diff --git a/Dockerfile b/Dockerfile index ce145d9f04626095a7bdf52ca93be61364a9fc12..d5489c0845cb0f18d870eb53d9f6aa013b0a5bfc 100644 --- a/Dockerfile +++ b/Dockerfile @@ -29,7 +29,7 @@ USER ${NB_UID} WORKDIR "${HOME}" # https://jupyter-docker-stacks.readthedocs.io/en/latest/using/common.html -# ENV DOCKER_STACKS_JUPYTER_CMD="nbclassic" +ENV DOCKER_STACKS_JUPYTER_CMD="nbclassic" # ENV DOCKER_STACKS_JUPYTER_CMD="notebook" COPY --chown=${NB_UID}:${NB_GID} assets ./assets diff --git a/cbs_with_qrf.ipynb b/cbs_with_qrf.ipynb index e2622611b5a83a288c6834ae519dabb930b215f7..74fcd9e12da44c476c878c8d1747609171be7749 100644 --- a/cbs_with_qrf.ipynb +++ b/cbs_with_qrf.ipynb @@ -1454,41 +1454,19 @@ "# This code works to create a nested dataframe where the first key is the model we choose and the second\n", "# is the metric. This is useful is we are curious in multiple metrics. At the moment we only use the\n", "# symmetric absolute percentage error and it is a bit overkill.\n", - "model_df_aims = pd.DataFrame({})\n", - "for i in range(len(ape_qrf_aims)):\n", - " df = {'model': 'QRF', 'ape': ape_qrf_aims[i],\n", - "\n", - " }\n", - " model_df_aims = model_df_aims.append(df, ignore_index = True)\n", - "for i in range(len(ape_stoich_aims)):\n", - " df = {\n", - " 'model': 'Stoichiometric', 'ape': ape_stoich_aims[i],\n", - " }\n", - "\n", - " model_df_aims = model_df_aims.append(df, ignore_index = True)\n", - "for i in range(len(ape_combined_aims)):\n", - " df = {\n", - " 'model': 'SISSO', 'ape': ape_combined_aims[i],\n", - " }\n", - "\n", - " model_df_aims = model_df_aims.append(df, ignore_index = True)\n", - "\n", - "model_df_exciting = pd.DataFrame({})\n", - "for i in range(len(ape_qrf_exciting)):\n", - " df = {\n", - " 'model': 'QRF',\n", - " 'ape': ape_qrf_exciting[i],\n", - " }\n", - " model_df_exciting = model_df_exciting.append(df, ignore_index = True)\n", - "\n", - "for i in range(len(ape_stoich_exciting)):\n", - " df = {'model': 'Stoichiometric', 'ape': ape_stoich_exciting[i]\n", - " }\n", - " model_df_exciting = model_df_exciting.append(df, ignore_index = True)\n", - "for i in range(len(ape_combined_exciting)):\n", - " df = {'model': 'SISSO', 'ape': ape_combined_exciting[i]\n", - " }\n", - " model_df_exciting = model_df_exciting.append(df, ignore_index = True)" + "data = []\n", + "data.extend(['QRF', val] for val in ape_qrf_aims)\n", + "data.extend(['Stoichiometric', val] for val in ape_stoich_aims)\n", + "data.extend(['SISSO', val] for val in ape_combined_aims)\n", + "\n", + "model_df_aims = pd.DataFrame(data, columns=['model', 'ape'])\n", + "\n", + "data = []\n", + "data.extend(['QRF', val] for val in ape_qrf_exciting)\n", + "data.extend(['Stoichiometric', val] for val in ape_stoich_exciting)\n", + "data.extend(['SISSO', val] for val in ape_combined_exciting)\n", + "\n", + "model_df_exciting = pd.DataFrame(data, columns=['model', 'ape'])" ] }, { @@ -1667,10 +1645,10 @@ "ax1.set_ylim(0, 200)\n", "ax2.set_ylim(0, 200)\n", "ax2.set_xlabel('Model', fontsize=14)\n", - "adjust_box_widths(ax1, 0.5) #If only one set 0.5 to 0.25\n", + "# adjust_box_widths(ax1, 0.5) #If only one set 0.5 to 0.25\n", "ax1.grid(False)\n", "\n", - "adjust_box_widths(ax2, .5) #If only one set 0.5 to 0.25\n", + "# adjust_box_widths(ax2, .5) #If only one set 0.5 to 0.25\n", "ax2.grid(False)\n", "\n", "\n",