diff --git a/.ipynb_checkpoints/domain_of_applicability-checkpoint.ipynb b/.ipynb_checkpoints/domain_of_applicability-checkpoint.ipynb index 89441189d17e1bc753e2f9bb0d24fc7386a98db0..4d087e3d346b7f7bec05f207f7bf01194b30f6fa 100644 --- a/.ipynb_checkpoints/domain_of_applicability-checkpoint.ipynb +++ b/.ipynb_checkpoints/domain_of_applicability-checkpoint.ipynb @@ -1,117 +1,5 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<script>\n", - "\n", - "window.findCellIndicesByTag = function findCellIndicesByTag(tagName) {\n", - " return (Jupyter.notebook.get_cells()\n", - " .filter(\n", - " ({metadata: {tags}}) => tags && tags.includes(tagName)\n", - " )\n", - " .map((cell) => Jupyter.notebook.find_cell_index(cell))\n", - " );\n", - "};\n", - "\n", - "window.runCells = function runCells(tagName) {\n", - " var c = window.findCellIndicesByTag(tagName);\n", - " Jupyter.notebook.execute_cells(c);\n", - "};\n", - "\n", - "</script>\n" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%%HTML\n", - "<script>\n", - "\n", - "window.findCellIndicesByTag = function findCellIndicesByTag(tagName) {\n", - " return (Jupyter.notebook.get_cells()\n", - " .filter(\n", - " ({metadata: {tags}}) => tags && tags.includes(tagName)\n", - " )\n", - " .map((cell) => Jupyter.notebook.find_cell_index(cell))\n", - " );\n", - "};\n", - "\n", - "window.runCells = function runCells(tagName) {\n", - " var c = window.findCellIndicesByTag(tagName);\n", - " Jupyter.notebook.execute_cells(c);\n", - "};\n", - "\n", - "</script>" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<script>\n", - " code_show=true; \n", - " function code_toggle() {\n", - " if (code_show)\n", - " {\n", - " $('div.input').hide();\n", - " } \n", - " else \n", - " {\n", - " $('div.input').show();\n", - " }\n", - " code_show = !code_show\n", - " } \n", - " #$( document ).ready(code_toggle);\n", - " window.runCells(\"startup\");\n", - "</script>\n", - "<!-- The raw code for this notebook is by default hidden for easier reading. -->\n", - "To toggle on/off the raw code, click <a href=\"javascript:code_toggle()\">here</a>.\n" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%%HTML\n", - "<script>\n", - " code_show=true; \n", - " function code_toggle() {\n", - " if (code_show)\n", - " {\n", - " $('div.input').hide();\n", - " } \n", - " else \n", - " {\n", - " $('div.input').show();\n", - " }\n", - " code_show = !code_show\n", - " } \n", - " #$( document ).ready(code_toggle);\n", - " window.runCells(\"startup\");\n", - "</script>\n", - "<!-- The raw code for this notebook is by default hidden for easier reading. -->\n", - "To toggle on/off the raw code, click <a href=\"javascript:code_toggle()\">here</a>." - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -136,7 +24,7 @@ "<b> This notebook allows to reproduce results from the paper:</b>\n", "C. Sutton, M. Boley L.M. Ghiringhelli, M. Rupp, J. Vreeken, and M. Scheffler, Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 11, 4428 (2020) [<a href=\"https://th.fhi-berlin.mpg.de/site/uploads/Publications/s41467-020-17112-9.pdf\" target=\"_top\">PDF</a>]\n", "\n", - "<span class=\"nomad--last-updated\" data-version=\"v1.0.0\">[Last updated: January 25, 2021]</span>\n", + "<span class=\"nomad--last-updated\" data-version=\"v1.0.0\">[Last updated: January 27, 2021]</span>\n", "\n", " \n", "<div> \n", @@ -189,10 +77,25 @@ "That is, the $y$ values are almost determined by the third degree polynomial for low $x_2$ values but are almost completely random for high $x_2$ values. Discovering applicable domains reveals how different models cope differently with this setting even if they have a comparable average error. To show this, let us examine the average error obtained from three different kernelized regression models." ] }, + { + "cell_type": "markdown", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "## Code initialization" + ] + }, { "cell_type": "code", "execution_count": 1, "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.427984Z", + "start_time": "2021-01-27T02:15:24.047224Z" + }, + "hidden": true, + "init_cell": true, "tags": [ "startup" ] @@ -217,6 +120,12 @@ "cell_type": "code", "execution_count": 2, "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.432580Z", + "start_time": "2021-01-27T02:15:24.429503Z" + }, + "hidden": true, + "init_cell": true, "tags": [ "startup" ] @@ -233,17 +142,28 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## Data generation\n", "\n", - "First, the data for $n$ points is generated in the form of numpy arrays." + "First, the data for $n$ points is generated in the form of numpy arrays.\n", + "\n", + "Then, we use the sklearn library to fit our data with a linear, a gaussian (radial basis function = rbf) and a polynomial kernel. Our original data as well as the predicted values for each kernel are stored in the ``example_df`` data frame." ] }, { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.455791Z", + "start_time": "2021-01-27T02:15:24.434096Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "np.random.seed(7)\n", @@ -260,17 +180,17 @@ " y[i] = val + np.random.normal(0, math.exp(x2[i]/2), 1)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then, we use the sklearn library to fit our data with a linear, a gaussian (radial basis function = rbf) and a polynomial kernel. Our original data as well as the predicted values for each kernel are stored in the ``example_df`` data frame." - ] - }, { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.814338Z", + "start_time": "2021-01-27T02:15:24.457730Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [ { "data": { @@ -470,7 +390,13 @@ { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.828601Z", + "start_time": "2021-01-27T02:15:24.815629Z" + }, + "init_cell": true + }, "outputs": [], "source": [ "def prediction_mesh(X, Y, kernel):\n", @@ -489,42 +415,50 @@ { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.928314Z", + "start_time": "2021-01-27T02:15:24.829820Z" + }, + "init_cell": true + }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", "window.mpl = {};\n", "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", "\n", " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", + " var warnings = document.getElementById('mpl-warnings');\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", " }\n", " }\n", "\n", @@ -539,11 +473,11 @@ "\n", " this.image_mode = 'full';\n", "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", "\n", - " $(parent_element).append(this.root);\n", + " parent_element.appendChild(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", @@ -553,281 +487,325 @@ "\n", " this.waiting = false;\n", "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (mpl.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: mpl.ratio });\n", " }\n", + " fig.send_message('refresh', {});\n", + " };\n", "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", "\n", - " this.imageObj.onunload = function() {\n", + " this.imageObj.onunload = function () {\n", " fig.ws.close();\n", - " }\n", + " };\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", + "};\n", "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", "\n", - "}\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", "\n", - "mpl.figure.prototype._init_canvas = function() {\n", + "mpl.figure.prototype._init_canvas = function () {\n", " var fig = this;\n", "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", " }\n", "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", + " this.context = canvas.getContext('2d');\n", "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " var resizeObserver = new ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " } else {\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " canvas.setAttribute('width', width * mpl.ratio);\n", + " canvas.setAttribute('height', height * mpl.ratio);\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", " });\n", + " resizeObserver.observe(canvas_div);\n", "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", " }\n", "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", + " canvas_div.addEventListener('wheel', function (event) {\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", - " mouse_event_fn(event);\n", + " on_mouse_event_closure('scroll')(event);\n", " });\n", "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", "\n", " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", " return false;\n", " });\n", "\n", - " function set_focus () {\n", + " function set_focus() {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", + "mpl.figure.prototype._init_toolbar = function () {\n", " var fig = this;\n", "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", " }\n", "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", - " // put a spacer in here.\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", " continue;\n", " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", " }\n", "\n", - " var fmt_picker_span = $('<span/>');\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", " }\n", "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", + "mpl.figure.prototype.send_draw_message = function () {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", " }\n", - "}\n", - "\n", + "};\n", "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", - "}\n", - "\n", + "};\n", "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", @@ -842,78 +820,108 @@ " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / mpl.ratio,\n", + " fig.canvas.height / mpl.ratio\n", + " );\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", " fig.message.textContent = msg['message'];\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", " fig.image_mode = msg['mode'];\n", - "}\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", + " this.send_message('ack', {});\n", + "};\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", + " evt.data.type = 'image/png';\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", + " fig.imageObj.src\n", + " );\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", + " evt.data\n", + " );\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", @@ -926,9 +934,12 @@ " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", + " var callback = fig['handle_' + msg_type];\n", " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", " return;\n", " }\n", "\n", @@ -937,32 +948,40 @@ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", " }\n", " }\n", " };\n", - "}\n", + "};\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", + "mpl.findpos = function (e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", - " if (!e)\n", + " if (!e) {\n", " e = window.event;\n", - " if (e.target)\n", + " }\n", + " if (e.target) {\n", " targ = e.target;\n", - " else if (e.srcElement)\n", + " } else if (e.srcElement) {\n", " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", " targ = targ.parentNode;\n", + " }\n", "\n", - " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", "\n", - " return {\"x\": x, \"y\": y};\n", + " return { x: x, y: y };\n", "};\n", "\n", "/*\n", @@ -970,19 +989,19 @@ " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", "}\n", "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", "\n", - " if (name === 'button_press')\n", - " {\n", + " if (name === 'button_press') {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", @@ -990,9 +1009,13 @@ " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", @@ -1000,265 +1023,307 @@ " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", + "};\n", "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", " return;\n", - " else\n", + " } else {\n", " this._key = event.which;\n", + " }\n", " }\n", - " if (name == 'key_release')\n", + " if (name === 'key_release') {\n", " this._key = null;\n", + " }\n", "\n", " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", " return false;\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", + " this.send_message('toolbar_button', { name: name });\n", " }\n", "};\n", "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", - " ws.close = function() {\n", - " comm.close()\n", + " ws.close = function () {\n", + " comm.close();\n", " };\n", - " ws.send = function(m) {\n", + " ws.send = function (m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", + " comm.on_msg(function (msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", + " ws.onmessage(msg['content']['data']);\n", " });\n", " return ws;\n", - "}\n", + "};\n", "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", " }\n", "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", - " fig.parent_element = element.get(0);\n", + " fig.parent_element = element;\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", + " console.error('Failed to find cell for figure', id, fig);\n", " return;\n", " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", "};\n", "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / mpl.ratio;\n", + " fig.root.removeEventListener('remove', this._remove_fig_handler);\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", " fig.close_ws(fig, msg);\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", + " var width = this.canvas.width / mpl.ratio;\n", " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", + " this.send_message('ack', {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", + "mpl.figure.prototype._init_toolbar = function () {\n", " var fig = this;\n", "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", " }\n", "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", - " if (!name) { continue; };\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", " }\n", "\n", " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", "\n", " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", " });\n", - "}\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function () {\n", + " this.close_ws(this, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + " el.addEventListener('remove', this._remove_fig_handler);\n", + "};\n", "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", + " el.setAttribute('tabindex', 0);\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", + " } else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", + "};\n", "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", + " if (!manager) {\n", " manager = IPython.keyboard_manager;\n", + " }\n", "\n", " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", + " if (event.shiftKey && event.which === 13) {\n", " this.canvas_div.blur();\n", " // select the cell after this one\n", " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", " IPython.notebook.select(index + 1);\n", " }\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", " fig.ondownload(fig, null);\n", - "}\n", - "\n", + "};\n", "\n", - "mpl.find_output_cell = function(html_output) {\n", + "mpl.find_output_cell = function (html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", + " for (var i = 0; i < ncells; i++) {\n", " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", - " if (data['text/html'] == html_output) {\n", + " if (data['text/html'] === html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", - "}\n", + "};\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", "}\n" ], "text/plain": [ @@ -1271,7 +1336,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"639.8333333333334\">" + "<img src=\"\" width=\"639.8333333333334\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -1326,7 +1391,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## Setting the DA\n", "\n", @@ -1345,8 +1412,15 @@ { "cell_type": "code", "execution_count": 7, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.935741Z", + "start_time": "2021-01-27T02:15:24.929469Z" + }, + "hidden": true, + "init_cell": true + }, + "outputs": [], "source": [ "doa = {}\n", "doa['lin'] = (example_df['x1'] > -0.3) & (example_df['x1'] < 0.3)\n", @@ -1367,7 +1441,13 @@ { "cell_type": "code", "execution_count": 8, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.956573Z", + "start_time": "2021-01-27T02:15:24.937636Z" + }, + "init_cell": true + }, "outputs": [ { "data": { @@ -1462,7 +1542,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## Settings\n", "\n", @@ -1472,7 +1554,14 @@ { "cell_type": "code", "execution_count": 9, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.962371Z", + "start_time": "2021-01-27T02:15:24.958180Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "root_path_dir = \".\"\n", @@ -1491,7 +1580,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## Functions\n", "\n", @@ -1501,7 +1592,14 @@ { "cell_type": "code", "execution_count": 10, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.988206Z", + "start_time": "2021-01-27T02:15:24.963503Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def gen_sgd_inputs(target, model=None, random_state=None, end_label=\"_predE\", filename = 'data.csv', prop = \"Ef\"):\n", @@ -1608,7 +1706,14 @@ { "cell_type": "code", "execution_count": 11, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.050348Z", + "start_time": "2021-01-27T02:15:24.990204Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def get_all_values(rep, target, target_label, skip=None, end_label=\"_predE\", prop=\"Ef\", filename=\"data.csv\"):\n", @@ -1831,15 +1936,35 @@ "## DA Analysis" ] }, + { + "cell_type": "markdown", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "### Gamma value\n", + "\n", + "As a reminder, the impact function, which the SGD maximizes to find DA is given by: \n", + "$\\mathrm{impact}(\\sigma) = \\left( \\frac{s}{k} \\right)^\\gamma \\left( \\frac{1}{k} \\sum\\limits^k_{i=1} l_i(f) - \\frac{1}{s} \\sum\\limits_{i \\in I(\\sigma)} l_i(f) \\right)^{1-\\gamma}$ \n", + "where $\\gamma$ determines the weight between the coverage and the error reduction terms. This value is 0.5 by default and can be changed with the slider above and calling ``update_gamma()`` or directly by setting the value as a function parameter, i.e. ``update_gamma(0.4)``. This sets the corresponding value in the file ``neg_mean_shift_abs_norm_error.json``, which serves as a settings file for the SGD." + ] + }, { "cell_type": "code", "execution_count": 12, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.063230Z", + "start_time": "2021-01-27T02:15:25.051647Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "08a02c20c8f44a179a55268b32f171a6", + "model_id": "216ccaeca8c44683b32965a944e661cd", "version_major": 2, "version_minor": 0 }, @@ -1864,21 +1989,17 @@ "gamma_slider" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Gamma value\n", - "\n", - "As a reminder, the impact function, which the SGD maximizes to find DA is given by: \n", - "$\\mathrm{impact}(\\sigma) = \\left( \\frac{s}{k} \\right)^\\gamma \\left( \\frac{1}{k} \\sum\\limits^k_{i=1} l_i(f) - \\frac{1}{s} \\sum\\limits_{i \\in I(\\sigma)} l_i(f) \\right)^{1-\\gamma}$ \n", - "where $\\gamma$ determines the weight between the coverage and the error reduction terms. This value is 0.5 by default and can be changed with the slider above and calling ``update_gamma()`` or directly by setting the value as a function parameter, i.e. ``update_gamma(0.4)``. This sets the corresponding value in the file ``neg_mean_shift_abs_norm_error.json``, which serves as a settings file for the SGD." - ] - }, { "cell_type": "code", "execution_count": 13, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.068641Z", + "start_time": "2021-01-27T02:15:25.064693Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def update_gamma(g = None):\n", @@ -1904,7 +2025,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Feature selection\n", "\n", @@ -1914,7 +2037,14 @@ { "cell_type": "code", "execution_count": 14, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.075479Z", + "start_time": "2021-01-27T02:15:25.069642Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def list2str(List):\n", @@ -1951,7 +2081,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Removing old files\n", "\n", @@ -1961,7 +2093,14 @@ { "cell_type": "code", "execution_count": 15, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.082275Z", + "start_time": "2021-01-27T02:15:25.076688Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def rm_old_files(model):\n", @@ -1980,7 +2119,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Splitting data into folds\n", "\n", @@ -1990,7 +2131,14 @@ { "cell_type": "code", "execution_count": 16, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.086863Z", + "start_time": "2021-01-27T02:15:25.083508Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def split_data(model):\n", @@ -2006,7 +2154,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Running the analysis\n", "\n", @@ -2017,6 +2167,12 @@ "cell_type": "code", "execution_count": 17, "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.092167Z", + "start_time": "2021-01-27T02:15:25.087902Z" + }, + "hidden": true, + "init_cell": true, "scrolled": false }, "outputs": [], @@ -2036,7 +2192,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Summarizing data\n", "\n", @@ -2046,7 +2204,14 @@ { "cell_type": "code", "execution_count": 18, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.099832Z", + "start_time": "2021-01-27T02:15:25.094021Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def summarize_data():\n", @@ -2068,17 +2233,26 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Displaying data\n", "\n", - "``generate_table`` will compile the summarized data into a table while writing it into a csv file." + "``generate_table(data_summary, gamma)`` will compile the summarized data into a table while writing it into a csv file." ] }, { "cell_type": "code", "execution_count": 19, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.116050Z", + "start_time": "2021-01-27T02:15:25.101666Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def generate_table(data_summary, gamma):\n", @@ -2113,174 +2287,13 @@ }, { "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Calculating: mbtr split 1\n", - "Calculating: mbtr split 2\n", - "Calculating: mbtr split 3\n", - "Calculating: mbtr split 4\n", - "Calculating: mbtr split 5\n", - "Calculating: mbtr split 6\n", - "Calculating: soap split 1\n", - "Calculating: soap split 2\n", - "Calculating: soap split 3\n", - "Calculating: soap split 4\n", - "Calculating: soap split 5\n", - "Calculating: soap split 6\n", - "Calculating: ngram split 1\n", - "Calculating: ngram split 2\n", - "Calculating: ngram split 3\n", - "Calculating: ngram split 4\n", - "Calculating: ngram split 5\n", - "Calculating: ngram split 6\n", - "Calculating: atomic split 1\n", - "Calculating: atomic split 2\n", - "Calculating: atomic split 3\n", - "Calculating: atomic split 4\n", - "Calculating: atomic split 5\n", - "Calculating: atomic split 6\n" - ] - }, - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead tr th {\n", - " text-align: left;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr>\n", - " <th></th>\n", - " <th>Model</th>\n", - " <th colspan=\"3\" halign=\"left\">Global</th>\n", - " <th colspan=\"4\" halign=\"left\">DA validation</th>\n", - " <th colspan=\"4\" halign=\"left\">DA identification</th>\n", - " </tr>\n", - " <tr>\n", - " <th></th>\n", - " <th></th>\n", - " <th>MAE</th>\n", - " <th>95AE</th>\n", - " <th>R</th>\n", - " <th>cov</th>\n", - " <th>MAE</th>\n", - " <th>95AE</th>\n", - " <th>R</th>\n", - " <th>cov</th>\n", - " <th>MAE</th>\n", - " <th>95AE</th>\n", - " <th>R</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>mbtr</th>\n", - " <td>mbtr</td>\n", - " <td>14.22</td>\n", - " <td>54.10</td>\n", - " <td>0.83</td>\n", - " <td>0.43 (0.02)</td>\n", - " <td>7.57 (0.70)</td>\n", - " <td>20.85 (3.31)</td>\n", - " <td>0.89 (0.01)</td>\n", - " <td>0.45 (0.00)</td>\n", - " <td>7.66 (0.14)</td>\n", - " <td>20.91 (0.65)</td>\n", - " <td>0.88 (0.00)</td>\n", - " </tr>\n", - " <tr>\n", - " <th>soap</th>\n", - " <td>soap</td>\n", - " <td>14.06</td>\n", - " <td>51.02</td>\n", - " <td>0.84</td>\n", - " <td>0.78 (0.01)</td>\n", - " <td>12.26 (1.35)</td>\n", - " <td>34.41 (9.47)</td>\n", - " <td>0.85 (0.01)</td>\n", - " <td>0.76 (0.01)</td>\n", - " <td>11.80 (0.32)</td>\n", - " <td>37.93 (1.90)</td>\n", - " <td>0.85 (0.00)</td>\n", - " </tr>\n", - " <tr>\n", - " <th>ngram</th>\n", - " <td>ngram</td>\n", - " <td>14.67</td>\n", - " <td>51.10</td>\n", - " <td>0.83</td>\n", - " <td>0.54 (0.02)</td>\n", - " <td>9.29 (0.96)</td>\n", - " <td>28.42 (2.13)</td>\n", - " <td>0.87 (0.01)</td>\n", - " <td>0.54 (0.01)</td>\n", - " <td>10.45 (0.18)</td>\n", - " <td>37.75 (0.45)</td>\n", - " <td>0.86 (0.00)</td>\n", - " </tr>\n", - " <tr>\n", - " <th>atomic</th>\n", - " <td>atomic</td>\n", - " <td>65.52</td>\n", - " <td>154.49</td>\n", - " <td>0.24</td>\n", - " <td>0.85 (0.01)</td>\n", - " <td>62.45 (6.47)</td>\n", - " <td>144.37 (10.10)</td>\n", - " <td>0.25 (0.07)</td>\n", - " <td>0.85 (0.00)</td>\n", - " <td>62.91 (1.30)</td>\n", - " <td>155.19 (2.88)</td>\n", - " <td>0.26 (0.01)</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " Model Global DA validation \\\n", - " MAE 95AE R cov MAE \n", - "mbtr mbtr 14.22 54.10 0.83 0.43 (0.02) 7.57 (0.70) \n", - "soap soap 14.06 51.02 0.84 0.78 (0.01) 12.26 (1.35) \n", - "ngram ngram 14.67 51.10 0.83 0.54 (0.02) 9.29 (0.96) \n", - "atomic atomic 65.52 154.49 0.24 0.85 (0.01) 62.45 (6.47) \n", - "\n", - " DA identification \\\n", - " 95AE R cov MAE \n", - "mbtr 20.85 (3.31) 0.89 (0.01) 0.45 (0.00) 7.66 (0.14) \n", - "soap 34.41 (9.47) 0.85 (0.01) 0.76 (0.01) 11.80 (0.32) \n", - "ngram 28.42 (2.13) 0.87 (0.01) 0.54 (0.01) 10.45 (0.18) \n", - "atomic 144.37 (10.10) 0.25 (0.07) 0.85 (0.00) 62.91 (1.30) \n", - "\n", - " \n", - " 95AE R \n", - "mbtr 20.91 (0.65) 0.88 (0.00) \n", - "soap 37.93 (1.90) 0.85 (0.00) \n", - "ngram 37.75 (0.45) 0.86 (0.00) \n", - "atomic 155.19 (2.88) 0.26 (0.01) " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" + "execution_count": null, + "metadata": { + "ExecuteTime": { + "start_time": "2021-01-27T01:26:29.607Z" } - ], + }, + "outputs": [], "source": [ "gamma = 0.5\n", "update_gamma(gamma)\n", @@ -2330,806 +2343,14 @@ }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"639.8333333333334\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:06:01.992636Z", + "start_time": "2021-01-27T02:06:01.886944Z" } - ], + }, + "outputs": [], "source": [ "cov_error_data = {\n", " 'mbtr': {'x': [], 'y': [], 'x_err': [], 'y_err': []},\n", @@ -3172,6 +2393,7 @@ } ], "metadata": { + "celltoolbar": "Initialization Cell", "kernelspec": { "display_name": "Python 3", "language": "python", diff --git a/domain_of_applicability.ipynb b/domain_of_applicability.ipynb index 89441189d17e1bc753e2f9bb0d24fc7386a98db0..4d087e3d346b7f7bec05f207f7bf01194b30f6fa 100644 --- a/domain_of_applicability.ipynb +++ b/domain_of_applicability.ipynb @@ -1,117 +1,5 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<script>\n", - "\n", - "window.findCellIndicesByTag = function findCellIndicesByTag(tagName) {\n", - " return (Jupyter.notebook.get_cells()\n", - " .filter(\n", - " ({metadata: {tags}}) => tags && tags.includes(tagName)\n", - " )\n", - " .map((cell) => Jupyter.notebook.find_cell_index(cell))\n", - " );\n", - "};\n", - "\n", - "window.runCells = function runCells(tagName) {\n", - " var c = window.findCellIndicesByTag(tagName);\n", - " Jupyter.notebook.execute_cells(c);\n", - "};\n", - "\n", - "</script>\n" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%%HTML\n", - "<script>\n", - "\n", - "window.findCellIndicesByTag = function findCellIndicesByTag(tagName) {\n", - " return (Jupyter.notebook.get_cells()\n", - " .filter(\n", - " ({metadata: {tags}}) => tags && tags.includes(tagName)\n", - " )\n", - " .map((cell) => Jupyter.notebook.find_cell_index(cell))\n", - " );\n", - "};\n", - "\n", - "window.runCells = function runCells(tagName) {\n", - " var c = window.findCellIndicesByTag(tagName);\n", - " Jupyter.notebook.execute_cells(c);\n", - "};\n", - "\n", - "</script>" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<script>\n", - " code_show=true; \n", - " function code_toggle() {\n", - " if (code_show)\n", - " {\n", - " $('div.input').hide();\n", - " } \n", - " else \n", - " {\n", - " $('div.input').show();\n", - " }\n", - " code_show = !code_show\n", - " } \n", - " #$( document ).ready(code_toggle);\n", - " window.runCells(\"startup\");\n", - "</script>\n", - "<!-- The raw code for this notebook is by default hidden for easier reading. -->\n", - "To toggle on/off the raw code, click <a href=\"javascript:code_toggle()\">here</a>.\n" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%%HTML\n", - "<script>\n", - " code_show=true; \n", - " function code_toggle() {\n", - " if (code_show)\n", - " {\n", - " $('div.input').hide();\n", - " } \n", - " else \n", - " {\n", - " $('div.input').show();\n", - " }\n", - " code_show = !code_show\n", - " } \n", - " #$( document ).ready(code_toggle);\n", - " window.runCells(\"startup\");\n", - "</script>\n", - "<!-- The raw code for this notebook is by default hidden for easier reading. -->\n", - "To toggle on/off the raw code, click <a href=\"javascript:code_toggle()\">here</a>." - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -136,7 +24,7 @@ "<b> This notebook allows to reproduce results from the paper:</b>\n", "C. Sutton, M. Boley L.M. Ghiringhelli, M. Rupp, J. Vreeken, and M. Scheffler, Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 11, 4428 (2020) [<a href=\"https://th.fhi-berlin.mpg.de/site/uploads/Publications/s41467-020-17112-9.pdf\" target=\"_top\">PDF</a>]\n", "\n", - "<span class=\"nomad--last-updated\" data-version=\"v1.0.0\">[Last updated: January 25, 2021]</span>\n", + "<span class=\"nomad--last-updated\" data-version=\"v1.0.0\">[Last updated: January 27, 2021]</span>\n", "\n", " \n", "<div> \n", @@ -189,10 +77,25 @@ "That is, the $y$ values are almost determined by the third degree polynomial for low $x_2$ values but are almost completely random for high $x_2$ values. Discovering applicable domains reveals how different models cope differently with this setting even if they have a comparable average error. To show this, let us examine the average error obtained from three different kernelized regression models." ] }, + { + "cell_type": "markdown", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "## Code initialization" + ] + }, { "cell_type": "code", "execution_count": 1, "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.427984Z", + "start_time": "2021-01-27T02:15:24.047224Z" + }, + "hidden": true, + "init_cell": true, "tags": [ "startup" ] @@ -217,6 +120,12 @@ "cell_type": "code", "execution_count": 2, "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.432580Z", + "start_time": "2021-01-27T02:15:24.429503Z" + }, + "hidden": true, + "init_cell": true, "tags": [ "startup" ] @@ -233,17 +142,28 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## Data generation\n", "\n", - "First, the data for $n$ points is generated in the form of numpy arrays." + "First, the data for $n$ points is generated in the form of numpy arrays.\n", + "\n", + "Then, we use the sklearn library to fit our data with a linear, a gaussian (radial basis function = rbf) and a polynomial kernel. Our original data as well as the predicted values for each kernel are stored in the ``example_df`` data frame." ] }, { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.455791Z", + "start_time": "2021-01-27T02:15:24.434096Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "np.random.seed(7)\n", @@ -260,17 +180,17 @@ " y[i] = val + np.random.normal(0, math.exp(x2[i]/2), 1)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then, we use the sklearn library to fit our data with a linear, a gaussian (radial basis function = rbf) and a polynomial kernel. Our original data as well as the predicted values for each kernel are stored in the ``example_df`` data frame." - ] - }, { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.814338Z", + "start_time": "2021-01-27T02:15:24.457730Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [ { "data": { @@ -470,7 +390,13 @@ { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.828601Z", + "start_time": "2021-01-27T02:15:24.815629Z" + }, + "init_cell": true + }, "outputs": [], "source": [ "def prediction_mesh(X, Y, kernel):\n", @@ -489,42 +415,50 @@ { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.928314Z", + "start_time": "2021-01-27T02:15:24.829820Z" + }, + "init_cell": true + }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", "window.mpl = {};\n", "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", "\n", " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", + " var warnings = document.getElementById('mpl-warnings');\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", " }\n", " }\n", "\n", @@ -539,11 +473,11 @@ "\n", " this.image_mode = 'full';\n", "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", "\n", - " $(parent_element).append(this.root);\n", + " parent_element.appendChild(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", @@ -553,281 +487,325 @@ "\n", " this.waiting = false;\n", "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (mpl.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: mpl.ratio });\n", " }\n", + " fig.send_message('refresh', {});\n", + " };\n", "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", "\n", - " this.imageObj.onunload = function() {\n", + " this.imageObj.onunload = function () {\n", " fig.ws.close();\n", - " }\n", + " };\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", + "};\n", "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", "\n", - "}\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", "\n", - "mpl.figure.prototype._init_canvas = function() {\n", + "mpl.figure.prototype._init_canvas = function () {\n", " var fig = this;\n", "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", " }\n", "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", + " this.context = canvas.getContext('2d');\n", "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " var resizeObserver = new ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " } else {\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " canvas.setAttribute('width', width * mpl.ratio);\n", + " canvas.setAttribute('height', height * mpl.ratio);\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", " });\n", + " resizeObserver.observe(canvas_div);\n", "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", " }\n", "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", + " canvas_div.addEventListener('wheel', function (event) {\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", - " mouse_event_fn(event);\n", + " on_mouse_event_closure('scroll')(event);\n", " });\n", "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", "\n", " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", " return false;\n", " });\n", "\n", - " function set_focus () {\n", + " function set_focus() {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", + "mpl.figure.prototype._init_toolbar = function () {\n", " var fig = this;\n", "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", " }\n", "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", - " // put a spacer in here.\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", " continue;\n", " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", " }\n", "\n", - " var fmt_picker_span = $('<span/>');\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", " }\n", "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", + "mpl.figure.prototype.send_draw_message = function () {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", " }\n", - "}\n", - "\n", + "};\n", "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", - "}\n", - "\n", + "};\n", "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", @@ -842,78 +820,108 @@ " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / mpl.ratio,\n", + " fig.canvas.height / mpl.ratio\n", + " );\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", " fig.message.textContent = msg['message'];\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", " fig.image_mode = msg['mode'];\n", - "}\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", + " this.send_message('ack', {});\n", + "};\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", + " evt.data.type = 'image/png';\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", + " fig.imageObj.src\n", + " );\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", + " evt.data\n", + " );\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", @@ -926,9 +934,12 @@ " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", + " var callback = fig['handle_' + msg_type];\n", " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", " return;\n", " }\n", "\n", @@ -937,32 +948,40 @@ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", " }\n", " }\n", " };\n", - "}\n", + "};\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", + "mpl.findpos = function (e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", - " if (!e)\n", + " if (!e) {\n", " e = window.event;\n", - " if (e.target)\n", + " }\n", + " if (e.target) {\n", " targ = e.target;\n", - " else if (e.srcElement)\n", + " } else if (e.srcElement) {\n", " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", " targ = targ.parentNode;\n", + " }\n", "\n", - " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", "\n", - " return {\"x\": x, \"y\": y};\n", + " return { x: x, y: y };\n", "};\n", "\n", "/*\n", @@ -970,19 +989,19 @@ " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", "}\n", "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", "\n", - " if (name === 'button_press')\n", - " {\n", + " if (name === 'button_press') {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", @@ -990,9 +1009,13 @@ " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", @@ -1000,265 +1023,307 @@ " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", + "};\n", "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", " return;\n", - " else\n", + " } else {\n", " this._key = event.which;\n", + " }\n", " }\n", - " if (name == 'key_release')\n", + " if (name === 'key_release') {\n", " this._key = null;\n", + " }\n", "\n", " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", " return false;\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", + " this.send_message('toolbar_button', { name: name });\n", " }\n", "};\n", "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", - " ws.close = function() {\n", - " comm.close()\n", + " ws.close = function () {\n", + " comm.close();\n", " };\n", - " ws.send = function(m) {\n", + " ws.send = function (m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", + " comm.on_msg(function (msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", + " ws.onmessage(msg['content']['data']);\n", " });\n", " return ws;\n", - "}\n", + "};\n", "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", " }\n", "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", - " fig.parent_element = element.get(0);\n", + " fig.parent_element = element;\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", + " console.error('Failed to find cell for figure', id, fig);\n", " return;\n", " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", "};\n", "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / mpl.ratio;\n", + " fig.root.removeEventListener('remove', this._remove_fig_handler);\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", " fig.close_ws(fig, msg);\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", + " var width = this.canvas.width / mpl.ratio;\n", " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", + " this.send_message('ack', {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", + "mpl.figure.prototype._init_toolbar = function () {\n", " var fig = this;\n", "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", " }\n", "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", - " if (!name) { continue; };\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", " }\n", "\n", " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", "\n", " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", " });\n", - "}\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function () {\n", + " this.close_ws(this, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + " el.addEventListener('remove', this._remove_fig_handler);\n", + "};\n", "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", + " el.setAttribute('tabindex', 0);\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", + " } else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", + "};\n", "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", + " if (!manager) {\n", " manager = IPython.keyboard_manager;\n", + " }\n", "\n", " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", + " if (event.shiftKey && event.which === 13) {\n", " this.canvas_div.blur();\n", " // select the cell after this one\n", " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", " IPython.notebook.select(index + 1);\n", " }\n", - "}\n", + "};\n", "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", " fig.ondownload(fig, null);\n", - "}\n", - "\n", + "};\n", "\n", - "mpl.find_output_cell = function(html_output) {\n", + "mpl.find_output_cell = function (html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", + " for (var i = 0; i < ncells; i++) {\n", " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", - " if (data['text/html'] == html_output) {\n", + " if (data['text/html'] === html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", - "}\n", + "};\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", "}\n" ], "text/plain": [ @@ -1271,7 +1336,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"639.8333333333334\">" + "<img src=\"\" width=\"639.8333333333334\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -1326,7 +1391,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## Setting the DA\n", "\n", @@ -1345,8 +1412,15 @@ { "cell_type": "code", "execution_count": 7, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.935741Z", + "start_time": "2021-01-27T02:15:24.929469Z" + }, + "hidden": true, + "init_cell": true + }, + "outputs": [], "source": [ "doa = {}\n", "doa['lin'] = (example_df['x1'] > -0.3) & (example_df['x1'] < 0.3)\n", @@ -1367,7 +1441,13 @@ { "cell_type": "code", "execution_count": 8, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.956573Z", + "start_time": "2021-01-27T02:15:24.937636Z" + }, + "init_cell": true + }, "outputs": [ { "data": { @@ -1462,7 +1542,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## Settings\n", "\n", @@ -1472,7 +1554,14 @@ { "cell_type": "code", "execution_count": 9, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.962371Z", + "start_time": "2021-01-27T02:15:24.958180Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "root_path_dir = \".\"\n", @@ -1491,7 +1580,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## Functions\n", "\n", @@ -1501,7 +1592,14 @@ { "cell_type": "code", "execution_count": 10, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:24.988206Z", + "start_time": "2021-01-27T02:15:24.963503Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def gen_sgd_inputs(target, model=None, random_state=None, end_label=\"_predE\", filename = 'data.csv', prop = \"Ef\"):\n", @@ -1608,7 +1706,14 @@ { "cell_type": "code", "execution_count": 11, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.050348Z", + "start_time": "2021-01-27T02:15:24.990204Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def get_all_values(rep, target, target_label, skip=None, end_label=\"_predE\", prop=\"Ef\", filename=\"data.csv\"):\n", @@ -1831,15 +1936,35 @@ "## DA Analysis" ] }, + { + "cell_type": "markdown", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "### Gamma value\n", + "\n", + "As a reminder, the impact function, which the SGD maximizes to find DA is given by: \n", + "$\\mathrm{impact}(\\sigma) = \\left( \\frac{s}{k} \\right)^\\gamma \\left( \\frac{1}{k} \\sum\\limits^k_{i=1} l_i(f) - \\frac{1}{s} \\sum\\limits_{i \\in I(\\sigma)} l_i(f) \\right)^{1-\\gamma}$ \n", + "where $\\gamma$ determines the weight between the coverage and the error reduction terms. This value is 0.5 by default and can be changed with the slider above and calling ``update_gamma()`` or directly by setting the value as a function parameter, i.e. ``update_gamma(0.4)``. This sets the corresponding value in the file ``neg_mean_shift_abs_norm_error.json``, which serves as a settings file for the SGD." + ] + }, { "cell_type": "code", "execution_count": 12, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.063230Z", + "start_time": "2021-01-27T02:15:25.051647Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "08a02c20c8f44a179a55268b32f171a6", + "model_id": "216ccaeca8c44683b32965a944e661cd", "version_major": 2, "version_minor": 0 }, @@ -1864,21 +1989,17 @@ "gamma_slider" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Gamma value\n", - "\n", - "As a reminder, the impact function, which the SGD maximizes to find DA is given by: \n", - "$\\mathrm{impact}(\\sigma) = \\left( \\frac{s}{k} \\right)^\\gamma \\left( \\frac{1}{k} \\sum\\limits^k_{i=1} l_i(f) - \\frac{1}{s} \\sum\\limits_{i \\in I(\\sigma)} l_i(f) \\right)^{1-\\gamma}$ \n", - "where $\\gamma$ determines the weight between the coverage and the error reduction terms. This value is 0.5 by default and can be changed with the slider above and calling ``update_gamma()`` or directly by setting the value as a function parameter, i.e. ``update_gamma(0.4)``. This sets the corresponding value in the file ``neg_mean_shift_abs_norm_error.json``, which serves as a settings file for the SGD." - ] - }, { "cell_type": "code", "execution_count": 13, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.068641Z", + "start_time": "2021-01-27T02:15:25.064693Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def update_gamma(g = None):\n", @@ -1904,7 +2025,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Feature selection\n", "\n", @@ -1914,7 +2037,14 @@ { "cell_type": "code", "execution_count": 14, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.075479Z", + "start_time": "2021-01-27T02:15:25.069642Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def list2str(List):\n", @@ -1951,7 +2081,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Removing old files\n", "\n", @@ -1961,7 +2093,14 @@ { "cell_type": "code", "execution_count": 15, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.082275Z", + "start_time": "2021-01-27T02:15:25.076688Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def rm_old_files(model):\n", @@ -1980,7 +2119,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Splitting data into folds\n", "\n", @@ -1990,7 +2131,14 @@ { "cell_type": "code", "execution_count": 16, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.086863Z", + "start_time": "2021-01-27T02:15:25.083508Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def split_data(model):\n", @@ -2006,7 +2154,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Running the analysis\n", "\n", @@ -2017,6 +2167,12 @@ "cell_type": "code", "execution_count": 17, "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.092167Z", + "start_time": "2021-01-27T02:15:25.087902Z" + }, + "hidden": true, + "init_cell": true, "scrolled": false }, "outputs": [], @@ -2036,7 +2192,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Summarizing data\n", "\n", @@ -2046,7 +2204,14 @@ { "cell_type": "code", "execution_count": 18, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.099832Z", + "start_time": "2021-01-27T02:15:25.094021Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def summarize_data():\n", @@ -2068,17 +2233,26 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Displaying data\n", "\n", - "``generate_table`` will compile the summarized data into a table while writing it into a csv file." + "``generate_table(data_summary, gamma)`` will compile the summarized data into a table while writing it into a csv file." ] }, { "cell_type": "code", "execution_count": 19, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:15:25.116050Z", + "start_time": "2021-01-27T02:15:25.101666Z" + }, + "hidden": true, + "init_cell": true + }, "outputs": [], "source": [ "def generate_table(data_summary, gamma):\n", @@ -2113,174 +2287,13 @@ }, { "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Calculating: mbtr split 1\n", - "Calculating: mbtr split 2\n", - "Calculating: mbtr split 3\n", - "Calculating: mbtr split 4\n", - "Calculating: mbtr split 5\n", - "Calculating: mbtr split 6\n", - "Calculating: soap split 1\n", - "Calculating: soap split 2\n", - "Calculating: soap split 3\n", - "Calculating: soap split 4\n", - "Calculating: soap split 5\n", - "Calculating: soap split 6\n", - "Calculating: ngram split 1\n", - "Calculating: ngram split 2\n", - "Calculating: ngram split 3\n", - "Calculating: ngram split 4\n", - "Calculating: ngram split 5\n", - "Calculating: ngram split 6\n", - "Calculating: atomic split 1\n", - "Calculating: atomic split 2\n", - "Calculating: atomic split 3\n", - "Calculating: atomic split 4\n", - "Calculating: atomic split 5\n", - "Calculating: atomic split 6\n" - ] - }, - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead tr th {\n", - " text-align: left;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr>\n", - " <th></th>\n", - " <th>Model</th>\n", - " <th colspan=\"3\" halign=\"left\">Global</th>\n", - " <th colspan=\"4\" halign=\"left\">DA validation</th>\n", - " <th colspan=\"4\" halign=\"left\">DA identification</th>\n", - " </tr>\n", - " <tr>\n", - " <th></th>\n", - " <th></th>\n", - " <th>MAE</th>\n", - " <th>95AE</th>\n", - " <th>R</th>\n", - " <th>cov</th>\n", - " <th>MAE</th>\n", - " <th>95AE</th>\n", - " <th>R</th>\n", - " <th>cov</th>\n", - " <th>MAE</th>\n", - " <th>95AE</th>\n", - " <th>R</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>mbtr</th>\n", - " <td>mbtr</td>\n", - " <td>14.22</td>\n", - " <td>54.10</td>\n", - " <td>0.83</td>\n", - " <td>0.43 (0.02)</td>\n", - " <td>7.57 (0.70)</td>\n", - " <td>20.85 (3.31)</td>\n", - " <td>0.89 (0.01)</td>\n", - " <td>0.45 (0.00)</td>\n", - " <td>7.66 (0.14)</td>\n", - " <td>20.91 (0.65)</td>\n", - " <td>0.88 (0.00)</td>\n", - " </tr>\n", - " <tr>\n", - " <th>soap</th>\n", - " <td>soap</td>\n", - " <td>14.06</td>\n", - " <td>51.02</td>\n", - " <td>0.84</td>\n", - " <td>0.78 (0.01)</td>\n", - " <td>12.26 (1.35)</td>\n", - " <td>34.41 (9.47)</td>\n", - " <td>0.85 (0.01)</td>\n", - " <td>0.76 (0.01)</td>\n", - " <td>11.80 (0.32)</td>\n", - " <td>37.93 (1.90)</td>\n", - " <td>0.85 (0.00)</td>\n", - " </tr>\n", - " <tr>\n", - " <th>ngram</th>\n", - " <td>ngram</td>\n", - " <td>14.67</td>\n", - " <td>51.10</td>\n", - " <td>0.83</td>\n", - " <td>0.54 (0.02)</td>\n", - " <td>9.29 (0.96)</td>\n", - " <td>28.42 (2.13)</td>\n", - " <td>0.87 (0.01)</td>\n", - " <td>0.54 (0.01)</td>\n", - " <td>10.45 (0.18)</td>\n", - " <td>37.75 (0.45)</td>\n", - " <td>0.86 (0.00)</td>\n", - " </tr>\n", - " <tr>\n", - " <th>atomic</th>\n", - " <td>atomic</td>\n", - " <td>65.52</td>\n", - " <td>154.49</td>\n", - " <td>0.24</td>\n", - " <td>0.85 (0.01)</td>\n", - " <td>62.45 (6.47)</td>\n", - " <td>144.37 (10.10)</td>\n", - " <td>0.25 (0.07)</td>\n", - " <td>0.85 (0.00)</td>\n", - " <td>62.91 (1.30)</td>\n", - " <td>155.19 (2.88)</td>\n", - " <td>0.26 (0.01)</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " Model Global DA validation \\\n", - " MAE 95AE R cov MAE \n", - "mbtr mbtr 14.22 54.10 0.83 0.43 (0.02) 7.57 (0.70) \n", - "soap soap 14.06 51.02 0.84 0.78 (0.01) 12.26 (1.35) \n", - "ngram ngram 14.67 51.10 0.83 0.54 (0.02) 9.29 (0.96) \n", - "atomic atomic 65.52 154.49 0.24 0.85 (0.01) 62.45 (6.47) \n", - "\n", - " DA identification \\\n", - " 95AE R cov MAE \n", - "mbtr 20.85 (3.31) 0.89 (0.01) 0.45 (0.00) 7.66 (0.14) \n", - "soap 34.41 (9.47) 0.85 (0.01) 0.76 (0.01) 11.80 (0.32) \n", - "ngram 28.42 (2.13) 0.87 (0.01) 0.54 (0.01) 10.45 (0.18) \n", - "atomic 144.37 (10.10) 0.25 (0.07) 0.85 (0.00) 62.91 (1.30) \n", - "\n", - " \n", - " 95AE R \n", - "mbtr 20.91 (0.65) 0.88 (0.00) \n", - "soap 37.93 (1.90) 0.85 (0.00) \n", - "ngram 37.75 (0.45) 0.86 (0.00) \n", - "atomic 155.19 (2.88) 0.26 (0.01) " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" + "execution_count": null, + "metadata": { + "ExecuteTime": { + "start_time": "2021-01-27T01:26:29.607Z" } - ], + }, + "outputs": [], "source": [ "gamma = 0.5\n", "update_gamma(gamma)\n", @@ -2330,806 +2343,14 @@ }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"639.8333333333334\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-27T02:06:01.992636Z", + "start_time": "2021-01-27T02:06:01.886944Z" } - ], + }, + "outputs": [], "source": [ "cov_error_data = {\n", " 'mbtr': {'x': [], 'y': [], 'x_err': [], 'y_err': []},\n", @@ -3172,6 +2393,7 @@ } ], "metadata": { + "celltoolbar": "Initialization Cell", "kernelspec": { "display_name": "Python 3", "language": "python",