8z3Sl27NmfvVuNxlBh74rMwgptXDiIBqztnQgNfPpG1fLmL1zIuDFjABCUVlg4FkKXFIuoSQFBoKhfKZ4/eYhMJsPHx5d+/fpSsWJFQkND2bJlC1euXAFBhrWtLaqkzH9fI0eP5edFC/7+LwG7YpVxqtiIiHPb0cWHpTu2atWqJCcnZ/Ba5UZJMC3+PnfuXHx9fZk7d26eL2DTKFyiHIk6OaWHGMNuol5H5LmtOFdqgqWrN+roIO4vGsBX3/7EjCkTXvk6r5t4VwLYKv3Tx30tRi/AbjPH7gZKvsokC3g3iUrOPnFOKRf4oLQrDUu5Mqh+UQ5+Vu+tGXiA0Hg1AKkRT7k7rzfXv/qQ6199yP1FA0gNfwJyo6FKwpZHt//ixwU/4+HmgqVSaWotqrBxxJCahHu9rpQd+YvJwAMoHQohGvQsX74cS0tLBg8enKfzT3uAvdiXWqVSMWvWLOLj45k2bRrvv2+Mcz56ZEwWy6mhNCdVmp18KRiNfE6Oyw3mpGzVajU7duygV69eNGnShI4dO7Jy5UpTT4GczMHW1pbr50+z/Je1+Pr6kBpwFWKe0b57P27fumXWwAMEhRjbZ0yZPIlx48YhCAL79+/nyJEjuLu7M2fOHPr26IwkGtL1OHiRn+d8y6kzZ6n/YQv0offQBt6k2nu12XvgEHu3rM3SFbxnyzp27NqFT/FSiKp4dLFh2NjYMmDocOKjI96ogT969ChbN2+mdevWFCtZGvQaNNFBiFoVPkX9uHD+PIa/cz/KlC1LtWpVWbBgAb179zZpq7du3RokEU2qKstrBTz9ZydeuPkQZEorIv/cji4po3fqxo0bPH78GEdHx3RVJHfu3MnRfWk0GmbMmMFPP/1E/fr1Wb9+fb4ZeICE2Gis3IuiTYwi5OhK7vzUlfA/NhKw5Wtib/2OhZMnCDKeB7/cuiVvyKm73hWIeOG/0z75CDPHRgJvR/2kgHzB1dbCZDSz4rtOFbFWvvkkO3N4OVkRfeMYQbtfiBr9rSGNaODZ1q9JrtuJD0Z/jbW1NRNHD2fi6OEANG3TiZMH9+DbbhxO5cwnDOmSYkAm4/jx4wwYMOC1YmnmSCuvevDggem1a9euERQUxJQpUyhTpgxLly5Nd2xOOrqB+W5dOWl2IUlSnnf6ern2OCIigsGDB5vizjVq1CA0NJS5c+eyZs0aVq1alePywJSUFJo0qEeTBvVMn4sgCCgUCnQ6HUqlMsM53l7GVryLF8zj8uXLODk50bJlS7RaLWfPnmXChAnUrl0bmUyWZYJlowb1Od2gfk4/BhM6nY4a1arx+9GD6eYMxtr0N1EfD3DixAmmTp1KqVKluHDhAs+fP6d8+fKULFmSwMBAbty4QceOHY3JccBDf3/u37uHUqnEy8uLhIQELly4YBovuzBWaooxM15mYU3osZUoHdywK1YF3f0LJtGYNAoXLoxGoyEmJoZr166ZXn9xQZwZ4eHhTJw4kfv37zN06FAGDx6cp/F3c8htHEkJuse9hQOQdGpkljbYFqmINiGS5zu/JdKrJEgiDs6u+XL93PzFSpn8u4D/ON1r+vA40p9UnfmacwF4v6TrO2PgAXrVLMynfxt4u+JVKd53NnKZjNSIJ0Sc20b87VNEX9hN428zuscWzv6Gigf3EHpspVkjH3vntHGHX9gXS0tLevfunefzr169Og4ODly6dImYmBhcXV2pX78+pUqVwsPDg+TkZE6ePIm1tbUpIc/BwSHbDmdyudysoXZ0dMy0e1oaSqUyz42Mra2taXEiSRKfjRpFcHAwy5cvp1GjRibj8ODBA4YPH86wYcM4e/ZstuMmJyebjfVLkoROpyM4OJhixYplMD61atbEycmJy5cv8/HHHzN69GiTwmFCQgKTJk3i1KlTVKlaNctKhbRraTRGL5iFhUW2xkQURVN73JfHAaNAi0KhyNcqhzRq1apFr169WLlyJXFxcSxbtoyEhASio6OpVasWo0aNYtKkSSTFxwNGj8yQIUMYN26c6T5PnDjByJEjkSQJ62w6DVpZ/Z27oE3Fq/kneNTthCCX83zvT8ReO5Lu2JMnTyKTyXjy5AldunQxdVFUq7PeiLwYf583bx4NG2ZULMwPnMvUIfDUJgSlJTaFy+DTZhS2PmWRRJG42yd5/vdzqkTtZvly/dwsYcz99RcY+/8DmpZzx9PREqXc/GrcSilnRKPM63vfBu3bdwDAwsWbUgPnGsvPZDJsvEpRvOs0HMsb/8AH9eqW4dwKFSpQpFQFNDHB+K8ciSbWGBMURZHwM5t5vsOY6Obh6kTHjh3zzYU6ZcoUDAYDTZs2Zf16Y5zWw8ODixcv0rRpU3Q6HSNHjjQ9VN3c3LIdM7MOVlZWVlhbW2e64xIEIUPHtrxAEATc3NwQBIGLl69y88YNxk6YSOPGjdPNpWzZssyeM4+YmBh+2bg923GzS+bT6/Vm9Q4MBoMphBAUFERMTIzpvbCwMFNyY1ZJUmnJhE+ePCEoKIjg4GCePHlCRERElnoFycnJWYYiJEkiOjo60/dfF71ez7p169BqtTg4OFCyZEn8/f2pV68e48eP54svvmDOnDlMmzaNTz/9lOrVq6czrPfv3zd9Xlqtlhs3bpi+AzGbclvFC16VuOuHUUcb6+ClLEzUr7/+ajLwQKYL0DSxqE8++QRHR0fWr1//xgw8gEz8O8otgWvN1tgULg2AQaNCHR1sakWr12Qd0nhVcpp4JwJq4MVfoB2QCry8vVMAlpIkvZVtXUHiXf4Qr9IxYcdt7oYmIkoSoihhqZRjaylnTtdKVPLOWwGH10WutEDU6yg3dhNWzp5IBj1Rl/bhWK4els5e6PV6bs9sAZiPZavVaoqULEdUyDMAZEorRL0WJBEEGX379efBvTvs3buXwoULZzg/r+jfv7/JwCuVSmQymWl32K1bN7Zt25bueK1WS2BgoFlj4u7unuWCRBRFwsPDSUlJAf6pkxcEAU9Pzwx14XlJXFwcfYaO4si+HYxcdpiP63ohSWAhF9CJEjJB4OSTZKYM7YGXmxOPb13JdCydTsezZ8+yDV3Y2Njg45M+b+TUqdM0adKYjh07sm+fUcq1bNmyaLVaHj9+jI2NDY0bN+bgwYPExMRkCNNIkkRISAipqakZri8IAhYWFvj6+prd1QcFBZGamprlnMF84uTrolKpmDRpEhcuXODHH3+kSZMm9O3blx07dqDRaGjRogWDBg2iVKlSBAYGsm7dOvbs2WPywtjZ2ZkWTdbW1mg0GkRRRKFQoNfrkcnlGLJYwIwYNY6li+djaWWF5u+Fg0xphajLPkyYRlJSUobfqEaj4bvvvuPgwYM0bNiQb7755o14QtK4cOECrTt1R2/piCYhCm18BEpHd5R2zqgjnyPq1DiWq0/C/XOMmDiNJT9+88rXet0SujMU7Nr/r3GyUbK6f3UColI4/yQGvUGijKcdtf1cMhWdeZukqZlZORtjrKqwx8TeOoG1V0ksnb2yfUhaWVkRGfyUtRs2MvmrmcRHRyG3s+ejVq1ZOv9HevfuTf369fPVwINx516lShVsbGx4+PAhADVr1mT+/Pm8916Gv2csLCwoWbIkycnJJCQkGF2l1tY4Oztn6y5O6++u0+lMSndKpRI7O7t8l+h1dnZGZzAgt7LjbKjEpb1h1PS2wtVGQYpW5HJwKklaEYW9G6mqrKsAzCXz5fS46DijGE2vXr347LPP2L59O/fu3UMul9O5c2c6derE8ePHOXjwIMnJyRmMfHJyslkDD8YFgFarJT4+3mwOR05LqHKjXpgToqKiGD16NI8fP+arr74ylSGGhYWh0Wjo2rVrugZG5cqV44cffsDd3Z0VK1YA4OTkzLBhw9i9ezdxcXE4OjrSrFkznj9/zpkzZ5DI+vfj4W2sltCo1fTr148zFy4TFRGOVgY6TXpDnzYPNzc3ChUqxL17Rr2C2NjYdEY+PDycCRMm8ODBgzcWf3+RvXv38t1336FOjMGhfCX8+v9E/N0zJNw/h0GrxqVqc1xrfISjTymufNmc1OTXU+zLjBwZeUmSGgEIgmANdAX8JUm6lC8zKuCdxq+QLX6F3txK+FVRWlqhTU0h+sYx3Ko2J/nZLWRyBbZ/y9aq48IBMOo8Zc6Avn0Y0LdPutdOnjxJbGwsXbqY1zbPK/744w9+//13xowZw4ABA3J1rp2d3SvvvJVKZZ6q9uWU0iX8OL43Fk1cODh78mdg+l2tZNCTGvaIMjVqZjKCEXMJdeYw102wbCljYdCNGzfo168fY8eOzXDMzZs3sbS0Mhu+iI2NzdKDIEkScXFxr5WomZeGKiAggM8++4zExEQWLFhAvXr1TO/F/x1v79Onj9lFXu/evU1GPio6iuXLl9OhQwdTCd3OnTsJCwsDBKxss85fqFDWWPsvCDLWr19P4cKFaf5hY+7cuWOqHjG+L9C+fXuSk5M59+efREVFIchkSKKYbsF95coVJk+ejE6nY/78+TRo0OBVP6JcI0kSv/76K0uXLqVevXokqrSoYx9iY2mBZbWmuFT5RyrXUi7gmPgYSRIpUzp/9A9y+2vRAKuAavkwlwIKeC10BpGzj6LZcz2UQaMmARC8bx4AKUF3sPEug0xpjNs9Wv0ZAPUbZd0ZyxwHDhzA3d2dOnXq5NHMM5LW5tLPz48+ffpkf8J/gM8/GwoIRJzZZNZQxlw7jC4phomffQIYH6YqlYqEhASSkpJMO3O5XJ6tMp8gCGZDF5UqVaJMxSqsW7/e1M1v0qRJTJ48mb179/L48WMOHDhAszYdzMqo5mQ3bjAYMlUVzAl5uZMXBAFbW1tWrVqVzsADJg31tLDFy7z4umhhj5NvGTZv3szkyZNZvHgxGkmBY8kagES//v2znEf71i2xd/XAslBRnH1KEBoayp49e9IZeDB+53v37uXEiRNotVqcilVEEkWKlqmEQqFAkiQ2bdrEiBEjcHZ2Zv369W/UwIuiyJw5c1i6dCmtWrVi3rx5fDx4CM8DHtPB+i4tStlhZyFgKRcobC9ncA0HtJe3Ym1jwyeDzJd1vi657kInCMJjYKUkST/my4xek4KY/P8ne6+HMu/4IyQJDJKEXBD4c1pzJL0WBBkKO2d8Wn6KJBoIPLAASZsKCKSmqtJ1EsuO+Ph4mjdvTp8+fRg1alS+3Y9Op2PHjh2ULl3arFv+v0qfISPZtPpnXKo2x6NBD6wKFUWXFEv05X2En9lMhRp1uXnxDzQaDWFhYRkMnqOjI4UKFUKn0/H8+fNMd9X29vZ4eXmZfe/AoaN0aNvKlPHv6emJVqslNjYWQRCwtrHh2vXrlDGjPPfkyZMchQtKlSqVwagHBgZmmyEuCALFihXLsbciM65du0a1atUQBAFRFM16B3r16sXu3bvRaDT06NGDjz/+mCJFihAWFsb69etZs2YNNjY2CDI5KS+6mgWZMXflbxSW1hk69plj6ep1jBgyALviVShUrxsyCxsEmYyw0+tJefKX6Ti5rZOxg6ApUU3g8pXLVKxQgW+++YZjx47RpEkTpk+fni8yzFmRkJBAv379aNSoEaNHj0Ymk5GamkrFau/xPOAxhZv0x6NmaxTWDqSEPiT89Eai7p7j82kzmP3NV6917deNyb/IOqCvIAgLJUl68+3FCijgJXZdC2HusUcZ+tpX/HwHd37shqTXoE+K4dmOWab3BJmM27du5crAg1E3XhRFU9lafqFUKunVq1e+XuNdZP2KRSgtlKxf+TOxN44hU1gYEx6B95u15cjuzWg0GkJCQswa8ISEBERRzDbckLabNrd7jv67a59CoUSv1xEdHYP0t9GSyRWoNToSM+l4Zmdnl20Zo42NjdnrOjg4oNFosnT3KxSK1zLwoiiyaNEiNm7cyHfffUfz5s0zdf+3b9+eLVu20KhRI3bu3MnWrVtRKpXodDoEQaBhw4acOXMGVzf39EZeSv93KEgGtFpttn9rwwf3R61WM/nzCTzdNBVBoUQyGDKMZ3ipF4HC0ooUlYqBAwcSEBDAiBEjGDBgwBtr9Qz/aBg4OjqyYcOGdOWV1tbWuHb9juitswg6uoqgY6sR5AokvQ6Z0orCzYbg+n73fJvbq+zkPwTmYBS8WQo8AjLk/kuSdCYvJphbCnby/19o9AY+nHsu077xAMn3zxB6eAnqlGSUVlZ8/eVUvpiYUbc8J4waNYrnz5+zd+/efHuIHD58GK1WS7t27d7og+pl0navafXzCoUCJycnnJyc8j2BKTIykkUr1/LkWSBuri6M/LgPZUobS4+ePXtmaj1rjrQs9rQqhMyO8fHxyeBylyQJz2KlSVIbKDl4IYbnV5HHBIAgoPeshMy1KA+WDKJOww85dzSjGzs6OjpTJbw0MvMiiKLI06dPM/UEpFU5vGp3tJSUFKZNm8bZs2fp1q0b48ePzyBG9CI6nY5SpUoRHx+Pm5sbT15oAFOkSBFUKhVarZbExETKlCnDggUL+O7HeYSEhmBv78Cngwfy119XWbVqFf0HDWHtLytzPM+V6zZx9cYdLCyU7Ni0HsnODb/e3xH2+6+khj5CkCtwqtAQh9J1ub9kAK4ublSuWJ7vvvsuX8No5oiPj2fUqFGUKlWKL7/8MsP7268G88NhY9JsavgT4u//iahNxdKlME4VG6OwNubOXPsy96HDF8lsJ/8qRv7lgNDLA/zdibSghK6A/Of4vUhmHLifpZG3sZDzxUelaVPZvHs2p6hUKj788EO6du3KuHHjXmuszBBFkQ4dOuDh4cGqVavy5Ro5QaVSmd0tC4KAUqnE19c3SwORX2g0GgIDA/Okx72dnV2G6ogrV69Sq2ZNfNuPw61Ga7PnBR9cQvTVAyTGx2VIbnz69Gm2cXlBEDJtMqPRaAgODkYUxXT3KAgCrq6ur5ywFxISwtixY3n27BkTJ06ka9eu2Z8E/PDDD0yePBmAYsWKUapUKZ49e2aKlXsV9iYsNIStW7dSrVrGVC29Xk+VKlWwtrElMSE+1/M+evwELZs3o1i3r3CumL55jCSKxPx1kNATvyBqVDx/9jTbngZ5TUREBCNGjCA0NJQffvjBbP39h3POEJeavRTzlFal6VLj1aXA89JdP/CVZ1FAAXlMRKIanSHzRCRdUgx3f1vERefxtKnc4bWudfXqVXQ6HfXr516u9Pz58/z888/cvHkTpVJJo0aNGDlyJPHx8SxevJi//voLmUxGsWLFePjwIf369SM5ORlbW1skSSI2NtZUh2xjY2MSkFGpVKSkpJhK5ezt7ZEkifj4eFPDGWtra1xdXXNcWy2KYqbu8LQysMjIyExj2q+KXq8nMTERnU6HXC7HwcEhg8CJXq/PsXxvdqjVaiIiIhAEATs7O6ytrXkWaBRhsfbIvHuitacfkkFPTExMBiOfE139tFi/OS+NpaUlxYsXJzk5mcTERERRxNraGicnp9dy0wcGBhIXF8eSJUuoVatWjs6Ji4tj5syZVKlShXr16nHw4EHOnTuHi4sLgwcP5u7duybpWnMGHozhBVdXV2Ky8W5kxpPnwYDxM38RgzqZsJNrSQ66i03hMiQ9uZqn/d9zwtOnTxkxYgQqlYolS5ZkKrecrMlZSee90CSokZczNJJrIy9J0rrsjyqggDeDk40ShUyGLhMXZ2rEU3SJkbi7vn5J2OXLl7G0tKRq1ao5PkeSJEaMGMGyZcuwtbWlZs2aqNVqFi1axMKFC03GuVatWuj1en777TdEUeTmzZtUqVLFlBj1Imm11jKZzGQwABITEwkPD88wB61WS0JCAq6urri6Zq+PnV03OjDWgxsMhjzZzacpuaWVbKXdT1xcHLa2tnh5eZkMolwuzxMDD0aDnBY/T0hIQKlU4vZ3LF8bF4qtT1mz52liQyGT7PycklUYRiaT4eDgkK1sbnZIkoS/vz9ly5albt267Nu3L1eJaL/88gupqanMmDGDcuXKMebvbnRphISEmGrqAwICTD0UXkQUReLj47GwMN+aNzu83I0qjprYUKzcjLv01MhnhB5bhV6VgGfDXiQ++QvZc+UbFbnR6XSMGjUKvV7PypUrKf13KMkclkoZuhwYel+XjNUaecGbUwYooIB84IPShRCzeOirI58hyJX0bp6z3UtWXLt2jSpVquRKv3327NksW7bMKPBx5gwrVqxg3bp1jBs3zmSsFi5cyMqVK/n5559NTUBmzZrF6dOnsyyXetmlm53xi4mJyTYpDDB5BrIjq5i3OQwGAxqNJkPMOTY2lvj4+HQLFjDeT0pKSrqFi6WlZbYLi7SQQm5I81D4+HjjUKgwUZf2mQSV0t2DJpXY60epVKuhqcTsVcirhUpmaDQavv76a/r162cSi8ltpvmFCxfw8fGhXLlyZt/39vamSJEiAMyYMcPsMVu2bEGj0dC46avpsrdq0QwreyeiL+01LhjunSVw7xxAokiHCdgVq0L8rd9p0KzNa1cc5AalUsn06dNZs2ZNlgYeoFsOu3H2q5M/oYYCI1/Avxp7KwV96xTBSmn+p6yLDaJs6VK42r/eKjklJYVHjx7lahev1WqZP38+9evXZ8qUKSbXriiKbN++ncqVK+Pq6srWrVsBo7ErW7YsP/zwAz4+Pqxevfq15myONO31rMhJHfbLBjkr1Go1QUFBBAQEpPt/tVqNKIpZCshIkkRycrIpzv2i1r05BEHAysoKDw+PV05aHD16NCmBdwjcNwfdC5ncmthQAjZPRa+KZ/bMjAlWadd/24SGhjJw4EAOHz7MkCFDKFvWvEciO3ISFrG3t0ehVHLx4kXGjBljkkQWRZFffvmFb775BplMxsqlS15pDpaWlowcPZ7ER5d5uHIk4ac3YONdhmJdpiDI5ARsnIyk1zJ7xpRXGj+3HDt2jO3bjb0TatSokUEW2RyfflCMTNp+mPiglGu+5bjkrQByAQW8BT5tVBy9KLL5cjACoNGLWCgEJBHsNdF0aNTmta9x9+5dJEmicuXKOT7n7NmzREZG8vXXX6d7+N+9e5fAwEBGjBjBo0ePWLNmDSqVCm9vb7791tj8pkuXLixYsIDo6OgcNZ7JKaIootfrs4zP59R458SgvZzAl/b/qampBAUF5SiRTJIkkpKSTMc6ODggSRKRkZHpxhQEARsbG7y8vJDJZHh5ef2tuJbze5IkiY/7dCc8MopVi+YQd+t3bH3LI+q1qEIeIJMpWLB0JR81/9Ds+dbW1iZDlxmWlpb5thg4d+4cX331FZIksWDBAt5/33yr5JxQv359du3axa1bt0y/+xdzCQIDA7l37x6jRo3il1/XcvjwYY4cOYKDgwMpKSlGzXqZnJ27dr+W/POIj/uwfdNaAp/6I8gVyKzseLzuc1Qh/siVlqzbtIXaNfNfS2Lnzp3Mnj2batWq0aVLlxxXmMjlcvaOqEunpRfRmWnUU9XHgfk9quT1dE0UGPkC8pRUrYFDt8M5eDucVJ2Bcp729KrtS0n3/GtuIggCoz4sSd86RTh6N4LwRA3u9pY0KunESl2LPCmpSevrnpOe1WnE/a2D7u3tne71pL9rrL29vUlJSUEURVJSUlAoFKZQQNo5iYmJeWrkgWyNfE4fXtkZTkmSCAsLy3KXHhcXlyMD/HJCm6OjI/b29iQlJaHVapHL5djZ2aULpdjZ2eHj40N0dLSp5C4nQjWiKLJy4U+MHNyfL7+fy80bN5HLbWjcYRxffz46ywxuFxcXVCpVpvckCMJrSdpmx/Pnz/H09OSnn37K8LvLLQMHDmTatGl89dVX1KxZk8OHDxMVFYWTkxMfffQRDx8+RKFQMGHCBObMmcOMWd+xYvlykhITsLGzp8VHrVi6aMFr/X6PHj3Kt99+Sym/Ynz91ZfsOXKKu3duo1Q60aL3NKaOG4mHh8dr3Wd2SJLE6tWrWbFiBQ0bNuT777/PdQmpt7M1l6Y2Zv/1UNacf45Ko8fHxZpv2lfA2zl/YvFpFBj5AvKMJ5HJDFl/HY1eNPWefxyZwuE7EXSv6c3oD0vmqzvT2daCHrXSP4CnT5+eJ2P7+/vj4eGRq2SotHjl3bt308U1PT09Ta8/evQIa2tr9Ho9vXv3ZtSoUTRo0IC7d++iUCjy3MAD2boFLS0t07XwzIzsYqBpC5isyOkO29w4Mpks07j4i8l8uY1/p91X5UoV2bf511ydm1bhkFnyopWVVZ5384uOjiYwMJDq1avTq1cvunbtmqu8kcxwdHTk66+/5vPPP+f+/fv4+flRo0YNnj59ypYtWwAYP368yWX9zfSv+Gb666m2paHVapkzZw67d++mSpUqfP/997i7uzNoQNbyuPnBnDlz2LZtG23atOHLL798Lbd6u2qFaVctf5tavUyBkf+XEhirwj88GaVcoHoRJxys30zSSZJax1/P49H93YWuiIsxmSdVZ2DohuvEp6avETaIEgZRYvvVEIq62tLxDf7AtVotSqWSs2fPMnLCVCIjw3FwcGLmtIn06Jaxj3xWBAQE4O3tzdRvZnP73gNsbW0Z1KszTRs3ynThUrNmTUqXLs26deuoXbs2S5Ys4d69e8hkMuzt7VmwYAEajYa6devy7NkzDAYDhQoVIjIykt27d9OsWbPXzrA2h8FgyNJA29vbm7wQmWFhYZGtIdFqtTna7eeE3BrqhISEVzLwgiCkU8vT6XQmqVkbG5tsH/BardbkqTGHWq1GrVab1b1/FS5evMiXX36JQqFg3759OfpecopWq2XBggW4urpStGhRrl27RkBAAACVK1cmMjKS1atX8+WXX+Lo6EhQUBC//vorgYGBODk50bNnT2rUyH1NWGBgIF988YWplHT48OEoFApCQ0MZO3Yst2/fRqFQ0L59e7788ss8u9/M8Pb2NslYv64IlEZv4OqzeFI0eoq42FDWK//L/nIthvOu818XwwmJS2Xa3ns8CE9CIRNAAL1B4qOKHkz6qDSWivxJ3tDoDfx45CGHbkegkAsggV6UKOtpxzcdKnD1eRw/HXlIqi7znZu7vSWHR9d7Y8lJ3333HTO/+RaN+h+N6zTtJlsnNx7cvp6jxBmDwUCRYn6EhYYgiQYUNg4YtKlIeh2+pSty+sgB/IoXM3vunj176NSpU7bXcHJywsXFhbFjxzJ37lwiIyPZunUrZcqUyeHd5pxixYqZfTBKkkRMTEyOXOi+vr7ZGqq4uLgcJfrlFFtb2xy5oCVJ4unTpzmqWX8ZS0tLihQpgl6vJzw83GTgX+yb7uHhkenDPiIiIkeytjn53WWFXq9n2bJlrFu3Dj8/P3744QezJWyvw6ZNm+jTpw8rV67kgw8+IDIykpiYGJycnPDy8uLWrVt07dqVefPm8fTpU5YuXYooijg6OpKSkoJOp6Nx48bs2LEjR6WbAIcOHeL777/HwsKCmTNnmnIKBg4cyNq1azMcr1Ao2LRpE91yuWjPDpVKxbNnz3IVnssKSZJYdfYZ6y8EIvz9GDJIEh4OVsxsX45K3q9eqZFGninevev8l418ZKKG7isvk6TW8XL+hqVCRoXCDqzoWw25LG+NqEGU+HTjdW6HJKLRpzfiMsGY4V7U1YZbwVnXV1srZWwaXJNibm+mntXW3hFVciLWniXwbTsWW99yqGOCCf5tEUlP/sLSxp7khNhsRWLGTv6KBT98g41PWYq0n4C1R3FErZq4278TcnQ5Dk4uBNy/ZbZuevLkyfzwww/pXssua9nd3T3TfvF5QWYlP+Hh4SYJ2+xwdnY222r1RbRaLc+ePXuVKWaKtbV1tqpmWq02y+Y02VGsWDGCgoLMxu/TJHOLFClidrH6Og1qcopKpWL48OHcuXOHjh07Mn78+Fz3YMgJPXr04OTJk5w9ezbTRU3r1q3RaDQEBQXRrVs3hg4diq+vL4mJiezcuZN58+ZRuXJlLly4kKX3SKVSMXv2bA4ePEi1atX49ttvcXd3B4zVDosWLcLBwYFJkybRqVMnUlNTWbBgARs3bkSSJM6ePftaSYYvEhcXx+jRowkODmb//v15El754bA/+2+GZeivAWCllLGqX3UqFH49r11mRr6ghO5fxNLTASSbMfBgzCi/H5bEuUfReX7dc49juBuWlMHAA4gSJKv1BMZkH8OVCQJaM2PkB4cOH0aVnIjc1omyw1di62uMiVu5+lCy/484V2qCRpXE5K/M1/emkZKSwpIFc5BZ2lC4+TCsPYoDILOwwrVGK/x6f0tceBDfzs1YIiSKIvPmzcPCwoITJ07g5eWFvb093bt35+eff2bdOqOuVKFChShatCiCIFCzZk1+//33N955TqPR5NjAA9m68/OL1NTULHXrIX0G+KsQEhKSqaFOq6fPzCX/JjZNNjY2lC9fnh9++IGpU6fmi4EH42/C3t4+Sxe1tbU1QUFBdO3alW+++ca0AHNwcGDQoEF8//33/PXXX+zcuTPTMe7fv0+fPn1MJX/Lly83GXi9Xs/SpUuxsrLi1KlTpqx2W1tbpk6dyooVK5AkiWHDhuXJPYeGhvLxxx/z+PFjpk+fnicGPjBGxd4b5g08gFon8u3BB699ncwoMPL/ErR6kaN3IzBk8QxJ1RnYdCkoz6+9+VIQqVlowxskSFLrs60F1YsShfM5kzSN0ZOMdczOlcw3ffBpNxYEgRUrstaH37B1J3p1Kko7F5R2GVXz7IpWwq5oJdauzZigtW7dOrRaLa1atSIlJYWwsDDGjh3LjBkzaNq0KXXq1KFo0aJERUUxcuRI6tevz82bN3PUk/x1MDf+q8Sv0xTqMiMiIiJX4+WUtNK5zEjrK/6qZPf5p1UFmCMn8WGFQpHrRUhCQgJfffWVKSb++eef07Rp01yNkVvKlSvH8+fPCQkJMft+fHw89+/fB8jUyLZq1SpTzQdRFNmwYQMDBw5ErVazfPlyhg0bli7vYcmSJej1ejp16mTW4DZs2JDChQtz9+7dbBd/2fHo0SMGDRpEXFwcS5cuNatD/yrsuhaCaG5n9gJPo1U52ii9CgWJd+8YWr3IqQdRPIpMxsZCTsPSbpR0tyMhNWcP/pD4rPtRvwoh8anZHiMIAgJSposQuUzgw3KFsLPM/U9Oo9Gwfft2Nm/eTGxsLIULF2bgwIG0bt0600SoqHBjfbS1ezES/C8Se+MYuqQY5Nb2OFdqjFP5Bsit7EhNyTrE4P/kGWDcuStszMfNrAuXJu7aoQyv37lzBzA+iK5duwbAjh07OHbsGLVr16Zr164ULVqU58+fs3btWlNXL39//0y1wPMClUqVISv9VRYWqampWUq7vkpMPCdkN25aOV1WCXD5NQdnZ2fCw8OzLKHLrg3uy1y4cIEZM2YQFxdHrVq18jz2nhnDhg1j9uzZzJs3D29vb/bu3UtycjLW1tZ89NFHGAwG9Ho99vb2mYZQ5HI55cuXzxC2iYyMZPr06Vy+fJnGjRszbdo0s5USaWp9jRs3znSeZcuWJTQ0lLCwMIoWLfrK97tr1y5kMhmrV6+mRInMexfklmcxKvTZGHmlXCA0QU0R19ypEuaEAiP/DvHHw2im7b2LJIFKa0AuwKqzz6jo7cCsDuUxZPNDAXCwyvuv1MFKQWg2x+hFCQu5gFIOupcsvUIm4GKrZFwz8523suLp06c0b96cx48f4+Pjg7e3N+fOnWPv3r3Url2bQ4cOma07traxJQGIurgHdeRTFHbOWBUqijriKc/9LxDm4o1Bo8LKJuvs1kIuxgeyZNAhtzSfS6BNiMTKNuM4aS7HjRs3moy8RqMhOTmZhQsXsmTJknRu4TQRlT59+jBr1iw6duyY/Qf0ClhaZtQRf5WyoOxK6PKrHW1Oxi1UqBDJycn55j7PbA52dnZYWVmRmmp+YaxUKnMsh6tSqViwYAG7d+/Gz8+PhQsX5ksiZmYULVqUwYMHs3KlsUWsIAjY2toSGxvLhg0bAChZsiTPnj0jISEh0/sKDQ1N997Jkyf59ttv0Wq1TJ06lQ4dOmTq2Uj7G3rw4EGmO+vQUOPTKbsckczQarVYWFgwYcIEBg8enOdlqy42Fi+k/JpHlMDBOn/McYG7/h3hr+dxfLHrDikag6ltqkEyxtpvBScwZtstqhd1ynIMa6WMztXzvkStc3VvrJXZGwHt38a9kJ0FlgoZNhZyLBUyPqrkweYhtXCxzV2pi0ajoVmzZkRFRbF06VKOHz/O+vXrOX36NLNmzeLatWt07NjR7IN89MhPAFBHPaNI+/FUHL+VUgPnUn7MBvx6fYMuMQpEA02y0dQe0KuLsZd4ajKCGUOoTYgk8cF5WrXLaJBHjBiBIAhcu3aN9u3b4+7ujpubGzt37mTixIkmA29vb4+9vT0qlYrq1atTs2ZNpkyZYurwldeYi+E6Ojrm2oWc3Y70VR+62ZGTTO3c5Be8TE4+h8w6nomimKXbWKfT5SgxD2Dr1q3s2bOHvn37snHjxjdq4OFvd/rGTYAxDJEmMSyKommBl1bFsGPHDrNj3Lp1izt37tCtWzeSk5P5+uuvmTRpEj4+PmzevJmOHTtm+XmPGTMGQRBYv3692ffDw8Px9/fH09Mz19r8YPyMe/ToQVxcXL7pUrSr6oVVNs9PO0sF5Tzzp5yuwMi/I8w//thsYhsYd8ZBsanUL+mKlcL8VyYTjD+UVpU983xurSp5YmclJydJ+zqDRDE3G3Z9Wpv1g97j5Pj6zGhXPtcGHozNLZ48ecLs2bP58MMPTbsnpVJJ165dmTBhAmfOnDFrDGtUr2r8hyShjgok7XkvAdr4CCS90T3dsEHWbWMLFy5MmQpV0CfFEHl+J6L+H7e2OjqIgI1TkSktmDV1QoZzraysTDHaR48e0bNnTy5fvszMmTPZuHGj6X48PDx4+PAhycnJfPbZZyxbtgx3d3fTDupNYG1tnet64+yMoTmPwesil8tz1G0sOvrVE1BzYuQzOyY+Pj5LAaC0tsGZkZKSwpMnTwCjR+fXX39l9OjR+V4Lbo6f5s4nVZVC69atuXLlCosXL+arr75i/vz5XLp0iYEDB2IwGPDx9WXBggXs27cv3QLm1q1bjBo1ikKFClGjRg169OjB4cOHGTx4MGvWrDGJRWWFm5sb9evXJyoqiu7du6f77G7dukWbNm2QJCnTBjmZIYoiCxcuZM6cOZQoUeKVFgg5paqvIyXdbbHIJGnJSilj1Icl8q20uKCE7h0gMlFDu58vZJt53rCUK11qePPFbqNLP01VztpCjputBcv6VKWwU/4ktoXGpzJ80w2C41LNZve/iFIucGJcfeytXk+gp0WLFty/f59jx46ZdY8mJydTv359BgwYwNKlS9O916BZa86dOAxyBRh0CDI5clsnDKlJSHotCDKUtk6Ur1SFG+d/z3IeX375JYuXLichNhqlnTM2vuXRpySQEngHhaUNO3buokOblhnOO336NI0bN06noW5lZWWqvQajcU1z7b7//vusWbMGMCYcLV68mAsXLuS5DKqfn5/ZskGDwUBISEi6+WWFp6dnlmI98fHx2SbJ5Qa5XE7RokWzLXlM08XPT5RKJcWLF8/wekBAQLY5A4IgUKpUxtDVn3/+yXfffYdCoWDXrl3Z3md+U7xEKZ4FPObSpUtmcy+0Wi1VqlTB0dmFEsWLcfXqVVPXutDQUO7evYubmxu9e/fm3LlzFClShJkzZ1KxYsVczUOv11O2bFnT4sfNzQ2tVmtSFRw2bBjLly/P8XharZbp06dz7NgxunXrxoQJE/IttJRGklrP2G03uReWhFYvIkrGsmeAz5qUoFft1+9Al1kJXUFM/h0gXqVFKRfQZpOnFJ2spX4pN06Mq8+xe5HcCkrAQiHjgzJu1CrmTJxKx6qzT7n6LB65DBqXKUSrSp7YvkKy28sUdrJmz/A6tFp0nojErFuMKmQCCan61zbyMTEx+Pr6Zhn/dHV1JSYmBlEU2X09jHXnn5OQquN2QAiCXE6xXrMI3jcHXWIU+qQYAOTW9vh2mkTMxT3ExWW+q0pDEATer1MLb98ibNy0icQHFxBkMspVrMLiBXP58EPzzUrSdpPLli3j1q1brFy5ksjISORyuWnHk2bg5XI5V65cYfjw4fTp08e0y4mPj89zI5+Zdr1cLqdIkSI8evQoR67u7JL1ctLNzhwJCQms27SN7Tt3ERdjzHdo1rI1c76Zlm7eGo2G+Ph4tFqtSeLW1tY236sTIPN7y00Hv7SdW2xsLHPnzuXo0aP4+fnRoUMH+vXrx/Hjx9FoNJQuXZpPP/2Uvn37vtEdfXJyMkqlElEUWbp0Kfv27TNp17dt25ZevXphY2ODVqPh/Pnz7N69m9WrVxMYGIijoyNjx47F39+fc+fO0aNHD0aOHPlK5X4KhYKHDx+yZMkS5syZQ0REBHK5nBo1ajBv3rxcZ8EvWrSIY8eOMWrUKPr27ftGxLnsrRSs7l+D+2FJHL0bTmKqnhLutrSp7IVjPquVFhj5dwA3e0t02eziBTDt0q2UctpV8aJdFS/T+0fvhDP9gLHWMs3tfzMogcW/P2Fxr6pU8ckTRSWKu9lma+QNooSzzev/cL28vLh8+XKmRikuLo6IiAjc3D34cN45ElL/WSVJCmskg56nG74AJORWtlg4eaJLikWfEsezTdOQW9lSpnbW7nowSpH++eefJCQcomzZstSsWZO4uDhOnDhBy5YtWb16Nf37Z9TUTuu85e/vT/fu3encuTPjx4/nyJEjgLGZSZr70WAwYG1tzfXr1zl58iSVK1dGEIQcK4Xlhpz0Y8+Jkc9unFfZiQYGBtG5Vz8So0KxK1YZ56rV0caHs2fLWg7s2sa+ffv4qFkToqKiSEhISDdPlUqFQqEwJWvlJ5ndu1wuz9bQy2SydJ3cBgwYQGpqKkOHDkWlUtGnTx9sbGxo2rQpDg4OnD9/nsGDB/Prr79y9OjRHIUr8gInZ2eiI8Np06YNMTEx1KtXj4YNG/L8+XNWrFjB5s2bSUlJwd2zMEqlku7du9O9e3dSU1NZunQpW7duxcvLi+XLl7+27oNMJmPUqFGMGjXqte9r0KBB1KhRI8uM/fyinJc95d6AlO2LvFUjLwhCS2AhIAdWS5L0g5ljGgELACUQLUnSB29wim8EF1sLqvg6cuVZfKbHWCnldK9pXtLzVnACMw48yBDTT5OYHbHpBnuG16GQ/evHSHvW8uFWcIIpOfBlBOD9kq554j0YOHAgv/32G7/99hsdOnTI8P6GDRvQ6XTctn2P5NT0bhDrwqVJfHgRkPDtMBG36v+405MCrvN43ecY1Cn07tIu23ns37+fxMREFi1aRPPmzU0P6Pj4eEaNGsXgwYOpWrUqVaqkbxdZp04d/Pz8WL9+Pa1atWLFihUcOXKEcePGsXHjRiIjI1EoFLRs2ZLk5GROnz7NTz/9xPnz59mzZw8VKlTIcSZ2bshu56JUKtFosl7IpR2XFbkVEhFFkT6DPyUlOYlSgxdhV6SC6T1NXDgBG6fQsUMH7tw0Viq8vBCRJAmdTkdkZGSOFyqvSmbfi729fZYxdzDK86akpGBra4uPjw9t2rShY8eOBAcH88EHH9CoUSPmzJlj+vwkSWLv3r1MmTKFTz/9NNMktLzm8wnjGTpkMImJiezevZsKFf75PgICAujcuTOSJNH/haYxV65c4ZtvviE0NJRu3boxcuTIfI1355Tbt2+zdetWZsyYgYuLy1sx8G+Lt5Z4JwiCHPgZ+AgoD/QUBKH8S8c4AUuBdpIkVQC6vul5vinGNyuFtdL812GpkFHF14HqRZzMvr/ij6eos/AE6A0iWy/nTYyyXglXSnvYYSE3P1drCzmfNcmbGtN27dpRo0YNvvzySzZt2mTqjBYfH8/ixYtZunQpLdq0J9k2ow54athj07918eHoVcb4nUGbijrqOQjG+e/ceyDLOTx58gR/f3+8vLxo0aJFOgPp5OTEokWLUCgUzJ8/P8O5MpmMmTNncvfuXT755BPWr1/Phx9+yMCBA0lOTgaMhq1FixYsXbqUokWLsmLFCu7du4cgCKSkpOSLocrOyOfEJSwIQrbj5DSLPI0/zp0n4vkjvFt+ms7AA1g6e1Ks2zS0qcn8uGh5lp/Lm3DXZ3aN7O5ZpVKxfPly2rVrR0xMDDKZjHHjxlG8eHHmzp2Lo6Mj8+bNS7dAEgSBjh070qtXL7Zu3ZqneQ5Z4ehg3HHqdDrmzJljEsWJiopi7ty5pr9HHy9PEhMTmTlzJp9++ikKhYKVK1fy+eefvxMG/tixYwwbNoy7d+9muwD7L/I2d/K1gMeSJAUACIKwFWgP3HvhmF7AbkmSAgEkSXozv+63QGlPe1b0rc7k3XeITdEhISETBPSiRPMK7kxtVdbsQ9UgSlx6mvUPV2uQOHQngs8+LPna85TLBH7uXZUZ++9z2j8ahVxAlCQEwN3BitmdKuSZNr1CoeDIkSO0b9+emTNnMnfuXNzc3AgLC0Or1dKpUydKdZ/KMf/4DOemRhqVwRzK1if89AYizm5Fae+CXpWAqFVjV7QyKSH3uXLhzyzncOCAcRHg4OBgVi7VycmJZs2acfDgQbPn9+7dm/j4eMaMGYNer+f69es0aNAAlUqFlZUVkiTx2Wef4eXlRUJCAiqVCnt7e7p168a2bduIiIgwtabNKwwGQ5audjs7uxzVmGcXX01OTs52R/3i+7sPnUCmtMK5ovldlrWHHzY+ZTl2/CQTP8taxjS/E4qTk5PNhgXSFm9gXMBFRUUhiiKFChXizz//ZP369cTHx9O9e/d0nhBJkjhy5AidO3fO1DB26dKFjRs3cvDgQQYOHJj3N/USe/fuxcnJCQsLC86fP0+TJk1QKBSmxEIHBwfs7e1Zu3YtBw4cID4+nn79+jFs2LB8qazILZIksWbNGpYtW0bVqlWZM2dOluJN/1XeppH3Bl7cXgYDtV86pjSgFAThNGAPLJQkKYOvShCEocBQIEdlGe8qFb0d2D+yLreCE3kSlYylQk69ki4422S+s9IZcpbcpMmiO1xusVbK+aFzRaKTNVx8EovWIFLG057yXvZ5nsTi5ubGuXPnOHfuHBs2bCAmJgZvb28GDx5MybLlGfjrX2bPExBAkFH4w/5g0JL4+AraeKPMqo1POTybDODp1q8RDVlnO6YJ1AiCkGmLUBcXl0zFT8BYL+/s7Ezv3r0pX748kiTx559/snTpUipVqsTevXu5desWf/zxBwDbtm3jzp07bNu2LctxX5XsYsZ2dnbIZLJMd6WCIODk5JRtRnJagll2x6SRmqpGbmWDTJn5711h44hGE5/lmK9DTt38mR2TFjLYtGkTmzZtIjAwEDAuiBwcHKhZsyZffPEFrVq1Sve3IooiGo0myyTLtPfSdtD5TWpqKs7Ozhw5coSDBw+yevVq4uPjsbe3p0+fPjRs2JAuXbrg7+9Px44dWbx48Ruv5c+KhQsXsnHjRlq1asW0adPeShniu8DbNPLmrMHLfzkKoAbwIWANXBAE4aIkSQ/TnSRJK4GVYCyhy4e5vjEEQaCKryNVfHMWi7VUyHCwUmbo4/4yRd3y3m3mZmdJmxeS//ILQRBo0KABDRo0ML0WlaSh6/LLRCWZL/dSOhRCGxfGg2XDkVtYUKh2B6w9S6CJDSPm+hEe/zoekHD2yLrlZ9myZQHjgzUxMTGDkZckiStXrmQrNZrWV7tu3bp89NFHNGnShJs3b/L+++/Tr18/ADp06EBycjIeHh6sXbsWKyurfEkiy+5hJwgCvr6+BAUFIYpiOoMmCAI2NjY5Eg2xsLDI1U6+VIlinD2yB3V0EFZuGUuKRJ0WVcgDSlavle21c0uawfX29iY0NDTbhVBW+QifffYZp06dolq1avTv3x+FQsHatWt5+vQpwcHB+Pr6ZlgMp5UHZlX+e+XKFYA3ZkhLlSrFgQMHiIiIoHXr1rRu3Rowuu/379/PZ599RkxMDPXr12ft2rWvpJqYn7Rq1QpnZ2f69ev3xtpbv4u8TTGcYODFv2QfyKCeGgwckSQpRZKkaOAMUIUCTAiCQM9aPqaaS3NYK+X0q/Pv9XCYY9z220QmqsksFcG2yN+1uJJImRFr8Gk1EtfqH1G46SDKj1qH3MoYUhg+bHCW12nbti3Ozs5ERkaabbhy8uRJ7t27x9ChQ7Mcp0yZMtSrV4/169djZWVF/fr12bRpkym+6u/vz6NHj3BycuL333/nwIEDtG3bNstM6rS2p7nBwsIiRzXBFhYWFCtWDDc3NywtLVEoFNjY2FC4cGEKFy6co4emra1ttsfJZDKTcRjYoxOCXEHYqXVmFwZRl/agT0ngsyEZKxleRBCEbJMCwahRoFQqsbCwwMXFheLFi2NjY4Ozs3OW8xYEIdMd98aNGzl16hRt2rRBoVDQoEEDevTowZEjR1iyZAl37txh0aJFZs/9+OOPuXjxollxJ5VKxYoVKyhevDhNmphvupTXDB06FFEU+fnnn03fx61btxg/fjybNm1CEAREUWTu3LnvjIG/d++eSUSqdOnS9O/f///awMPbNfJXgFKCIBQXBMEC6AHsf+mYfUADQRAUgiDYYHTn33/D83zn6V3Hl8JOVmYVlawUMmoUdeKDMnkv1/i2eBiRzJPI5Cw78onqv2OjkoGHK4cTffUgelUi8ff/xH/lcAx/vx8el3UTEwsLC6ZNm0ZqaiqTJk3ijz/+IDU1lZCQEBYtWsSYMWOoUqUKgwYNynbec+fOJT4+np49e/Lee++RkpJC9+7dmThxIn379sXR0REbGxu+/PJLbGxs+PTTTzMdK83A+/r6Ymdnl+MHWVpZX06Qy+U4OztTtGhR/Pz88PHxyZHhfnGOnp6emR6f9n7aosHd3Z3eg4YRf/sUAZu/JPn5HUSdBnXUc4J+W0josZXUadySnt26ZLpQSSs7zElzHDs7O4oXL06xYsVwdXU1lfw5OztnWv6X5skwt/jSarUsWbIER0dHnj59SuXKldPlLTRr1ozWrVuzbdu2dLH7NEaNGmWqiV++fDkRERGoVCpOnDhBnz59ePz4MfPnz8934ZY0SpYsyWeffca2bdsYPnw4kyZN4uuvvyYuLg43Nzdu3rxJr1693nhb5Mw4dOgQgwcP5sCBAyahnALesuKdIAitMJbHyYE1kiR9KwjCJwCSJC3/+5iJwEBAxFhmtyCrMf+Nind5QbJGz7xjjzh8JwKFXAAJBAF61PRh6AfFUbyhB8ObYMOFQJb8/gRdFtJ7j9ZOIPnZLWx8yqMKvJ3hfSv34ghKSwq72PP41uUsr6fRaChbtizR0dHpHs6CINCqVSvWr1+fY8GaP/74g0GDBplahprD1taWLVu2ULZsWVOpVkJCgslYSpKEg4MDhQoVQiaTIUkSMTExWUqqKhQKfHx83kpcUqVSERkZiU6nM7nnLSwscHd3N4U/1Go1kZGRqNVqflq8knWrl6NTp5jGEOQK2nbpzfZ1K7C0tESr1RIZGUlqaqppTLlcjqurK1ZWVgQGBuYocTCzHB6DwUBUVBRJSUmm8dNyEVxdXTMsXERRpHPnzuzdu5dq1aoxffp0U6jnRU6fPs2wYcM4ffo0H3yQsRo4PDyc3r178/vv6VUYPT09+fnnn+nUqVOW95TXqNVqunTpwuHDh9P9tiwsLBg6dCjz589/68p8er2eRYsWsXnzZmrUqMEPP/yQ605//wUyU7wrkLX9j5Gi0fM0WoVMBqXc7VBmUur2b2bt+ecsPRWQZfvGx2snkvzsFuVG/YqgsCDs93XoEiJR2Djg0bA31h7FeLRmHIVs5QTcMZ+89yJt2rShUqVKVKtWDX9/f2xtbWnXrh0lS+a+YkEURU6cOMGVK1dMSm1xcXHI5XIqV65M1apVcXFxSedaf7HxSWYud0mS0Gg0SJKEQqEgNTUVURSxsbF5J5KOtFotBoMBhUKRqTtdp9Oh1+tJTU1l8869PAp4jrubK4N6d8XLK2P+h16vR6fTIZPJTDkAGo3mtY18GmkJcYIgYGlpmcG43717l/LlyyMIAgsWLGDs2LF8//33mRrjCxcuMGDAAE6ePJml2/3evXscOnQItVpNxYoVTe7/N4UkSZw6dYoFCxYQGhrK+++/T5EiRUhJSaFQoUJ07do1X5q5vMo8x40bx9mzZ+nRowdjxox564uOt0WBkS/gP8Nfz+MYteWWSbvfHGFHlxH+506KdpmCS+WMsrP6lATuzOlOhx792L1xdbbXHDVqFNHR0WzevPm15p5TJEkyGcQCcocoijx58iRbI+/s7PzKnfJu3rzJsmXLuHr1Kj///DO1a9dGo9Hg5eVFrVq1Mo27z5o1i23bthEcHJxvXfpelwcPHjBv3jyuXbtGyZIlGT9+PDVr1nzb08qUEydOoNVqadWq1dueylslMyP/39vmFfCfp3oRJ5xtM0+sEoAKH3ZFkCuJvrwfUZe+9ackioQcW4Fk0DF90pgcXbN06dIEBARk2UY0r9BqtQwZMoRVq1bl+7X+i8hkMhwcHLJNnnuVmulbt24xYsQIPv74YwICAhg/fjzVqlUDjF33BgwYwIkTJzh37lyGc+/evcuuXbvo0KHDO2ngIyIi+Prrr+nbty9Pnz5l8uTJbNq0iTJlyvDVdz/hW7oi9q4eePmVZfzUmcTExLyVeUqSxObNm9mzZw8ATZs2/b838FlRsJMv4F/Jw4hkPl73F2qtIV0CnlwAGwsFvw6swYGdWxgzfAhW7kUpVKcT1h4l0MSFEX15LymBdxk25nOWz5+do+udPHmSSZMmsXbt2lx30XoVpkyZwunTp9m5c2eukuUKMCKKIgEBAZnmKLi5ueW68Y9Op6Nt27YYDAb69etHly5dMpRUJiQkULduXR4/fkynTp1o1aoVCoWCEydOsH37dhwdHbl06RI+PlmXbr5JkpOTWbduHZs2GXvH9+jRg0GDBmFnZ8fDx4+pXb8x8RHB2PqUxbJQMbSxISQ/v42Nkxtnfj9OjWpV39hcExMT+eabbzh16hTNmzfn22+//b/Pnk+jwF1fQJ6gM4g8ikxGZ5DwdbYmIlGD1iBSzNUmX7sphYeHs2PHDmJiYvDx8aFr164kixasPvuMw3ciMIgSCrlA60qefNygGF6OVgQEBHDg6Am+++FHIgOfmMayd/Pki8lTmDx2ZI4fEJGRkbRq1Ypx48bRq1ev17oXURQ5evQoV69eRRAEHBwcTIl1af9WqVQcOnSI+vXrs2jRIpYtW8a+ffuQJImWLVsybtw4ZDKZKVYvSRJKpRK9Xm9KbHvVsiZJktBqtYiiiEKhQBRFRFFEqVS+VvggLSYvl8uzzRFISkpizcZtPHr6DHdXVwb37Z6rxU5SUhLh4eGZuuz1ej3r16/n8uXLWFpa8vHHH9OlS5d0xxgMBmbPmcfuvfto0KQpXdt8hIuzI0WLFjUripRGbGwsY8eOZdu2baYeAAqFgrZt27Jw4UJ8fV+/rWheoNVq2bFjB2vWrCEhIYGPPvqI4cOHm3IfDAYDhf3KEhsVSfGeM7ArVtl0rir0IU83f4mlUk5E0NMsP4+84s6dO3w+6QuCQsPpO/gTxgwbiIXi3SjdyymSJPE4MgWV1kBhJ6s86SeSRoGRL+C1ECWJNeeeseFiEAaDiF6U0Bok5DIBK4UMnUGkQSk3vvioDK52eZfkpdVqGTFiBOvWrUunF25jY8P48eOZMWMGEkZFPyulLJ3RbtasGckaPVcvX0Kv+Uc5TpAraN+9L9t+XZ6rhLT27dtTsmRJ5s6d+8r3c+rUKQYNGsSzZ89ydHxaq8+X1eeUSiU//fSTyU35smANGEvE3N3dc2Xs4+PjTa17zY1pZWWFh4dHrj43c9n1SqUSd3f3DBKukiQxfupMFs/7Eb3mH2U3QSanVeee7Fy/Kls5XUmSePbsWab68gsWLGDFihUZdvmOjo4cP36catWq8d3sn5g16xt06vSKg0XLVuHQnm2UL5u9IE1sbCxXr15Fr9dTvXr1PJcnflUMBgMHDx5kxYoVREREULt2bUaNGpVBZGfrzj307NqJYl2n4Vwpo9RwUsB1Hq+dwLyfVzB2eNY6Ea/Lg4BAmrRsS6rMFr+PhmDt6YdcJtC3ji+D6hdD9i/YzR+4GcbPpwJIUuuQywS0eomqRRyZ/FEZirq+vlhZgZEv4JWRJIkpe+7yx8No1FnI48pl4GJjwZahtXCxfX1DL0kSnTp1Yu/evfTs2ZO+ffvi6+vLgwcPWL16NUePHmXChAn89NNPZs8vWbY8T/zv41S+AYXqdcXCyRN9SjwxV38j+sp+6jdrw5mj+3O8m//mm284efIkJ0+efKVd8oULF2jcuDFeXl506tSJpUuX4urqSpkyZfj999+RyWQ0a9aMK1euIIoiH374Ibt27QLgww8/ZOrUqSgUCpYsWcKuXbswGAwsXLiQli1bZnpNpVJJkSJFMp1vamoqarUaR0dHYmNjiYuLyzZhTSaTUaRIkRwZ+uTkZMLCwsyOKQgChQsXTldzPmL8FJbO+x7HsvXwaNATa6+SaOMjiL60j6hLe6j1QXMu/H44y1pxrVabbhEliiJJSUlYWlqyZs0aFi5ciKWlJf379+fjjz8mMjKSOXPm8McffyCXy6lQsRK3bt1EprTCrVZbPBr2BlEk7vbvhJ9ah4WFBfdvXaNIDnbkDx8+RKvVUq5cuVz/ZlQqFRqNBkdHxzypjRdFkZMnT7J8+XKeP39O+fLlGTlyJLVqmVcQbNahB6ePH6bixB0IcgWiVo02KQaFnTMKSxskSeL+wn6UL1+ea2ePv/b8zKFWq1GLcnqtusyTa+ew8q2A3PIfg2illPFBaTe+61jhnXbbrzn3jNXnnmV4fgqAraWc9YPee+2eHwVG/v+Ah+FJbLgYxI2geGQygQ9KudGjlo+pD/3LHLgZxrxjj0hQG4VDbC3kjGzsR/da6R9eV57FMWZr1tnsaShkAm2rePJlm3KvfT9//PEHjRo1YsyYMRmEYSRJ4ovJU9i3by8dfthHqtIJnSiRrNYbS+tSYvjrh24o7F1xKF2b+Nu/I2rVIJPjVL4BCmsHoq/s5/jvp2jauFGO5pMWl1+1apUp2So31KtXj6dPn7Jnzx4mTJjAw4cP2bNnD19++SV//fUXqampdO3alb59+9KpUycEQUClUmFpaUmLFi3SLWbu3LlDly5dcHFx4fz585leMy3B7OVEr6079zDj+594cM2ormbr5ErfHl0ZOHBgjhLSclJ+JkkST548yVIiVi6X4+fnhyAIhIWF4e3ji1OFDyjaZUqGh3bEue2EHlvBgYNHaP1Rc1QqFXFxcWi1WlOynaOjI3q9nufPnxMfH8+vv/7Kzp07iY6ONn0ecrmc06dPmz6T0NBQgoKCePLkCTNmzEBpYYGktKHsiNUo7dLXW6dGPMV/xae069aXvZt+MXtPWq2W+vXrc/Xq1XSLm7Jly3LmzJlsk+527tzJvHnzTMp3Hh4efPzxx0ycOPGVkgUlSeLMmTOsWLGChw8f4ufnxyeffELjxo2zNIx1mrbh5q3bFG75KSGHfkYTE2x6z8LJA69mQ4i+tBdvFzv8r2dU6XtdTpw4wezZs6nQ8TPOx9lnWjJrrZSxsEcV3iv2btbGRySqab/kItpM+owIQLUiTqzuX/21rlOQXf8fZ+35Z/T/9S+O3IkgJF5NUGwq264G02XZJX5/kLF537AN1/h6/32TgQdI0RqYffQRPVemF4fZeDEQdQ4MPIBelDh0OyLHx2fFsmXLcHBwYMCAARneS9aKJFTsjiRJXDi8k4gkLbEpOrQGCVGC0MuHjPNJjiX2xnGcKnyAd8vhFKrZjqTHV4n+6yAyCyu+nbskx/OpU6cOCoXC1EgmN/j7+3PhwgX69euHSqXizz//pHfv3oiiyOnTp+nduzdt2rRh7969eHt706RJE1QqFaVLl6Zbt24cOnSIlStXmsR4KlasSPXq1YmJieHOnTuZXleSJBISEtIZmxETptKzaycCAgLwaNgb75afUrRUeVasWEH37t1z1MpUo9Fk29I1J53sRFE0NVz5aclKJNGAZxPzUqSF6nRAYevId/OXEBoaSmhoKCqVCr1ej1arJSYmhqdPn5p6ynfv3p0VK1ZQqVIlJk+eTP369ZEkCb1ez7Zt27h69SqzZs1i5MiRpnt3cHBAp9XiXr97BgMPYO1RHOeKjTi0extqdca+CampqTg6Opp05osUKYKfnx8ymYwHDx7g5eVFeHh4pp/HxIkT6dq1K0FBQQwfPpwvvviCMmXK8P3331OrVq1ctZlNM+59+/Zl/PjxpKamMnPmTLZu3UqTJk2y3fmWLOGHOjqYgA2T0cQEY+nqg2PZ97FyL442PoLnO2ahCvGnWPHiOZ5TTkhMTOSrr77iiy++wMPTk3OBqVlqYqh1IhsvBubpHPKS3ddCydiW5R8k4G5oImEJ5vtwvC4FRbj/Af58HMPKM8/QvCTkrjNI6JCYtuceW4faUeTvuM+6P59z5Vl8puP5RyQz99gjxjcvBUBAVEoWP9GMyASISdbi7fx6yThPnjyhQoUKZpN65v0ZQ7KFGxaOHmhiQzK8r44OAgQEmYKSA+dgV+SfjHjPJv15smEyqpAHPH74IMfzsbW1pXbt2pw8eZLRo0fnyj346NEjwNioJigoyPTv4OBgJEmiRo0ahIeHs2fPHqKjo02Z3xUqVKBGjRps2LCBgwcP4u/vz/Tp07G3t6dhw4b89ddf3Lx5M8uM/7TEOblczsEjx1k69ztcqjanSPsJCH+7kCc3/ARdyB2GDBnClClTWL06a+0AQRDQarVZasTrdLocdaHTarXY2tpy78FDlPYuWLmazzyXKSyw8S5LRGAAKpUqw9hpXe8iIiKYMmUKkZGRbNy40SS7+vChsa9VpUqVWLx4MQcOHMDHx4fu3bvTvHlz5HI53t7eJCYmYuVeItM52xatROyN40RGRmbwZtSsWRO1Wk3RokU5fPhwOhd93759uXz5MlWqVDHbB+HAgQPMmTOH7t278/XXX/+j6T9wIBcvXmTo0KEMGjSI3377LcvPVBRFzp49y6pVq3jw4AE+Pj589dVXtG7dOlchgxEDe7Fp5WJAoPSwn7H1/idmr44K4v7PHyMZdPTt2jbHY2bHhQsX+Oabb4iOjmbo0KG07dqbTsuvZHi2vYgEPIlKyfT9t41/eBLarDS4AaVcIDBGhZdj1vkmr0LBTv4/wMozT7OMletEkU2X/unqu+LM02zH3Hbln+OtLXIXS9SLEja5PMccNjY2xMbGZng9JFHH41gtWp0OgzoJmTLjH4YuOQ6Q8GjUFxvP9Kp0Cmt7inaaBJJESlJCrubUvHlzwsLCuHXrVq7OS4s7x8bGmhLHYmNjTQuY2NhY071aW1ubdsnx8fGm1z/99FNCQkKYOnUqUVFRhIWFAZikb7MibUEy/fs5KGyd8G031mTgAVQ6kffee48hQ4Zw9uxZnj7N/jeSXZxYEIRsF0IvHmNra4tBrcqga/AiBlU8TvbWWS4enjx5wtmzZxkyZAjvvfceoihy7do10zkNGzbEwsICZ2dn0w4+TQY1rbWwqM+8nas+OR4gQ9KgVqvl7t27yGQyjh07lsGgbtiwASsrKyIjI00taF9kwYIFuLu78+WXX2Y4t06dOgwcOJBDhw5l+t2Iosjx48fp1asX48ePJzk5ma+++opdu3bRrl27XOcE/Ljg57//JRFz5QDqKOOcNXFhRF/ZD6LRW7d4mfmwxavw6NEj7OzsWLt2LUOHDsXO2gJDFrv4NHL7jHqT2FtlX3UkSfl3DwVG/l+OziByJzTrZgwGEU75R5n+W53FqjiNFw9pW9kLqyy63L1McTdbnPMg8a59+/b4+/tnMKg3wtRIEiTcP4tBnYJj2XoZzhUE43wtnTyQWWRcBIh/Z26nHZdTGjdujJWVFQcOHMjVeXXr1sXFxYUdO3ZQsWJFChUqxI4dOyhTpgyFCxdm586d7Nq1i2rVquHk5GQqrzt//jw7d+6kVKlStGjRgi+//JK4uDg+//xz9u/fj1wup3nz5lle29ra2mSQb1w6i1OFhsgU6b+fs89VpOpE2rY17souXryY7T1ll+VuZ2eX7RgvHjeoVxdEnZq4O7+bPS41/Akpwf582CSjguGLpOUo1KxZk40bNzJ06FBmzZqFq6srAIcPH6Zz5874+/unKwmMj48nKCgIQRCIu37M7NiSwUDcjWP4VaieQdZ13759AJQrl3k+SuPGxiz1efPmpR/3b9d669atM/WOtGvXDkmSMujap7V+7dKlC5MnT0av1zNz5sxXNu5pnD51CoBCdTsTe/M49xcP5Pr05tyb34eoS3txrdEK5EpuXc9eFjor/vjjD86cOQNAnz592LhxI+XLlweMBrKMp32W51spZbR7Ay2vX5WPKnlku+lRymVUKOyQL9cvMPL/ckRJIidO45yshjOc83fZVvuqXljk0MhbKWSMaJx1b/WcMmjQIJydnZkwYUK6bGm9KJEUeI+gg4uxKlQUh5IZu2Ap7JxAJifo4CKiLu1N9546JphnO74FmRxbh+x3wS9iY2ND8+bNOXr0qGnXlxOsrKz49NNP+f3331mzZg19+vTh3LlzLFu2jJ49e3L58mWeP39Ojx49mD59Oo8fP6ZatWpoNBru3btHz549EQSBChUq8NVXX3H//n1UKhWNGjXKMss9rStbGqJBb9bzcT1MTYLagKW1cXeaVbw9bczsdulKpTLLrnWCIGBnZ2cytK1aNMO7RDlCDi8j+Xn6pkKa2FCe7ZiFla09Xbp0zvK6aR3oZs2axd69eylevDgTJ05k9OjRlCpVioCAAC5fvmyqYQejDkPr1q2RJIl6HzQh4cF5ws9sQRL/yS0RdRoC989FHRPM1C8mZrhu2u8hq/bADg7GB3laHoJpbFFEr9dnWW+e5jlIm7dKpWLz5s20b9+emTNnYmVlxezZs9m+fTutWrV67favBoMBQSbH56PhVBi/Be9WI/B4vxveLT6hwrjNFGk/HplcgSi+Wv5NVFQUn3/+OePHj2fbtm0Aph4ELzKisV+WmwwLuYz2Vd9dI1/HzwV3e0vMNAkFjIuUwQ2KIZflT3VAQUz+X46lQk4he0siEjVZHlfW65/VsEyAnNj8tIeEg7WSVf2qM2zDdbQGEZU24x+1hVwGAoxuWoIGpfKmcYWTkxMHDhygVatWfPTRRzRo0IAiRYrw1617PLj5FxZOHvj1noUgy/gws/EsSdzNE0iiSPDBxcTdPo2NV0k0caEkPrqCzNIaQRCoXCX3WfJdunRh//79HDhwgB49euT4vOnTp3P//n3mzZuHl5cXxYoVY/HixemO+eKLL5AkibJly6Zb2MycOZMNGzYgCALPnj1DFEWKFy/O4sWL2blzJ/Xq1UsnFpNmWF+uRff2K0P04ytIzYemM76SBDNPRVMr5U+ADDXTL47r6OiY4yxvT09PQkJCUKvVGerura2t8fDwSPfaH8cO8l69hjz6ZQx2RSpi7VUKTXw4iY8uobS0Zu/evTg7O6cbKz4+nkuXLnHv3j3GjBlj6v5WtWpVxowZk64j2ebNm2nWrBlPnhjFkdq2bYtKpSI42Jg53rFjR7Zv307Ttl3448hqYq4ewKFULUS9jsQHf6JPTeLTcV8wqE/G7z2tlPH27YxdD9M4ceIEQIbfjVwuN2Xfjx492uy5aQmffn5+LFu2jB07dpCYmEj16tWZNm0adevWzdMysuIlSnHrcjiJj6/iUPI93Oukb7qTGhGAqE3Fo0j5XI0riiI7d+7k559/RqfTMWLECPr27Zvp8XX8XJjYsjQ/HnmIBGj/djPaWMixkMtY0bdajlzibwuZILCibzWGrL9GdLLW9PxUyATkMoEuNbzpWSv/FBALSuj+A2y5HMTik08ydcNbKWUs6F6ZWsWNyVwTd9zm5IMos8emUb2II6v710j3mkZv4Pi9SI7djUStM+BgrSBFY0CSoLKvA11r+OSpglMawcHBLF68mG3bthEXF4enpydS6Q+xqtQChbV5V55elcCdOT2wdPHGkJqETGmJXhWP3NoB54qN0SZFEXfjOJev/kXNGv+Uruj1erbs3MPcRcsICXqOtY0tnTt3ZMrYkelKnwYNGkR0dDR79uzJ1Y5JFEX27NnDkiVLuH79OqIoYmVlhUqlQiaTYWVlhVqtRqlUUrduXT777DOuXbvGggULiIoyfmcuLi588sknTJ8+nYCAAPr3749Op6NTp0506dIFGxsbrK2tcXR0TOeODgwMpGvfj7l85gQKexfsfCvg+l4b7EvUQBAE9CkJPFo9CmdbC66cP2NSp0tLaLO0tMTJySnXHe0kSUKtVhMfH49er0epVOLo6JjprjU+Pp7ZC5fx66+/EhcVhrWdI+07dWHmF2MpWrQoISEhPHv2zKSVEBsbi0wmw8fHh8WLF1O8eHFat26NXq9n69atGdqObt68mRkzZpha1gqCQJEiRZg+fTr9+/c3fU+btu/ih3mLeHL/NjKZjOq16zP9i3E0bdIo03t1c3MjJiaGAQMGMHny5Eyvay4zf+HChYwZM4Y5c+aYwiZpREdH07lzZ0RRpESJEuh0Oj744AP69etH5cqVM4yVF1y7do0aNWqgsHOhwthNyJT/fO+iKPJg8UA0McHs3XeA9u3a5Hjc8+fPM2rUKGrXrs0XX3yRYwXA6GQNO/8K4UZgAhYKGc0ruNOsvDuW/xLVO4Mo8efjGA7cDCNRraekuy3d3/MxJUS/LgV18v9hdAaREZtucDskMUMWqpVSRtvKXnzxUWnTKt9gMNDwp7OkZpKsp5QJnJ7Y8J1OZrkZFM/g9dezDENEXzlA0IEFyJSWuNXugGu1Fmhiw4i+tJfEx1fo+fGnbF691HR8UlIStRu34P5fF7BwdMfGpyy6pFhSAu9gYWPPgf37af5hI8DYF3zChAnMnDnzrTfHiI6OZsGCBRw5cgQXFxcGDBhAly5d0hnjtZu383H/vogGPXJLWwzqJASFBZJei33JmjiUqknUxd3ok2I5ePgILZtmVDh7mxgMBu7cuYOnpycWFhbUrVcP/wcPsLKyws/PGB66d+8eDg4ObNyyFTtrK1q2bIm7uzsDBw6kTp06xMfHs2vXLvbs2UPDhg05fvx4ltUBr8Kff/5J/fr1AaPB79WrF5aWlmzevJmQEGMVyKZNm8xKI2s0Gpo0acLFixfp0qULHTp0wN7ent27d7N9+3ZUKhUVKlSgZ8+e9O7dm6JFi+bp3M1R78OWXPj9KDILa1xrtMberyopQfeIvnIAQ2oSpSu/h//NK9mOExsby927d2nQoAGSJHH16lXee++9d1rA5t9GgZH/j6MziGy+FMSGi4Ekq/VIgKeDFUMaFqN1Jc8Mf0wGg4GBa69xJzQp3eslC9mwblDNd9rAA3x36AH7b4RlW5oSf/M4z/fNQ9T/k7Ft7eDCyDHjmD09veBK/ebt+PPkQXzbjsG1aktT9nlq5DOebZ2OISWOp48e4O3tjSiK9OrVy6T//brxz7zg9u3b/Pzzzzx8+JCDBw9ibW2NVqvl9p171KpVC+vCpSjWdRoKWydCjq0k5q/DSPp/wjxFylRm9bJFNGv8wVu8CyOSJBEUFMTly5dN/0tOTmb48OH8smUP508eom2/EcwYPwylXI5MJnDiyl2+nDiW1MRYnj56wJMnTxgzZgzXr183jWttbU2/fv2YP39+vumt//7777Ru3TrDbl2hUPDLL7/Qr1+/TM9NSUlh1KhRbNy4MV3HQ3t7e4YPH87nn3+e68Y6r0v77n04sHML0ouiRoJA/aat+OPI/iyrLHQ6Hdu2bWPVqlUIgsChQ4cyVCUUkDcUGPn/E0RJIl5l1EZ2sFJku1I2GAzcDU1ClKCSt/07YayyIzZFS6uF5zNVkHqZ0CNL8ZNFMWDQx3i6u9GyWdMMLudHjx9TulQpPBr2pnDTQRnGUEcHcX/xQIaN/pzl838AjDHS8ePHM2XKFDp16pThnLdFZGQk7u7uSJJEly5duHLjDsGBTyk/ej0Wju6m4/SpySQ/u0nk+Z2oQx8QHRnxSopqeYHBYODJkyekpqZSpUoVtFotjRo1QqvV4uHhQZ06dahXrx7OLi7UqF4djw/6UPjDgcgFsLOUodFLqPWS2e/p2rVrPHjwAGtra5o0aZKjksO84LfffmP58uXodDp69+6dpXFPIzIykl27dpl6zru5udGjRw+GDx+e6zBJXqLVapm7cDF37z+kZLEifD5hbJbGWpIkTp06xaJFiwgODub9999n3Lhxb8T78P9KgZEv4D/Dzr9CmHf8UZbaAC8i1yQwrk1VetbJXJlr/LSZzPv2aypO2IbSwXzi4OO1E7HSJRAZ+BgwPsiGDBlCYGAgu3fvznHJ2JtCo9GwevVqPhs1CpmVHVauPtgULoNzlabY+pQ1HZcSdJ+Hq0ayYs06hg7M3hDlFWfOnOGvv/7i3r17PHjwgNTUVCpXrsyaNWtM7xcrVgxfX1/TYnXc1BnM/256rr6ndx1Jkrh58ybbt2/n5MmTiKJIgwYN6NGjBzVr1nynXNp6vT5HnQifP39Oly5dKF68OGPGjKFevYxlrgXkLZkZ+YLs+gL+dSSm6tDloNY/DcnKkVR91g/K6Nh4EGQo7F0zPUbp5I7q6T8iQYIgMGHCBPr27cuyZcuYODFjWdXbxNLSkk8++YSRI0fiVK4hVm4+JAfeMWkEqKODiLq4B+Xf93z33gNSUlKyLAHLDTExMTx//pyQkBCCgoIIDAwkOTmZJUuMUsJ79+7l4sWLlC5dmnbt2lGxYkWqVKliOr9hw4YZx4yNB1nuvqd3FZVKxZEjR9ixYwePHj3C3t6e7t27061bt3eq3/zTZ8+YPHM2+3ZsRZ0cj4WNHc3bdmb29C8oX/afxeLTp0+5ePEiPXv2pGjRoixbtoxq1ar9K7yD/2UKjHwB/zq8nayxVMrNlvKZw0opJ+DyCb79I4KpU6eaPaZsieIgiaSGP8bGq1SG9yVJIjX0Ie6e3unPK1uWrl27sn37dlq2bEmlSpVyf0P5iFwux87FHV1SFEXaj8X9/a6m8jODOgVDahJJT4xiJr/t2c6fp46xdu1aKlasyPnz5zlw4AB2dnZYW1tjYWGBQqGgd+/e2Nvbc/HiRc6dO4dKpSIlJYXExETi4uJYv349FhYW/PLLL2zfvh0w1j97e3tTvHhxU9b+V199hb197kJEpUsUB1EkNfwJNl4lM7yf9j15vPQ9vUsEBASwc+dODh48SEpKCqVLl2bq1Km0bNnyjfRlzw1/XrzMh02bo1Wn4FiuPk6FiqKJDeXQri0c3rudffv2U7ViOVatWmWKt3/00Uc4OTmZ5IQLeLsUuOsL+Neh0RtoMvccqTk08tYWcrrb3GbjhvUcPXo0Q0kVQFxcHIU8vLAvVYti3b/O4CJN8L9IwKap/DB/CZPGjEj3XkpKCt26dcPa2pqNGzdmqwT3phk8agK/LJlHmWFLsSlcOt17kkHPwzXjICGMPTu2EB4eTocOHXBwcODgwYP88ssvJCcno1ar0Wq16PV6fvvtNzw9PVm/fj1r1qzBxsYGW1tbUxe4GTNmYG9vz6NHj4iJiaFw4cJ4eXnlSSa76XsqXZti3b4y8z1dIGDTNGbPX8LnL31PbxONRsPJkyfZvXs3N27cQKlU0rRpU7p06ULlypXfKZd8GhqNBrfCRdCKAiUHzMHS5R8dBm1iFE/WTkSXEEHVypWwsLCgW7duDBgw4K3ldfy/UxCTL+A/xf6bYfxwyD9biV4rhYxJH5WmnE0yvXr1YvLkyXTubF4xbdTnX7L4p1k4VWqMV6O+WBUqikGdQsyNo4Qd/wV37yI8uXvdbMLR5cuXGT58OJ07d85QH/22iYiIoGSFKqhTUync4hOcKzZGprRAFeJP2MlfSXx8hblLVjBuxNC3PdUc8dnEaSyZ8y3OlZrg2ahPrr6nN82TJ0/Ys2cPhw4dIjExEV9fXzp37kybNm3eeWO4/Jd1fDp4ACX6/oBDqZqm1yXRqISXFHCdx2sn8GHLVmxZvzbbFroF5C8FMfkC/lO0q+KFpULGT0cfotaJ6A2iqZzOUiFDLhOwUsqY0LwULSt6IkkSxYoVM+mWm2Ph7JnoDXpWLJpL/O1TyK3sEHVqJIOe0lVq8ceRfZkajlq1atG3b182bNhA9erVadGiRb7de27x8PDgyvkzNGnZjsA9PxJ0YD4yhQUGdQoKS2tm/bTgX2PgARb9+A16g56Vi+cRd/v3XH1PuSUlJYXHjx8jl8spU6ZMjrwRKSkpHDt2jL1793L37l2USiWNGzemY8eO/6ra8G17DqC0d8G+hFEUSxMXTuz1o+iSovFtNw57v2pYFSpCZHxKgYF/hynYyRfwr0aUJG4GJRCTrMXFzvgAjk3W4WJnQVVfR1RaAzv/CmbblRAentlH1OX9jP9xFSPa1sLNzrw6X2RkJPOX/sL9R49xsLdnWL8evF+vTrZz0ev1DBs2DH9/f9asWUPp0qWzPedNIkkSR46fZP32vajVampUqcRnQwe8sZKyvCbd9+Rgzyf9elKvbu08GTsqKoqhYybx265t6P9OVLRxcqPvwI9Z+L1Rte5FRFHk+vXr7N+/nxMnTqDRaPDz86NDhw60atXqnd+1m6Nus7bcuHGTYj2mE3v9KMlPbyLIFTiVb4Bb7Q7IFEoerh6Nj6s9D66df9vT/b+nwF1fwP8dsSla+v5yldgULRq9iC45joizW/Cq1xEnD19+HVADv0J5k0meRnR0tKkeeu3atbi7u2dzRgHvGhEREVSoUYfY8GCcKzXGoUxdJL2OuNu/k/jwEhVr1eevsyexsLAgJCSEgwcP8ttvvxEaGoqNjQ0tWrSgffv2VKhQ4V+zazfHsLFfsHLBbKzci6OwccCp4gc4V2pikpI2Skd3p123vuzdlHftZgt4NQqMfAH/dwzbcJ3rgfHozUjfCoCHoyW/fVYPWR4/iB8+fMjgwYMpXLgwK1euNHUeK+DfwYdtu3LqyH58245GFeJPathjEGTYFa+K3MqW0KMr6NC1J26Otly/fh1BEKhZsyZt2rShSZMm71ziZW5Qq9UcPHgQBwcHypQpQ9GixbD1LU+Jvj8gt/onBCJJEsGHlhB9aS/Xbtyg2gulj6+LRm/g5P0oHkYkYaWU80HpQpTzskdnEDn1IIp7YUlYKmS8X9KVSt4O/5qFVGJiImvWrGHPnj0kJSXh5+fHsGHDaNq0aZ7cQ4GRL+D/iuC4VLosv2TqWPUiusRo9OpkXLxLMLdbJer45b1M6OXLl02tTZcuXfrOCeUUYJ7o6Gg8vApj6eFHaog/gkKJrW9FRL0GVdA9EAQEuRIZEu3btaV169a0atUKT0/Ptz311yI8PJwdO3awZ88eEhMTadasGd9//70pydG+RA3c63XByr04mphgoi7uJuHBeboPGMbWX5fn2Tz+eBjN1D13AVBpDcgEsFDI8HK0IjJJgyQZXxcw9uXwdbZhca8q+dIYKy+5fPkyrVu3Jjo6mtKlS+Pu7s6dO3eIj4+nRYsW7Nmz57XLJwuMfAH/V/x2M4xvDj5A95K2vSRJPNv5LQICRbtM4eP6xRjZpES+zOHMmTNMnDiRMmXKsHjx4n9t7Pv/iQMHD9GuTWsAnKu2wKVKE1RBD0gKuIZelYguMRqD2tjvISgo6J0SrXlVVqxYwS+/GN3tjRo1omfPnlStWhVBEJAkia+/n8uc2d+RmhhnOsfCxp5hI0ez4PsZWWrX54brgfEM33QjQ5OtrJDLBDwcLNn5SW2slO+m6E54eDjly5fH1taWuXPnUrVqVcBYorhp0yZ+/PFHevbsyaZNm17rOpkZ+bz5dgoo4B1DaxAzGHgwqtS5VGqCOiaYlKB7JGv0+TaHhg0bMmfOHB4/fszgwYMJDw/Pt2sVkDfo9DoAFHYu6JOiCT3+C4mPr2BXtBK+7cZSfuxGZJZGt/W/xU38MomJiWzZsoWYmBgAypUrR79+/di3bx8//vgj1apVM92bIAjMnDKBuMgwtu7YzbdzF7F+8zbiosJZNPubPDPwAPNPPM6VgQdj+9a4FB3H7kXm2TzymqVLlxIXF8eyZctMBh6MipSDBg1i4MCBbN26lefPn+fL9QtK6Ar4TyJm4aFyKFWL6Ku/EfPXQTTtPszXeTRo0IAlS5Ywbtw4+vfvz7x586hQoUK+XrOA3CGKInfu3OHEiRNs3rIFAEmvxdqzBPYlamBXtHK6XuoKa3u0GtU7UYefUyRJ4vbt2+zZs4ejR4+i1WqxtramQ4cONGzY0KyE8ItYWlrSvUvHfJtfTLKWh+FJ2R9ohlSdgR1Xg2lXxSuPZ5U3bN++nTp16mRabdO7d2/WrFnD1q1bmTRpUp5fv8DIF/CfRCGTIRPAXLt5Qa7AtfpHhJ/ZTPTjm0D5fJ1L9erVWbNmDWPGjGHw4MFMmjSJ9u3b/2t3gv8FRFHkxo0bnDx5klOnThEZGYlSqcTT02goDFo1TuUbYOub/rcRe/ME2vgIwLgjNqee+K6h1Wrp378/jx49wsbGhjZt2tC5c2fKlCnztqdmIiFVh0IuQ2vImYrly8SrdHk8o7wjPj4+S7lrb29vZDIZ0dHR+XL9AiNfwH8ST0crLBUyUjPpVOdYph7xt39HTIh4I/Px8/Nj/fr1TJ06lVmzZnHlyhW++OIL7O3t38j1CzDGQC9fvsypU6c4e/YscXFxWFhYULduXUaOHEnDhg3xf/iQg78dQGFly6Nfx+FSpRmOZeoi/l1Cl/DgT5T2buhV8bi5me+C97YRRZGLFy/y4MEDBg0ahIWFBXXq1KFbt260aNHinfRAuNpZoM9h62hzeDq+uxUNnp6ePHjwINP3Hz58iCiKFClSJF+uX5B4V8B/EoMo0WzeOeJTM1/hKzBwfEIjHK1fX1M9p4iiyK+//sqKFSsoVKgQ06ZNo27dum/s+v9vxMbGcu7cOc6cOcPFixdRq9XY2tpSv359GjduTL169dIZPUmSKFyiHHFJKmx9KxB/5zSiTg2AwsYR58pNiLl2lAZNW3L64K63dVtmefbsGb/99huHDh0iMjISZ2dn9u3LO/W//OazLTc5/ziG3FokGws5szqUp1GZd1N1b8GCBYwdO5a1a9dm+FuXJImJEydy7NgxQkJCcHXNvLtidhRk1xfwf8fxexF8te++2WQeK6WMge8XZUiD4ly/fp0SJUq80Xr2u3fv8vXXX/Ps2TNatmzJ6NGjC6RB8wBRFPH39+fcuXP8+eef3L17F0mScHd354MPPqBhw4a89957WcrTbti2i349u2JfrAoejfohUxrLs/Qp8YQeXY4uKZorFy9SrWrlN3Vb2XLw4EG+/vprZDIZ9erVo127dtSvXx8LC4vsT35HCIhKod+aqznuLglgIZdRxtOONQNqIJe9m+GvpKQkqlatSlRUFFOnTqVVq1ZYWloSGhrKsmXL2L59O59//jmzZ89+resUGPkC/i85fi+C7w8/RKsXkSQJmSAgAcMaFqdPHV8iIyNp164dbdu2Zdq0aW90blqtll9//ZW1a9eiUCgYMGAAvXr1eufajb7rxMbGcunSJS5cuMDFixeJjY1FEATKly9PgwYNaNCgAaVLl85VDsTC5b8wfvRIDFo1Fg5uiAYd+pQEbBxd2b1zJy2aNsq/G8oGjUbDmTNnOHz4MC1btqR58+ZER0dz5MgRPvroo9faDb5t/MOTmLL7LuGJRu+JIAjoRYn6JV0JjFURHJuKIPz9ukGicVk3vmpbDut3tHwujefPn9OmTRvu3LmDra0tjo6OpmqbkSNHMn/+/NeuVCgw8gX832IQJa4+iyM8UY2TjQV1/VywUPzzB7Vw4UI2bNjA8uXL30oP7ODgYBYuXMipU6dwcXGhf//+dOrUqcDYZ4JKpeLGjRtcuXKFS5cu8fDhQwAcHR2pU6cO77//PnXr1n3tpLj4+HjmL1vNnxevIJcraP9RUz7u1yuDbv2bQJIkLl++zJEjRzh58iQqlQo3Nzc+/fRT2rdv/8bnk9/cC0vkcWQKlnIZtf1ccLIxel4eRiTzIDwJpUygtp8LLrb/Hk+FKIqcOHGCHTt2kJycTIkSJRg8eDDFihXLk/ELjHwBBWSCWq2mZ8+eGAwGtmzZgq1t3urZ55Rbt26xbNkyrly5goODA127dqVLly7/9258lUrFrVu3uHbtGlevXuXu3bsYDAaUSiWVK1emdu3a1KlTh7Jly+Zp3fbbRhRFgoODTQlZPXv2JDQ0lCZNmvDRRx/x3nvv/afut4DXo8DIF5ABSZK4G5rE1WdxSEhU8XWimq/jv6a0y2AwcPDgQTZs2EBUVBSOzq7YV26OrV8NCjla8+kHxfF2zlnS0a1btxg8eDAtW7akRctWfLdgKU+fBmBnZ0/fHl0Y0r/3G9Mkv3XrFuvWrePMmTPIZDI++OAD2rVrR506dVAo/vsFMZGRkdy8eZPbt29z48YNHjx4gCiKyGQyypcvz3vvvcd7771H1apVs/1Obt26xdKlS/H398fa2po2bdrQr1+/fJcZjoyM5Pv5P3Py9BkkUaR27Zp8Of4zihYtmuV5INBOBAAANlJJREFUkiRx//59jh07xvHjx0lMTOT48eNYWVkRGBiIp6fnW4mzJ2v0nLwfSVSSBmdbC5qWc3+jCasFZE+BkS8gHaHxqYzeeouQ+FR0BhEksFDIcbOzYEGPyhR3ezu72ZwSERFBq1atuHbtGq6urti6FSY0OAh9Sjy2vuXx6zULha0jVXwc+KV/9RzteFatWsWCZau5d/0yMgtrrN2LoU+JQxMXjoObF6dPHKFalTeXbBUcHMzu3bs5cOAAcXFxODk50aRJE5o0aUKNGjVy1Nv8XScxMZEHDx5w79497t27x507d4iMNKqXWVpaUqFCBapVq0a1atWoXLlyjjPFRVHkk08+YdWqVVhaWlK2bFkSEhJ49uwZrq6u7N+/n3r16uXLPa34dQMjhg3BoNNg7emHIFOgCnuMIAhMm/k9M6dONHve+fPn+eGHHwgNDUWhUFCnTh2aN29O06ZN31oCnSRJrLsQyIo/niITQK0TsVTKECXoVcuHkU1K5HmDpwJejXfSyAuC0BJYCMiB1ZIk/ZDJcTWBi0B3SZJ2ZjVmgZHPnoRUHZ2XXSJepc0gFiMAdlYKdn5S+51t+iCKIjVr1uTevXvMmDEDffGGHHiUSqpGS9ytEwT9thCbwmUo9fECBEGgmq8jvwyoke247XsOYP/WdXg27k+hup1QWNkhSRJJT/4icM+PWChkBD5+gItL3je0yQqdTseFCxc4cuQIZ8+eJTU1FRsbG9577z1q165NjRo18PPze6ddtwaDgaCgIAICAnj06BEPHz7k0aNHhIaGmo7x8fGhQoUKVK5cmUqVKlGqVKlXXsh88cUXzJ49m/79+zN8+HCcnJyQJIlr167xxRdfEB8fz61bt7LdWeeWIyd+p1WL5tj6lse33TisChld7dr4CIIP/0zC/T9Z8esGhvTvzf379zlx4gQNGjSgWrVq+Pv7s2TJEpo1a0ajRo3eie6FGy4EsuyPANRm9CaslDK6v+fD6KYl38LMCniZd87IC4IgBx4CzYBg4ArQU5Kke2aOOw6ogTUFRv71WXX2KWvOPc9UJ1opF+j2ng/jm5d6wzPLGb/99htt27bl+++/p1XbDgzdF4b2BZ366CsHCDqwgJID5mDvV814zmd1KeyUeSJbcHAwRYoWw7VmW5wrfEDUpT34th2DwsbYVEYV+hD/5Z8yYdo3/PTNm83CfxGNRsOlS5c4d+4cFy9eNBlJOzs7ypcvT7ly5ShTpgwlSpTA19f3je4ADQYDERERhIWFERwcTFBQEIGBgTx79oygoCB0OqNmgUwmw9fXlzJlylC6dGnKlStHuXLl8syoJSYm4uXlRaNGjZg3b16G8FNgYCAtW7bks88+Y/78+XlyzTQq1fkA//v3KPfZr8gt03sdRL2WBz8PQSmqafR+HcLCwpDL5YwePZpevXrl6TzyglSdgaZzz2YqKAXGDnFHRr9vSowr4O2RmZF/mwG+WsBjSZICAARB2Aq0B+69dNxnwC6g5pud3n+XXX+FZtkIQmeQ2Hcj9J018hs2bMDFxYU2bdpwOVTNy+WxLlVbEHp8NbG3TpiM/Io/njKjfebytUvXbEQSDbjX7YwkGtAlxRJ8eBlF2o1FprTEpnBp7IpWZNOmTW/VyFtaWqbTGg8NDeX69evcvHmTu3fvsmnTJvR6Y9MdmUyGh4cH3t7eeHp64u7ujqurK05OTjg6OmJra4utrS1WVlYoFAoUCoXJIIqiiF6vR6PRoFarSU1NJSUlhaSkJBISEoiPjycuLo6YmBiioqKIiIggOjoaUfzndyWXy/H29qZYsWLUr18fPz8/SpQoQfHixfM1v2H37t2oVCr69+9vNr+kSJEiNGnShC1btuSpkY+OjubOpTN4NuprMvCSQY8uKQYLJw8EmQJBJic5JhpHR0eGDh3KBx988E7s2M3x56OYbPNzZBjLVLu+9+/vxvdf5W0aeW8g6IX/DgZqv3iAIAjeQEegCVkYeUEQhgJDgXyTBvwvkajOXuc5RWNAkqR3MgkvOjoaHx8fLCwsSFBr0L0Uc5ApLbBw8kCfkmB67fKzOEZuvkEhO0s6VCtMZR+HdPcWEh4JMhmWLoUBKNz0Y0KOLif02Cq8W36CIFdg4epD4tO/3sxN5pDChQtTuHBhWrc2tkfVarU8e/aMgIAAnj9/TlBQEKGhoVy+fDmDEX5dHBwccHNzw83NjVq1auHh4YGnpyfe3t6mhYVcnvv65aSkJOYsWcH/2rvz8Kiq+/Hj73NnyZ6QBEJCCPsaZEc2QVRQoaig4r5Qi1vdrf3VVuu3Vm31W6t16deFUoptEWsVXBE3LGpBUJA1LAlhCQnZyL7Nds/vjwkxwCwhZGPyeT2PzyOZO3fOmTv3fu4595zP+eviJZQUHiYyJo5LL5/Ho7+4l9TU1KDvLyoqAqBv375+t+nbty9ffPGF39e11vx7+bv8/tkXyMrYjrIYjJs4hcd+9TOmnuX7Wf7RVd1s8clUZn9P1b7NVB3YhmELo991v0MZBklTrubgiv/lhhtv5MILLghal/Z0pNqJ29fiD43UuU2OVDsB2F9czVubctlfXENClJ1LRqYwtneXFruGlFY7WfF9HptzyrFbDc4fmsR5Q7ths3Tcx1QdQXsGeV9H/vhf1HPAg1prT6AfitZ6IbAQvN31LVXAUNUlwka+yxFwm5hwa4cM8ABJSUls2rQJp9NJfIQFm6HwNLoYmc46HKX5RKYOafhbQYWDggoHCvgko4ChKbG8cM0IIu3eU6BXagqYJnXFOYR3TSO6zwi6n30t+WuWkvfZX+lx/s04ig7QJTGprat7Uux2O4MGDfK54pVpmg2t8IqKCqqqqqipqcHhcOB0Oht6AMDbC2C1WrHb7YSHhxMZGUlUVBTR0dHExcURGxvbKiP9Dxw8yNjJ0ziSu5/I1MFEDpqEs7SARS/+kb8veoWVKz9k+rSpAfeRkuJdZCYzM9Nv3oPMzEy/UxM9Hg8zL7uGz977N7aYRGIGnol2u/jqs1Wc/eHb3Per/+FPv//tCe87mss+//O/YY1OwBIWSXSfkQ29SUBDitzUHj2CfxntrGu0HauhcAbYJtxm0DXazpMrd/HelnzcponH9F7cP99ZRL9ukbx03Shiwk+tO/+DrYf53Ye7ARp6Ib/JLuHpT/aw8IYx9OvWsQcKt6f2DPKHgLRG/+4J5B23zTjgjfpg0xX4kVLKrbV+p01KGKKuPDOVV9fsD/hM/rIxHfcidHT95eXLl3PpvCs5flhJ8aaVmI5qEkbOOOG9Gqh1mWzPK+cXb23nz9eOAuCOn1zP737zEIX/fZNecx4AoMvQKZguB86yAqpyMqjO2cm9j/kcG3paMAyD+Pj4Drtymtaasy+4iLLiIgbMf5qY/mMaXqsrziF76cPMnn0xeQezAw5+nDt3LjExMfztb39j7NixJ9ys7t27lzVr1vDAAw/4fP/9Dz3KZ+/9m+Rz55N89rUoi/cy6XHUkvP+n3juyccYPfwMzp50Jl9++SX/+c9/ePDBBxk8eDCDR5xJ5s7t9Lr0QWL6jkQZP/RkmC4nxRveIXVAetDlhl0ek135lTjdJn0So0iMbvvR9VMGBs+cpzUcLqvj/a35x1xPvOeZhz0FVdyzbCt/uyn4wFd/Nuwr4Xcf7j7helXj9FDr9LDgtY28d9dkYsJDf3ppc7RnP8e3wEClVF+llB24Gniv8QZa675a6z5a6z7AW8AdEuBP3eVjehIXYfOZ69lQEB1m5fqJHfexx4wZM5g0aRJPPPEEb/1rGZcOshNmUXictRSue5vcVa8Q028MUb39L+/odGs2HihjX3E14G39XXXjzRzZuJLcVa80dPXHDzuHsMSe7F/2G6ITunP3LfPbpI6d0Sefrebg7m2kzrz9mAAPEN41jT5XPoKjupynX3w14H6io6P5+c9/zmeffcYjjzxCQYF3pUHTNPnqq69YsGAB8fHx3HvvvSe81+FwsOiVl4gdNJGUc29sCPAAlrAIes66E0tEDHfcfivz5s3jhRdewOFwUFVVBcDLLz6LNl0c/mwRtfl7G95bV3SAfcseoa7wAE8+8ZjfXjJTa/723/3MePZr7vjnZu7/1zZmv7CWe5dtoaA+1WtbCbNauHd6f8JtvsNEuM3gholpvPFtrs/R9+Ad37O7oJKMvIpml+P/vsj22yDReFv272893Oz9h7r2nkL3I7xd8ha8I+d/p5S6HUBr/cpx2y4BPpDR9S2jqNLBz/+9jT0F3ouTxhvgeyVE8swVw0mN79gpVUtKSpgzZw5ff/010dHRxCR2pzD/MB5HDTH9xtD36t9gCQ+c8MRQ8NNpfVkw1fvsds/hcqbOuY7Cbz9EWWyEJabiri7DXV2GPTGVvr16MWH4QJ599tnTOj94RzVv/m2sWPZ3hv9yecOiMMfb/cpPSUmMI2vrhoD70lrzwAMP8Nxzz2EYBv369aO8vJzCwkJSUlL44IMPGDNmzAnvW/3FF0w/7zz6Xfs4cUMm466tojpnB4bVTky/0ZguJztfvAlnWT5//etfmT17Nt27dz9mH0vfXM5N82/EVVdNWEIPlGGhrjgHw2rjyWee5xf3/NRvuX/73k4+zig4IWgaCuIibLxx6/g2n9r65neHeOFz7w2L22NitRiYWrNgSh+GJEfzy+U7qHb4X1RGAddPTOP+809+IG9lnZvpz3wVdGzAwKRo/nXb+JPefyjpiKPr0VqvBFYe97dX/Gz747YoU2fRLSaM134yjr2FVWw8WIapYXRaHIOTT4/1zRMSEvjyyy9Zs2YNr732GkVFRcRPm0rsyAsIS02n2unh2/1lAfdhaiit+WEQ4pOrsuh58c9ImHAZRzZ9hLM0n4iUgXQZOoW4wZNw5O5g57Z/MX/+fJ555hkGDx7cyrXsXKqqqrCER/kN8ADW6HhqayqD7kspxbPPPssdd9zBq6++yq5du4iIiOCSSy7hiiuu8Jt/vqzcu+/qQ7so2/lf6gr3obUmqudQYvqNxrDZSZp6FYfef54ZM2acEOABrrvyMi66cDp/enkRn3z+HzymyVkTF/Cr++4ImKJ4R16FzwAP3t9qRa2L5z7L4neXBu7qb2lXjuvJnFEpfLXnCIWVDhKibJw9qCuRdiufZhSeOJLqOBqoqHUH3siPOpcHi6GCBvkaZ/P23xnIQ4xOrn9SNP2TWjfFZ2tRSnHOOedwzjnnnPDam98eChrkwZuuE7wZAHfmV6KBiKQ+9Jx5Ymsrpu9IZk4dxrdv/ImbbrqJhx56iIsuuugUayGOGjJoAB8vfx3HkVzCEk8cRW+6ndTm7WHo+Ek+3u3bgAEDePrppwNuU1lZyfbt25k0aRJDBnkTu5Rs/oToviNJHDOLqN7DCe/6w+OrmkO7sIZFkJTkfxBmXFwcj/7yAR79pe/n/r4sXX8QZ4CprR4Nq3cVUeN0NwwYbSthVgsz0k+sb++ECDxBeoPDrAYDujdvYFyXSBtNGf/b0TN0tieZeyBCks3atJkBUWHei+XBklrslsDvcXk05fYk/vnPfzJixAjef//9Fp2S1tn9v7tuRRkW8tf8A1+PEYu/fR9XVSkP3nfnKX2OaZpkZGSwePFibr75ZqZPn87dd99NcXEx6enppA06A4Ces+6k65kXE5HUB1WfTbCu6CBl275g5twrW3yuf1Zh9QkZKI9nMRSFFYFnxrSlQckxpMQF/x4uGpHSrP3bLAYXj0jBFmCt+Aibhesmpvl9vbOTIC9CUpTdSpg18M9bAQn1mboi7ZagF1iA2AgbCQkJvPTSSzz99NMYhkFhYSEbNgR+RiyCS01NZcGd91Oy+VP2v/k4NXl70KaJozSf3FWvkLvqZcacdR5zZs886X0XFhZSWentiv/ggw+48cYbeemll6irq+PHP/4xixYtaph18NdX/oynpoysxfdRlvEVptuFx1FL8XcfkrX4Z4RFRvP8k4+2ZNUB7282GLdHt3krPpjH5qQHHJx3z/T+p7SYze3T+hIfZcPXdPhwq8Hk/gmM79MxZ4x0BB3r1yJEC5nUP/jAOLvV4Lyh3i7I9B4x2IK05CPtFmYPTwa809GOZipbtGgRy5cv5+KLL+aee+7psFPUTgcLn/8DdrudV198lrIda354QRnMuHge773xWpNy9FdVVbFp0ybWr1/P+vXr2b9/Pw8//DCXXnopZ511Fo899hgTJ070ORXv/HOnseLd97lh/k3se+PRY15LHZDOR+/8m359+5xiTU80Z3QKewoqA6aRTUuIICm2Y60pMaxHLIvmj+HJlXvIKqzCZlGY2jtL594Z/Zl1RvIp7T8+ys7Sm8fz+5W7+G9WCXarahgGcM34NG47u2+HzenREcgqdCJkPfNJJm9vzKXOx3NOu0Uxrk98wzx5gGUbcnhx9V6fA58sBvRJjOLN28afcEFxOBz85S9/4R//+AdRUVHccsstzJs3LyRWiWsvZWVlvLpkKZnZ+0lKTOD2m64LmM2yrq6OiooKkpKSqKio4Pzzz8fj8RAWFsaYMWOYMGEC5557bpMy5h3l8Xh46533Wf31N1itVi6/6ALOPXtqqwWUWpeHS15cR0m10+dYtnCrwZOXn8G0QV1b5fNbwqHSWg6X1xEbbmVQ9+gW/65Kq53sLarGZjEYmhKDPUhvXWfS4RaoaS0S5MVRHlPzm3czWL2rCJfHxKO9XfThNoMhKTG8eM3IY7o+tda8uHovr284hNYaV/2iN5F2C8mxYSy8cQwJUf6TkmRnZ/PHP/6RDRs2cMstt3Dbbbe1dhU7rbq6OrZu3cqmTZvYuHEj27dvZ+LEiQ256JctW8agQYMYPnx4uy3T2hwHS2q49e/fU+VwU+P0TkuzWw0UcN+M/lx1pjx7Fr5JkBedVlZhFW9tzCWnpJZuMXYuHZ16Qu76xg6V1vLWxlwyC6uIi7By8YgUJvRLaNK62Vpr1q5dS3p6OvHx8WzZsoWcnBwuvPBCadmfgoqKCrKzsxk1ahQAN998M5s3b8YwDIYMGcLYsWOZNGkS48ef/nOlXR6TL/cUs2p7AbUuD8NT47h8bA+6RnesbnrRsUiQF6IdPP7447z77rt069aNefPmMXfuXEmk0wT5+fls2LCBrVu3smXLFvbt24fVamXNmjWEhYWxdu1aAEaOHElUlEyfEkKCvBDtQGvNunXrWLp0KevXr8disXD11Vdz//33t3fROoySkhJ27NhBRkYGV111FV26dOG1117jxRdfJCYmhuHDhzNq1ChGjRrFyJEjm7WynRChrkNmvBMi1CmlmDx5MpMnT+bgwYOsWLGiYfBXXV0dzzzzDFOnTmX8+PGtusZ6R6C1xjRNLBYLWVlZvPzyy+zcuZPCwkLAO2Nh7NixjBs3jtmzZzN16lT69OnTpNH0QgjfJMgL0UZ69ep1zKIo2dnZfPLJJ6xYsQK73c64ceOYMGECM2fOPO279F0uFxkZGezdu5e9e/eSlZVFZmYm99xzD3PnzsUwDPbt28fo0aNJT08nPT2dIUOGEBHhXTPh6Dr1QohTI931QrQjl8vFxo0b+frrr1m3bh0HDhxg6dKlDB48mA0bNvDdd98xZMgQBg4cSGpqaodq1VZXV5Obm0tubi45OTnk5OQwfPhwLrnkEsrLy5k+fToAERER9O/fn4EDBzJr1iyfC8M0ZmrNur0lLNuQQ25ZHXERNuaN7cH56UmEWaWrviMytWbDvlJeX59DTmktsRFWLh+TygXpSYTbTu6YZRyuYOk3Oew8XEmYzWDWGd2ZM6oHhRUOlq4/yLZDFdisBjOGduPyManEB5jx0pHUON2s3JrPu1sOU+3w0KdrJNdNSGNMry4tMtVQnskLcRooLCyka9euGIbBkiVLeOmllxpS54aFhdG7d2+WLFmC3W5n27ZtlJeXk5SUREJCAl26dMFqbbnOuT179lBUVMSRI0coLi6mqKiItLQ0rr32WrTWTJs2jZqamobtu3Tpwrx587j99tsBWLduHb179yY5ObnJNydOt8ndy7awPbeCWtcPK5tF2CzER9n424/HtvkqbCIwl8fkvn9tZfPB8hOOWVyElcU/HktyE1Lfaq159tMs3t6Yi9NjNmSgDLcZmKZGA6ZJQ678MKuBxVA8f/UIxvbu2AmoDh6p4SevbaTW6WlIdnR0Ou+UgV35/aXDfC79fTIkyAtxGnI6nQ1d3Xv37qWwsJCnnnoKgIceeohPPvnkmO1TU1N59913AXjuuefYsWMHNpsNi8WCUork5GQeeughAJ566ikyMjKoq6ujtraW6upqBgwYwMKFCwG48soryc7Obth3bGws06ZN4ze/+Q0A77zzDlFRUfTs2ZOePXsSE3PqKxj+9v2drNpe4HP9cIuh6Nc1kjduPTEhkWg/T63czbtbDvs+ZkqRlhDB2z+dEPSYvfN9Hn/4eI/ften9ibRbePfOSSRGd8wWvds0ueiFdRRVOnwnObIZ3DCxFz89p98pfY4MvBPiNGS32xueWR/v5z//Oddccw1FRUWUlJRQWlp6TIvZZrNhGAZ1dXV4PB601scM7rPb7XTp0oXw8HAiIiKIioqid+/eDa8//PDDGIZBYmIiiYmJJyzPOnfu3Bata3mti4+2FeD0+L7Ie0zNodJath6qYGRaXIt+tmieKofbb4AHb6u7sNLBxgNljAuQX15rzcIv9510gAfwmCbLN+Vyy9l9T/q9bWHN7mKqHG6/K/LWuUxe35DDgil9WiWDnwR5IU5TCQkJPnOvH3XnnYFXa/vZz34W8PWRI0c2q1zN9d3+UmwWhdPjf5s6l8l/9hRJkO8gNh4ow2ooAq2LV+v0sHpXUcAgn1dWR1mNq1llcLg1q3YUdNgg/2lGYUP2wkB25FUwuleXFv/8jjOKRwjRqTndpt/WzlEacDSjtSdah8tPC74xDdS5Agc5p8fEOIVn0k0pR3vx18vRmEL57cE6VRLkhRAdwsDu0ZhB1vuNtFlITzn1Z/+iZQzqHo07yDGLsFkY3jNwz0tKXDhmM8eHGQrSe8Q2671tYUTP2KDLXjvdHvp3a53MjRLkhRAdwoCkaHp3jSRge07BjPSktiqSCKJXYiSDukcTqBGu0cwc1j3gfsJtFi4ekRJ0uWdf7FaDGyb5X6Gwvc0d1SPg6xYFZ/ZNaLW1CSTICyE6jN9fOoyoMIvPoBFuM3jysmEnPe9atK7H56YTFWb1fcysBk/MHUaEPfgxu+u8fnSPDfcZ6BX4/U3MG5vKsA7cko+PsvPLWYN8tuYtBsRF2nhk9pBW+3yZQhdARa2LshoX8VE2YsJbfgWxWpeHokoHkXbLMXdxdS4PhZUOImwWv3OCXR6T/PI6bBaD7rFh7TKlSNePnHW6TbrHhnfotZ2rHG5KqpzERtjoEtk+q8G5PCYFFQ4shiK50TFzmyYF5Q6Ugm4xYRRWeP8/OS68YeU7t2my7VA5poZhqTGE+5gPr7Umv8KBx9QkxdgpqXbh8pgkx4Vjs7T/sWnq+XSotJYXV+9lze4iLIbCbWqGp8Zx9/T+jAzS7SvaR15ZLX/+IpvVu4qwKHCbmmE9Yrn7vP4nNZisss7NK2uyeef7w4DGY2pS4yNYcFYfMou8q0mapsZjQlJsGLdO7cPsEcmnxZTKb7JL+PPqvWQWVmE1FKaGC4d1567z+rVIK17myZ+EXYcreeHzLDYeLMNmMXB5TMb1jufeGQMY1D36lMtYXOXgz6uz+XhHgfci5tH0Sozgpsm9+T6njA+25qNQeExNSpdw7jinH+fXd1HWON28umYfyzflYWpvpqmEKDu3Tu3DJaNS2uTHrrVm5bZ8Xv1yH0WVzoZANGdUCnec24/osI4zaWN/cTXPf76XtXuPNBzLM1JjuXf6AEa0UcCodXlY+OW+hguUqaFLpI0fT+5NSbWDf32bi9PtwWVqTBOsFoXFUETaLFw3MY3vD5Ty372lDYPSFDCuTxeeu2oEEXYrWmuWb8pj0df7Ka12YmrvRdAwwG4xUEpx2Zge3D6tL5H2tj82uw5X8vznWWxqdD6d2Seee6YHPp9qnG5Kq13EhFuJjZBlek8HtU4PJdVOosOtxJ3CMXO6TYqrHNitxjEB0OUxKap0YLMYdI22nxbB/XilNU5qHB4So+0t2islQb6Jvj9Yxp2vb/Y5XzPcZvDy9aNPqTVRVOng2r98S1mtE1+DKQ0Fx49jCbcZLJjSm2vH9+LGxd+RU1KD06NP2GbuqB78YuagZpetqV74PIs3vj10wndksyh6xIXzj5vP7BCBfk9BFT9Z4s0ydfyvPMxq8McrhnPWgNbNEV/n8nDTko3sK67Bedwo26Pdj0HGLfkVE25l1X2TeObjvazcnh9wjrHdokhLiOS1n4xt00C/8UApdy/b4vd8euX60W12syVEKPMX5Nu/D68DMbXmF29t93uxrHOZPPjW9maPAgV48qPdlNX4DvDeMvj+3EVfHeDZTzPJKa09IcAf3eadzXlsOVTe7LI1xe78St7YcGKAB3B5NHnldbyyJtvHO9ver5Zvp8ZHgAfvtJZfLd9+QuBtaf9Yd5D9PgI8UN8T0/x9V9a5eeDN7XwUJMADOD2anNJaFn99oPkfeJI8pubBt4OcT29vJ9QaGkJ0JBLkG1m3t+SY3Mu+VDncfLu/tFn7L61xsjarBB8xOiiPqXlv8+GAQcnhMvnnuoPNKltT/fObnIDzOV0ezYpNh3G10pzPpso4XMHh8rqA25gavthV1GplMLVm2YZDTZon21zrs0ubnCXM6TZ587tc3GbbHJtvskuClq2izs13B8rapDxCdEYS5BvJLKzC4Q4c5F0ek8yCqmbtf39xDXZr854huU0ddD6qBnbmVzZr/02VkVcRtPWp0RRVBsqB1foyC6oCT8UCapwedhW03vdV7XBT7XS32v7Be8xP5p7R5TGbnVnsZGUWVOEIctPs8Zjsaeb5JIQIToJ8I3aLgSXIalmGUs0eRR5mNTiVnsmmvNXeyqOom1J309TtPpr76ICzQAxF0CQVp8JqMYImd2lrHlO3+m/kKFv9KmGBKKVa9RgI0dnJ2dXIlIGJQVt/WsOUZg7WGpQc3ezlBCNsFroFWWXJblFcOKx1E4XMPKM74UEuyslx4XRt5xWhJvZLwB3kuYjdYjBtULdWK0OEzcKQVs7OFm5VJ5VApG/XyDYbqT5lQCIEudHSGib3959/XwhxaiTIN9IrIZIxvbr4vWjaLYoJfePp0SWiWfu3GgbzJ/cm3HbyX7vNqrj//AEB32u1GFw+NrVZZWuquaN7YAkQVMJtBj+d1q/dp7bER9k5Pz3JbyvRaij6J0UxtJWD8O3T+jXreJ/M/q1NvHEMtxncPu3UlrM8Gb0TIxmdFhfwfJrYr/nnkxAiOAnyx3nq8jPo1y2KyOMyNEXaLQxIiub3lw07pf3Pn9yLC9K7E24zjsngFG41CLN6HwU0/nuEzSA23MrC60cz84xkbp7ahzCrgeW490baLbx4zchWS414VFyEjZeuG0VUmOWYFr2lvuv7+om9uPCMwCks28qvLxrM8NRYImwnHsvU+AheuLr1V1k7a0Aid5zTjzCrcUwwDrMa2CwKm+G/Je59fOQ/gF86OoUbJ/fm+atHEmGz+L2hOXpsFkzpw7lDWq/nwpc/zDuDfl2jiPRxDAZ2j+Z3l57a+SSECEzmyfvgNk2+zjzCv749RFGlg6TYcK4al8qUgV2b3d3emNaabbkVvL4+h6yiaqLsFi4ZmcKs4d05cKSW19fnsCu/knCbwY+GJ3PRiBRiwn+Y25xdVM3r63PYeqgcq8Xg/PRuzB3dg/jItusiL6918d7mw6zaUYDTbXJGj1iunZDGwBZIFtSSTK35JruENzYcIq+sjvgoG1eMTeXcId3adNzA/uJqlm04xPcHy7BYFDOGJnHZ6B5UOz288W0OG/aV4jE1UXYr1U43NovBlAGJXDmuJ8VVDv7w8R525VeB1vTvFsXPLxzI6F4/LN1ZWu1k+fd5fLazEKfLJCrcSo3DjaEUI3rGce2ENPq10gIYwbhNk6/2HOFf3x2i+Oj5dGZPpgxIbJHzSQghyXCEEEKIkCXJcIQQQohORoK8EEIIEaIkyAshhBAhSoK8EEIIEaIkyAshhBAhSoK8EEIIEaIkyAshhBAhql2DvFJqplJqt1IqSyn1Sx+vX6eU2lr/31qlVOunKBNCCCFCRLsFeaWUBfg/YBaQDlyjlEo/brN9wDSt9QjgcWBh25ZSCCGEOH21Z0t+PJCltc7WWjuBN4A5jTfQWq/VWpfW//MboGcbl1EIIYQ4bbVnkE8Fchr9+1D93/xZAHzUqiUSQgghQog1+CatxtfKFD4T6SulzsUb5Kf4ef1W4FaAXr16tVT5hBBCiNNae7bkDwFpjf7dE8g7fiOl1AhgETBHa33E14601gu11uO01uO6dWvbpTSFEEKIjqo9g/y3wEClVF+llB24Gniv8QZKqV7AcuAGrfWediijEEIIcdpqt+56rbVbKXUX8DFgARZrrXcopW6vf/0V4H+AROAlpRSA29dSekIIIYQ4kawn34k53Saf7Szk68xiTA2T+idwwbDuRNgs7V20JssqrOLdzYc5XF5HpN2CAqqdHpJjw5g7ugcDkqJPep+FFQ7e2ZxHZkEVsRFWZo9IYXRaHPU3mqKDKKxwsOL7XLIKq/0ep9JqJ+9sziPjcCVRdisXDktiQr8EjFY+li6Pyec7C/ky8wimqZnQL4GZw7oTYT99zq3G9hdXs2JzHrmldXSPDWPOqB4M6n7y55ZoPf7Wk5cg30ltz63grtc34zY1NU4PABE2A0Mp/nTVCMb1iW/nEgbm8pg8vGIHX2ceweUx8Rz3MzYAm9VgyoBEfn/ZMGyWpj2ZWvjlPhb/9wBocHpMFBBuM+jTNYr/u3YUXSJtLV4XcfIWfrmPxV8fADROjz7mOL103SjiImz8+7tDPPNpFgpwuE0AIu0WukbbWXjDGJJiw1qlbDsPV3Ln0s04PWajc8uCUvDMFcOZ0C+hVT63NXhMzWMf7OSTHYW4TROPCYYCu8VgYr8Enrr8DOxWSZzaEfgL8nJ0OqH88jpu/+f3VNS5Gy5CALUuk2qnh3vf2ML+4up2LGFwT3y4i68yj1DnPjHAA5h4L+xfZx3hiQ93NWmfb2/KZcnaAzjdJk6PNyhovN9LZkEVdyz9nlC7KT4dvbXxkPc4eUyc9Qf/6HHKKqzijqWb+WJXIX/6NAun22wI8AA1Tg+5pXUseG0jLo/p5xOar6jSwW3/2ERZreu4c8tDjdPD/W9uZW9hVYt/bmt59tNMPs0oxOH2BngAU0Od22RddgmPvpfRvgUUQUmQ74SWrs8JeIFzujV/W3ugDUt0cooqHXy8veCYi7c/DrfJx9sLKap0BNzOY2pe/iKbOpfvfbpNzcGSWjYdLGtOkUUL8Zial/+zz+9xcnk0+4/U8IePM6nz8/vwaE1pjYs1u4tbvHxvbMgJ+Lt0uk0Wfb2/xT+3NVTUuli+Kc/vd+1wm6zeXUx+eV0bl0ycDAnyndDKbfm4fDV/63m05tOMwjYs0cn5YnfRST0fV8r7nkB2Hq70GxSOqnV6eH9LfpM/V7S8jMMVQW/uap2eoDd1NU4PKzafMGP3lH2wNfC5ZWpYvavotOgR+irzCBYjyHmmNZ/vCnxuifYlQb4TqnV5gm7jcJkd9kJUVefGfRJdrW6PSVWdO/A+HW6CXs+Ashpnkz9XtLyquuDHCUD5zLV1rIpaVwuU6Fg1TTi33B6Np4OeW41VOdy4zcDldHp00HNLtC8J8p1Qcmx40G0So+0ddjR5WkIkYScxAyDMZqFnfETAbVK7hAdsgQHYLIr+3aKa/Lmi5fWMjwh6nKwGaN/JMxsYCvq1wrFMiQt+bsVF2rAaHf/S2zM+AmuQO6pIe/BzS7Svjv9LEy3uuglphNv8H/owq8G1EzruWkDTBnVtQjutEa0Jsxos35TL6l1F1PlobaUlRDIgKfBF31CKy8cGWl5BtBSPqVm79wjLN+Xy+c7Cht6ntITIoDdahmEwrnd8wBa/3Wpw9Zlp/jeol1VYxTub83h/i3eaZjA3TOxFRIBzy241uObMjntuNTaxXwL2ILNStIbpQ71ZRj2m5pvsEpZvyuWzjEJqnM1r4Wut2ZZbzorv81i5LZ/S6h96z3YeruSd7/P4YOvhoI9khFd75q4X7eTikSm8vSmP7OIqnO5jWzw2iyI5Nowrx3XcC5HdavDr2YN59P1dQZ/PWhRoFL9+JwOP1liUwtSaW87uw/xJvY/prXhk9hBuWrLJ5+OMcJvBNWem0aOLtFpa22cZBfx+5R6cHhOz/ph5tOams3pz85Q+PHLREH4S4DhdOz6NOaNSuH7Rd1Q53Ce06cNtBhekd2doSozfMuSU1PDg2zvYV1yNUt7uf4+pGd83nifmphMb4Xsq5cwzuvPv73LJLKw64bdpsyiSYuxcMyH4zUVHYDEUj14ylAff3u7zPAu3Gvxy1iDCbRbW7C7isQ+852PDMTM1N0zqxe3T+ja5VzDjcAW/ensHxVVONBpDKdwek0n9EzhwpIb8CgcKUPV/P3tQVx69ZCiRdgll/sg8+U6qxunmD6v28PGOQmwW7wnodJtMG9yNX88eTEx4x58P/p/dRTz9cSZlNS40Gkf9KOAwq4FSCrsVapymz+7dcJvB/Em9uG1av2P+vju/ksc+2EV2UTU2i0Jr78Xu1rP7cs34nh32EUaoWL2rkIdXZPgOKvU3WndP78+uw5U8/mHg43TwSA2/fX8nOw5XYreohmB/w8Re3Dy1j9+EOEWVDq58dT2VdW6OfyRtsyjS4iNYesuZhFl9PzKqdXl4etUePtpegNXiHR3gdGumDkzk1xcNIc7PDUJHtW7vEZ78aA9HqhxYDIXHhJhwK//vwoFMH5rEV5nF/OItPzcCNoPLx6TywAUDg37O3sIqbly8sUljho6yWxWDkmJYfNOY0+IRSGuSZDjCp8o6FzvyKjG1ZmhKDPGR9vYu0knRWrMrv4ojVQ4So+2g4Ui1k7hIG/cs20J5rf8uQ7vFYNV9Z/lMcHPgSA05JTVEhVkZ3jO2019A2oKpNRf86WtKqv0PiLNbDD64ZxJdo72JbI4ep+hwK2ek+j5OeWW17CuuIdxmMDw1Lmjylqc+2s3bm/Lw+Bl0FmEz+MXMQcwZ1SPgfirr3GTkVeDRmqHJMcRHnV7nVmNaazILqiisdJAQZWdoSgxKKbTWzHp+LYUBus7tFoN375pI9yBjge56fTPr9pYEGU1xogibweNzh3HekM69OJm/IC99HJ1cTLiNiadRBq7jKaXqu12P7Xpdt/cI7iADtJSCVTsKuNrHM9LeiZH0ToxsyaKKIDYdKKPWGbgVZ2Kycls+N07qDTTtOPXoEtHkxyym1ry35bDfAA/epDuvr88JGuRjwq2nVXa7QJRSDEqOYVDysefZ1twKqhzBnr1r3t9ymJun9vW7RXmti+/2l550gIcfjkdnD/L+SPNEhKSCCgdmkF4qh9uURB4dSEGFI+gYC7cHDpXWtloZ6lyeoKP3AYqrZColQEF5XdBBsE6P5lBp4PPsSJUTaxNTT/tyqLSm2e8NdRLkRUiKj7QFXYTEblEknsZdqKHGY+oTnoH70przssOslibNw/c38K6zacojCKuh6BYTeLu4CFvQnrdAmnJj1llJkBchaWL/hCZ0/SkuGJbUBqURTdHUhlxrLohiMRQzhiYFDPThNoMrZColAKN7xWG1BL4rshiKi0akBNwmMdrOkOTmr2on42H9kyAvQlKY1cLt0/r6zQcQbjX40fDuQQcDibZjtRjYgwQM8D7rbk23nt3X78h5Q0F0mJVLRgUOWp2F1TC4d3p/v+dZmNXg7IFdmzS+5b7zBwTM3xFIlEyh80uCvAhZ101IY8GUPoRZjYaLh92isFsMZg1P5qHZg9u5hKKxUWlxEOQJb6Tdwvi+rTuYrXdiJK/eMJqEKDuR9eu/K7yjuHsnRrLkprFEh0lQOWru6FTuOrc/YVajIRGQrf48O29IN564NL1J+xmV1oU/XH4G0WGWhu+9Cfd8WA3FWQMSm13+UCdT6ETIq6h18UlGIXlltSRE2bkgvXurrSUuTs09y7awfl+Jz2esCugWE8aH90wOvnBKC/CYmv9mHWHroXJsFsXE/omMSI2VXAl+VDncfLKjgEOltXSJtDNjaLdmJY9yeUxW7yois6CKcJtBncvk9Q05flfDC7Ma/Pv2CZ0+va7MkxdCdHjltS7mL/6OwgrHMasC2i2KMJuFxfPH0D+p+c9uxenH1JqHV+zgyz3F1DYK9IbyzsH/9UVD+NHw5HYsYccgQV4IcVqorV8Gdtn6HI5UOYkKs3LJyGSuHp9GtxjpgemMtNas3lXEkrUH2VtUhdVQTBnQlfmTezE42X964s5EgrwQQggRovwFeRl4J4QQQoQoCfJCCCFEiJIgL4QQQoQoCfJCCCFEiJIgL4QQQoQoCfJCCCFEiJIgL4QQQoQoCfJCCCFEiJIgL4QQQoSokMt4p5QqAg60dzn86AoUt3ch2lBnqy90vjp3tvqC1LkzOB3r21tr3e34P4ZckO/IlFLf+Uo7GKo6W32h89W5s9UXpM6dQSjVV7rrhRBCiBAlQV4IIYQIURLk29bC9i5AG+ts9YXOV+fOVl+QOncGIVNfeSYvhBBChChpyQshhBAhSoJ8C1NKzVRK7VZKZSmlfulnm3OUUpuVUjuUUmvauowtLVidlVJxSqn3lVJb6ut8U3uUs6UopRYrpQqVUtv9vK6UUi/Ufx9blVJj2rqMLakJ9b2uvp5blVJrlVIj27qMLS1YnRttd6ZSyqOUmtdWZWstTalzKF27mvC7DonrlgT5FqSUsgD/B8wC0oFrlFLpx23TBXgJuERrPQy4oq3L2ZKaUmfgTiBDaz0SOAd4Rillb9OCtqwlwMwAr88CBtb/dyvwchuUqTUtIXB99wHTtNYjgMcJjeeZSwhc56O//f8FPm6LArWBJQSoc6hduwh+jEPiuiVBvmWNB7K01tlaayfwBjDnuG2uBZZrrQ8CaK0L27iMLa0pddZAjFJKAdFACeBu22K2HK31l3jr4M8c4O/a6xugi1IqpW1K1/KC1VdrvVZrXVr/z2+Anm1SsFbUhGMMcDfwNnC6n8NAk+ocUteuJtQ3JK5bEuRbViqQ0+jfh+r/1tggIF4p9R+l1Eal1I1tVrrW0ZQ6/xkYCuQB24B7tdZm2xSvXTTlOwlVC4CP2rsQrU0plQpcCrzS3mVpQ6F27QomJK5b1vYuQIhRPv52/PQFKzAWmA5EAOuUUt9orfe0duFaSVPqfCGwGTgP6A98qpT6Smtd0cplay9N+U5CjlLqXLxBfkp7l6UNPAc8qLX2eBt6nUKoXbuCCYnrlrTkW9YhIK3Rv3vivQs8fptVWutqrXUx8CVwOg9Uakqdb8Lbzae11ll4n+EOaaPytYemfCchRSk1AlgEzNFaH2nv8rSBccAbSqn9wDzgJaXU3HYtUesLtWtXMCFx3ZIg37K+BQYqpfrWD9C4GnjvuG3eBaYqpaxKqUhgArCzjcvZkppS54N47/5RSnUHBgPZbVrKtvUecGP9KPuJQLnW+nB7F6q1KKV6AcuBG0K4VXcMrXVfrXUfrXUf4C3gDq31O+1bqlYXateuYELiuiXd9S1Ia+1WSt2Fd7StBVistd6hlLq9/vVXtNY7lVKrgK2ACSzSWgecptORNaXOeEdcL1FKbcPblf1gfUvgtKSUWoZ3tG1XpdQh4DeADRrquxL4EZAF1OBtEZy2mlDf/wES8bZmAdyn++IeTahzyAlW51C7djXhGIfEdUsy3gkhhBAhSrrrhRBCiBAlQV4IIYQIURLkhRBCiBAlQV4IIYQIURLkhRBCiBAlQV4IIYQIURLkhRAtSin1B6WUVkplqk6U81WIjkjmyQshWoxSyop3cZ5qvPm+z9Fan9brjgtxOpOWvBCi2ZRSlvoUp0fNBpKBW/EuwfqTdimYEAKQIC+EaCKl1I/ru+FnKKUeUUrtBeqAKxtttgBvfu8vgKXAPKVUbDsUVwiBBHkhxMn7I96FiP4C3AvsBlBKJQOzgL9r73PAJUBk/bZCiHYgC9QIIU5WBDBaa11z3N/n412k6O8AWuutSqnNeFv3C9u0hEIIQFryQoiT97KPAA/e5+9faa33NfrbEmC8UmpYm5RMCHEMCfJCiJN1wprxSqmpwCDgM6XUgKP/AevxLku6oI3LKIRAgrwQ4uT5asUfDeKPAZmN/luH9zpzvVLK1jbFE0IcJc/khRCnRCkVA8wDPsX3s/cRwCPAJcDbbVg0ITo9CfJCiFN1NRAFvKK1Xn78i0qplcADeJ/ZS5AXog1Jd70Q4lQtwNuFv8rXi/WD9D4CLlRKpbZlwYTo7CTICyGaTSmVDkwAVvkZcX/U23in181vk4IJIQDJXS+EEEKELGnJCyGEECFKgrwQQggRoiTICyGEECFKgrwQQggRoiTICyGEECFKgrwQQggRoiTICyGEECFKgrwQQggRoiTICyGEECFKgrwQQggRov4/RVeMl/yjQA4AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 576x432 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "product_list=[accuracy_training[i]*accuracy_test[i] for i in range(len(accuracy_training))] \n", + "product_list_max_index = product_list.index(max(product_list)) \n", + "\n", + "if product_list_max_index+1==1:\n", + " print(\"The %.fst combination has the highest accuracy (training accuracy * test accuracy) with the following features :\\n\" % (product_list_max_index+1),all_pairs_combinations[product_list_max_index],'\\n')\n", + "elif product_list_max_index+1==2:\n", + " print(\"The %.fsd combination has the highest accuracy (training accuracy * test accuracy) with the following features :\\n\" % (product_list_max_index+1),all_pairs_combinations[product_list_max_index],'\\n')\n", + "else :\n", + " print(\"The %.fth combination has the highest accuracy (training accuracy * test accuracy) with the following features :\\n\" % (product_list_max_index+1),all_pairs_combinations[product_list_max_index],'\\n')\n", + "\n", + "train_feature_1=training_df[all_pairs_combinations[product_list_max_index][0]].values\n", + "train_feature_2=training_df[all_pairs_combinations[product_list_max_index][1]].values\n", + "\n", + "plt.scatter(train_feature_1,train_feature_2, c=train_labels ,s=80,cmap=plt.get_cmap(\"tab20c\"))\n", + "\n", + "primary_feature_pairs_train=np.array(list(zip(train_feature_1, train_feature_2)))\n", + "primary_feature_pairs_test=np.array(list(zip(test_df[all_pairs_combinations[product_list_max_index][0]].values, test_df[all_pairs_combinations[product_list_max_index][1]].values)))\n", + "\n", + "clf = svm.SVC(kernel=\"rbf\", C=10) # kernel{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or callable’\n", + "#clf = svm.NuSVC(gamma=\"auto\")\n", + "#clf = svm.LinearSVC()\n", + "clf.fit(primary_feature_pairs_train, train_labels)\n", + "pred_test_labels=clf.predict(primary_feature_pairs_test)\n", + "\n", + "# create grid for plotting the hyperplane and margin lines\n", + "xmin, xmax = plt.xlim()\n", + "ymin, ymax = plt.ylim()\n", + "X=np.linspace(xmin,xmax, 400) \n", + "Y=np.linspace(ymin,ymax, 400)\n", + "grid_x, grid_y = np.meshgrid(X,Y)\n", + "xy = np.vstack([grid_x.ravel(), grid_y.ravel()]).T\n", + "Z = clf.decision_function(xy).reshape(grid_x.shape)\n", + "\n", + "print('SVM highest accuracy for the training set: %f.' % clf.score(primary_feature_pairs_train,train_labels))\n", + "print('SVM highest accuracy for the test set: %f.' % metrics.accuracy_score(test_labels, pred_test_labels))\n", + "\n", + "plt.contour(grid_x, grid_y, Z, colors=\"k\", levels=[-1, 0, 1],alpha=0.8, linestyles=[\"--\", \"-\", \"--\"])\n", + "\n", + "# plot support vectors\n", + "plt.scatter(clf.support_vectors_[:, 0],clf.support_vectors_[:, 1],s=80,linewidth=1.5,facecolors=\"none\",edgecolors=\"k\")\n", + "\n", + "plt.title('Perovskite data set', size=20)\n", + "#plt.xlim(-2,2)\n", + "#plt.ylim(-2,2)\n", + "fig = plt.gcf()\n", + "fig.set_size_inches(8, 6)\n", + "plt.xlabel('%s' % all_pairs_combinations[product_list_max_index][0],fontsize=18)\n", + "plt.ylabel('%s' % all_pairs_combinations[product_list_max_index][1],fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to the accuracy of different pairs of features, one can easily realize that the selection of the feature is a key step not even for fitting the SVM model but also for other machine learning models. In fact, these features control the distribution of data points, which is why they are so important in classifying materials.\n", + "\n", + "The features are not limited to the primary features and one can even combine them by applying some mathematical operators such as $+, -, \\times, ^2, ^3, \\sqrt{}$, etc and produce new and more efficient features for classification of materials. A novel machine learning approach, SISSO, uses this method for the creation of the feature space, and in the mentioned [notebook](https://nomad-lab.eu/dev/analytics/staging/user/8aae636a-3dc1-4620-8cff-e109c16f27f8/notebooks/tutorials/perovskites_tolerance_factor.ipynb) you can find the best-selected feature by SISSO and decision tree classifier for the perovskite dataset. It should be noted that in this notebook the purpose is to find one unique feature in one-dimensional feature space as a tolerance factor for the classification of perovskite.\n", + "\n", + "Another essential factor to increase the accuracy of SVM is to increase the dimension of the feature space. However, caution should always be exercised in increasing the dimension becuase it might lead to overfitting, especially when the ratio of the degrees of freedom to the number of data points are close to one or higher. \n", + "\n", + "Now, we train the SVM by increasing the dimension and considering the triple combinations of primary features. In this way, we observe that the prediction accuracy for training and test sets increases drastically as we increase the degrees of freedom of the data points. The training and test accuracy would be more that 90 percent which shows that SVM is a powerful method for classification of materials. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Features</th>\n", + " <th>Training Accuracy</th>\n", + " <th>Test Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>(rA, rB, rX)</td>\n", + " <td>0.926247</td>\n", + " <td>0.886957</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>(rA, rB, nA)</td>\n", + " <td>0.813449</td>\n", + " <td>0.800000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>(rA, rB, nB)</td>\n", + " <td>0.800434</td>\n", + " <td>0.721739</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>(rA, rB, nX)</td>\n", + " <td>0.780911</td>\n", + " <td>0.695652</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>(rA, rB, rA_rB_ratio)</td>\n", + " <td>0.772234</td>\n", + " <td>0.852174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4055</th>\n", + " <td>(Z_X, EA_X, IP_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4056</th>\n", + " <td>(HOMO_X, LUMO_X, EA_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4057</th>\n", + " <td>(HOMO_X, LUMO_X, IP_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4058</th>\n", + " <td>(HOMO_X, EA_X, IP_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4059</th>\n", + " <td>(LUMO_X, EA_X, IP_X)</td>\n", + " <td>0.691974</td>\n", + " <td>0.652174</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>4060 rows × 3 columns</p>\n", + "</div>" + ], + "text/plain": [ + " Features Training Accuracy Test Accuracy\n", + "0 (rA, rB, rX) 0.926247 0.886957\n", + "1 (rA, rB, nA) 0.813449 0.800000\n", + "2 (rA, rB, nB) 0.800434 0.721739\n", + "3 (rA, rB, nX) 0.780911 0.695652\n", + "4 (rA, rB, rA_rB_ratio) 0.772234 0.852174\n", + "... ... ... ...\n", + "4055 (Z_X, EA_X, IP_X) 0.691974 0.652174\n", + "4056 (HOMO_X, LUMO_X, EA_X) 0.691974 0.652174\n", + "4057 (HOMO_X, LUMO_X, IP_X) 0.691974 0.652174\n", + "4058 (HOMO_X, EA_X, IP_X) 0.691974 0.652174\n", + "4059 (LUMO_X, EA_X, IP_X) 0.691974 0.652174\n", + "\n", + "[4060 rows x 3 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "n=3 #dimension \n", + "primary_features_list =training_df.columns.values[:]\n", + "primary_features_list =np.delete(primary_features_list, 0)\n", + "all_pairs_combinations=[comb for comb in combinations(primary_features_list, n)]\n", + "\n", + "train_labels=training_df[\"exp_label\"].values\n", + "test_labels=test_df[\"exp_label\"].values\n", + "accuracy_training=[]\n", + "accuracy_test=[]\n", + "\n", + "Matrix_train = [[training_df[all_pairs_combinations[j][i]].values for i in range(len(all_pairs_combinations[j]))] for j in range(len(all_pairs_combinations)) ] \n", + "Matrix_test = [[test_df[all_pairs_combinations[j][i]].values for i in range(len(all_pairs_combinations[j]))] for j in range(len(all_pairs_combinations)) ] \n", + "\n", + "for i in range(len(all_pairs_combinations)):\n", + " feature_train_combined=np.array(Matrix_train[i]).transpose()\n", + " feature_test_combined=np.array(Matrix_test[i]).transpose()\n", + " clf = svm.SVC(kernel=\"rbf\", C=10) # kernel{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or callable’\n", + " clf.fit(feature_train_combined, train_labels)\n", + " pred_test_labels=clf.predict(feature_test_combined)\n", + " accuracy_training.append(clf.score(feature_train_combined,train_labels))\n", + " accuracy_test.append(metrics.accuracy_score(test_labels, pred_test_labels)) \n", + " \n", + "features_and_accuracy_list=[[all_pairs_combinations[i],accuracy_training[i],accuracy_test[i]] for i in range(len(accuracy_training))]\n", + "combinations_df= pd.DataFrame(data=features_and_accuracy_list,columns=['Features','Training Accuracy','Test Accuracy'])\n", + "combinations_df.style.set_properties(subset=['Features'], **{'width': '300px'})\n", + "combinations_df " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The 548th combination has the highest accuracy with the following features :\n", + " ('rB', 'rA_rX_ratio', 'rP_X') \n", + "\n", + "SVM highest accuracy for the training set: 0.930586.\n", + "SVM highest accuracy for the test set: 0.939130.\n" + ] + }, + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"799.6767676767677\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib notebook\n", + "\n", + "product_list=[accuracy_training[i]*accuracy_test[i] for i in range(len(accuracy_training))] \n", + "product_list_max_index = product_list.index(max(product_list)) \n", + "\n", + "if product_list_max_index+1==1:\n", + " print(\"The %.fst combination has the highest accuracy with the following features :\\n\" % (product_list_max_index+1),all_pairs_combinations[product_list_max_index],'\\n')\n", + "elif product_list_max_index+1==2:\n", + " print(\"The %.fsd combination has the highest accuracy with the following features :\\n\" % (product_list_max_index+1),all_pairs_combinations[product_list_max_index],'\\n')\n", + "else :\n", + " print(\"The %.fth combination has the highest accuracy with the following features :\\n\" % (product_list_max_index+1),all_pairs_combinations[product_list_max_index],'\\n')\n", + "\n", + "feature_train_combined=np.array(Matrix_train[product_list_max_index]).transpose()\n", + "feature_test_combined=np.array(Matrix_test[product_list_max_index]).transpose()\n", + "\n", + "clf = svm.SVC(kernel=\"rbf\", C=10) # kernel{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or callable’\n", + "clf.fit(feature_train_combined, train_labels)\n", + "pred_test_labels=clf.predict(feature_test_combined)\n", + "\n", + "print('SVM highest accuracy for the training set: %f.' % clf.score(feature_train_combined,train_labels))\n", + "print('SVM highest accuracy for the test set: %f.' % metrics.accuracy_score(test_labels, pred_test_labels))\n", + "\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "ax.scatter(Matrix_train[product_list_max_index][0],Matrix_train[product_list_max_index][1],Matrix_train[product_list_max_index][2], c=train_labels ,s=80,cmap=plt.get_cmap(\"tab20c\"))\n", + "\n", + "plt.title('Perovskite data set', size=20)\n", + "\n", + "fig = plt.gcf()\n", + "fig.set_size_inches(8, 6)\n", + "\n", + "ax.set_xlabel(' %s' % all_pairs_combinations[product_list_max_index][0],fontsize=18)\n", + "ax.set_ylabel(' %s' % all_pairs_combinations[product_list_max_index][1],fontsize=18)\n", + "ax.set_zlabel(' %s' % all_pairs_combinations[product_list_max_index][2],fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null,