atomsGL.cpp 24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
# Copyright 2016-2018 The NOMAD Developers Group
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
 #
 #     http://www.apache.org/licenses/LICENSE-2.0
 #
 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an "AS IS" BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
*/


18
19
20
21
22
#include <math.h>

#include "eprintf.h"
#include "TessShaders.h"
#include "UnitCellShaders.h"
23
#include "markerShaders.h"
24
25
26
27
28
#include "atomsGL.h"
#include "atoms.hpp"
#include "ConfigFile.h"
#include "CompileGLShader.h"
#include "polyhedron.h"
29
#include "Grid.h"
30

31
32
33
34
35
36
37
38
int getAtomTimesteps() 
{
	if (fixedAtoms)
		return 1;
	else
		return TIMESTEPS;
}

39
40
41
GLenum atomTexture(GLuint t)
{
	GLenum e;
42
	int finalatoms=getTotalAtomsInTexture();
43
	//rgh: scale atoms here
44
	//in google cardboard, this is called again if the program is running, so leave original or atoms get progresivelly smaller!
45
46
	float *a=new float[finalatoms*4];
	for (int i = 0; i < atomsInPeriodicTable; i++) {
47
48
49
50
51
		a[i*4+0]=atomColours[i][0];
		a[i*4+1]=atomColours[i][1];
		a[i*4+2]=atomColours[i][2];
		a[i*4+3]=atomColours[i][3] * atomScaling;
	}
52
53
54
55
56
57
	for (int i=0;i<extraAtomNames.size();i++) {
		a[(i+atomsInPeriodicTable)*4+0]=extraAtomData[i][0];
		a[(i+atomsInPeriodicTable)*4+1]=extraAtomData[i][1];
		a[(i+atomsInPeriodicTable)*4+2]=extraAtomData[i][2];
		a[(i+atomsInPeriodicTable)*4+3]=extraAtomData[i][3]*atomScaling;
	}
58
59
60
61
62
	glBindTexture(GL_TEXTURE_2D, t); //atom texture
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
63
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, finalatoms, 1, 0, GL_RGBA, GL_FLOAT, a);
64
65
66
67
68

	glBindTexture( GL_TEXTURE_2D, 0 );
	if ((e = glGetError()) != GL_NO_ERROR) {
		eprintf( "opengl error %d, atomTexture\n", e);
	}
69
	delete [] a;
70
71
72
73
74
75
	return e;
}

//WARNING: This should be called after SetupAtoms
//This means that numAtoms now has the cummulative distribution!
//This should be called after the atom texture is prepared, and therefore has the atomscaling pre-multiplied
76
GLenum SetupAtomsNoTess (GLuint **AtomVAO /*[4]*/, GLuint **AtomVertBuffer/*[3]*/, GLuint **AtomIndexBuffer/*[2]*/)
77
78
	//atoms, cloned atoms
	//rgh: FIXME: add AtomVAO[2] for atom trajectories
79
80
81
82
83
{
	//eprintf ("SetupAtomsNoTess 1");
if (!numAtoms)
		return 0;

84
85
86
87
88
if (!solid) {
	eprintf ("SetupAtomsNoTess, error: no solid defined");
	return 0;
}

89
90
91
92
93
94
//eprintf ("SetupAtomsNoTess 2");
	//for now, render an icosahedron
	//http://prideout.net/blog/?p=48 //public domain code
	//xyz nxnynz u=atom type ; 7 floats
	int e;

95
	int totalatoms=numAtoms[getAtomTimesteps() -1];
96
97
	
//eprintf ("SetupAtomsNoTess 2");
98
	*AtomVAO = new GLuint[4]; //atoms, cloned atoms, unused (bonds use Tess atom positions), trajectories
99
	*AtomIndexBuffer= new GLuint[3];//atoms, cloned atoms, bonds
100
	*AtomVertBuffer = new GLuint[3];//atoms, cloned atoms, trajectories
101

102
	glGenVertexArrays(4, *AtomVAO);
103
	glGenBuffers(2, *AtomIndexBuffer);
104
	glGenBuffers(3, *AtomVertBuffer);
105
106
107
108
109
110
111
112
113
//eprintf ("SetupAtomsNoTess 3");
	glBindVertexArray((*AtomVAO)[0]);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, (*AtomIndexBuffer)[0]);
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[0]);
//eprintf ("SetupAtomsNoTess 4");
	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glEnableVertexAttribArray(2);
	glDisableVertexAttribArray(3);
114
115
	//eprintf ("SetupAtomsNoTess 5, totalatoms=%d, nVerts=%d", totalatoms, solid->nVerts);
	float *tmp = new float[solid->nVerts * 7 * totalatoms];
116
117
	//eprintf ("SetupAtomsNoTess 6");
#ifdef INDICESGL32		
118
	int *tmpi = new int[solid->nFaces*3 * totalatoms];
119
120
121
	//eprintf ("SetupAtomsNoTess 7");
	int *currenti=tmpi;
#else
122
	unsigned short *tmpi = new unsigned short[solid->nFaces*3 * totalatoms];
123
124
125
126
127
128
	//eprintf ("SetupAtomsNoTess 7B");
	unsigned short *currenti=tmpi;
#endif

	float *current=tmp;
	//eprintf ("Before For 1");
129
	for (int p=0;p<getAtomTimesteps() ;p++) {
130
131
		for (int a = 0; a < numAtoms[p]-(p==0?0:numAtoms[p-1]); a++) {
			const int atomNumber = static_cast<int>(atoms[p][4 * a + 3]);
132
			const float radius = atomRadius(atomNumber)*atomScaling;
133
			for (int i = 0; i < solid->nVerts; i++) { //verts
134
				for (int k = 0; k < 3; k++) {
135
					*current++ = solid->Verts[3 * i + k]* radius +atoms[p][4 * a + k]; //pos
136
137
				}
				for (int k = 0; k < 3; k++) {
138
					*current++ = solid->Verts[3 * i + k]; //normal
139
				}
140
				*current++ = static_cast<float>(atomNumber);
141
			} //i
142
143
			for (int i = 0; i < solid->nFaces * 3; i++)
				*currenti++ = solid->Faces[i] + (a+(p==0?0:numAtoms[p-1]))*solid->nVerts;
144
145
		} //a
	} //p
146
		glBufferData(GL_ARRAY_BUFFER, sizeof(float) *totalatoms* 7 * solid->nVerts, tmp,
147
148
149
150
151
152
153
154
155
156
			GL_STATIC_DRAW);
		if ((e = glGetError()) != GL_NO_ERROR)
			eprintf("opengl error %d, glBufferData, l %d\n", e, __LINE__);

		glBufferData(GL_ELEMENT_ARRAY_BUFFER, 
#ifdef INDICESGL32		
	sizeof(int)
#else
	sizeof(unsigned int)
#endif
157
		* totalatoms * 3 * solid->nFaces, tmpi, GL_STATIC_DRAW);
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174


	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 7*sizeof(float), (const void *)0);
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 7 * sizeof(float), (const void *)(3*sizeof(float)));
	glVertexAttribPointer(2, 1, GL_FLOAT, GL_FALSE, 7 * sizeof(float), (const void *)(6 * sizeof(float)));

	if (glGetError() != GL_NO_ERROR)
		eprintf("opengl error attrib pointer 0\n");

	//glBindVertexArray(0);
	//glDisableVertexAttribArray(0);
	delete[] tmp;
	delete[] tmpi;
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf("opengl error %d, end of SetupAtoms, l %d\n", e, __LINE__);

	//FIXME TODO: cloned atoms
175
	tmp = new float[solid->nVerts * 7 * numClonedAtoms];
176
177
178
	current=tmp;
	//eprintf ("SetupAtomsNoTess 6");
#ifdef INDICESGL32		
179
	tmpi = new int[solid->nFaces*3 * numClonedAtoms];
180
181
182
	//eprintf ("SetupAtomsNoTess 7");
	currenti=tmpi;
#else
183
	tmpi = new unsigned short[solid->nFaces*3 * numClonedAtoms];
184
185
186
187
188
189
190
	//eprintf ("SetupAtomsNoTess 7B");
	currenti=tmpi;
#endif
	//eprintf ("Before For 2");

	for (int a = 0; a < numClonedAtoms; a++) {
		const int atomNumber = static_cast<int>(clonedAtoms[0][4 * a + 3]);
191
		const float radius = atomRadius(atomNumber)*atomScaling;
192
		for (int i = 0; i < solid->nVerts; i++) { //verts
193
				for (int k = 0; k < 3; k++) {
194
					*current++ = solid->Verts[3 * i + k]* radius +clonedAtoms[0][4 * a + k]; //pos
195
196
				}
				for (int k = 0; k < 3; k++) {
197
					*current++ = solid->Verts[3 * i + k]; //normal
198
				}
199
				*current++ =  static_cast<float>(atomNumber);
200
		} //i
201
202
		for (int i = 0; i < solid->nFaces * 3; i++)
			*currenti++ = solid->Faces[i] + a*solid->nVerts;
203
204
205
206
207
208
209
210
211
212
213
214
215
216
	} //a
	
	//eprintf ("After For 2");


	glBindVertexArray((*AtomVAO)[1]);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, (*AtomIndexBuffer)[1]);
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[1]);

	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glEnableVertexAttribArray(2);
	glDisableVertexAttribArray(3);

217
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) *numClonedAtoms* 7 * solid->nVerts, tmp,
218
219
220
221
222
223
224
225
226
227
			GL_STATIC_DRAW);
		if ((e = glGetError()) != GL_NO_ERROR)
			eprintf("opengl error %d, glBufferData, l %d\n", e, __LINE__);
	//eprintf ("After bufferdata, array buffer");
		glBufferData(GL_ELEMENT_ARRAY_BUFFER, 
#ifdef INDICESGL32		
	sizeof(int)
#else
	sizeof(unsigned int)
#endif
228
		* numClonedAtoms * 3 * solid->nFaces, tmpi, GL_STATIC_DRAW);
229
230
231
232
233
234
235
236
237
238
	//eprintf ("After bufferdata, element array buffer");
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 7*sizeof(float), (const void *)0);
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 7 * sizeof(float), (const void *)(3*sizeof(float)));
	glVertexAttribPointer(2, 1, GL_FLOAT, GL_FALSE, 7 * sizeof(float), (const void *)(6 * sizeof(float)));

	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf("opengl error %d, glVertexAttribPointer, l %d\n", e, __LINE__);

	delete[] tmp;
	delete[] tmpi;
239

240
	glBindVertexArray(0);
241
242
243
244
	return e;
} //SetupAtomsNoTess


245
GLenum SetupAtoms(GLuint **AtomVAO /*[4]*/, GLuint **AtomVertBuffer /*[3]*/, GLuint *BondIndices)
246
247
{
	if (!numAtoms)
248
		return glGetError();
249
250
251
252
253
254
255
	//rgh FIXME: put this all in the same vao
	
	//http://prideout.net/blog/?p=48 //public domain code
	//xyz u=atom type ; 4 floats
	int e;

	int totalatoms=0;
256
	for (int i=0;i<getAtomTimesteps() ;i++) {
257
258
259
260
		totalatoms += numAtoms[i];
	}
	eprintf("SetupAtoms: totalatoms=%d", totalatoms);

261
262
	*AtomVAO = new GLuint[4]; //atoms, cloned atoms, bonds, trajectories
	*AtomVertBuffer = new GLuint[3]; //atoms, cloned atoms, trajectories
263

264
265
	glGenVertexArrays(4, *AtomVAO);
	glGenBuffers(3, *AtomVertBuffer);
266
	glGenBuffers(1, BondIndices);
267
268
269
270
271
272
273
274

	glBindVertexArray((*AtomVAO)[0]);
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[0]);

	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glDisableVertexAttribArray(2);
	glDisableVertexAttribArray(3);
275
276
277
278

	e=glGetError();
	if (e!=GL_NO_ERROR)
		eprintf ("gl error %d, %s %d", e, __FILE__, __LINE__);
279
280
	float *tmp = new float[4 * totalatoms];
	float *current=tmp;
281
282
	
	const int atomlimit=30;
283
	const float bondscaling=0.7f;
284

285
286
	numBonds=new int[getAtomTimesteps() ];
	for (int p=0;p<getAtomTimesteps() ;p++) {
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
			for (int a = 0; a < numAtoms[p]; a++) {
				for (int k = 0; k < 4; k++) {
					*current++ = atoms[p][4 * a + k];
				}
			} //a

		if (numAtoms[0]<atomlimit) {
		//eprintf ("searching bonds basic");
		//bonds FIXME quadractic complexity	
				for (int a1=0; a1 < numAtoms[p]; a1++) {
					for (int a2=a1+1; a2 < numAtoms[p]; a2++) {
						float d=0, r;
						for (int k=0;k<3;k++) {
							float dif=atoms[p][4 * a1 + k]-atoms[p][4 * a2 + k];
							d+=dif*dif;
						}
						r=atomRadius(static_cast<int>(atoms[p][4 * a1 + 3]))+
							atomRadius(static_cast<int>(atoms[p][4 * a2 + 3]));
306
						if (d*bondscaling<r*r) {// bond
307
308
309
310
311
312
313
314
315
316
317
							bonds.push_back(a1+(p==0?0:numAtoms[p-1]));
							bonds.push_back(a2+(p==0?0:numAtoms[p-1]));
						}
					}
				}
		} else { //more than 30 atoms, try grid optimization
		//eprintf ("searching bonds grid");

			float m[3];
			float M[3];
			for (int k=0; k<3;k++) {
318
				m[k]=M[k]=atoms[p][k];
319
			}
320
321
			for (int a = 1; a < numAtoms[p]; a++) {
				for (int k=0; k<3;k++) {
322
323
324
325
					if (m[k]>atoms[p][4*a+k])
						m[k]=atoms[p][4*a+k];
					if (M[k]<atoms[p][4*a+k])
						M[k]=atoms[p][4*a+k];
326
327
				}
			}
328
			grid g(m, M, pow(numAtoms[p], 1.0f/3.0f), bondscaling);
329
			for (int a = 1; a < numAtoms[p]; a++) 
330
				g.add(atoms[p]+4*a);
331
			for (int a = 0; a < numAtoms[p]; a++) {
332
				std::vector<float*> found=g.find(atoms[p]+4*a);
333
334
335
336
				for (int b=0;b<found.size();b++) {
					//if (found[b] < tmp+4*a) // already got this bound
					//	continue;
					bonds.push_back(a+(p==0?0:numAtoms[p-1]));
337
					bonds.push_back(((found[b]-atoms[p])/4)+(p==0?0:numAtoms[p-1]));
338
339
340
341
				}
			}
		}
		numBonds[p]=bonds.size();
342
343
344
		if (p!=0)
			numAtoms[p]+=numAtoms[p-1];
	} //p
345

346
347
348
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(0));
	glVertexAttribPointer(1, 1, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(3 * sizeof(float)));
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * totalatoms * 4 , tmp,
349
350
351
		GL_STATIC_DRAW);
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, glBufferData, l %d\n", e, __LINE__);
352

353
	glBindVertexArray(0);
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, end of SetupAtoms, l %d\n", e, __LINE__);

	if (showTrajectories) {
			//fill the restart buffer
		//use abc for measuring
		float max=0;
		if (has_abc) {
			for (int i=0;i<3;i++)
				for (int j=0;j<3;j++)
				max+=abc[i][j];
			max /=9*2;
		}

		for (unsigned int t=0;t<atomtrajectories.size();t++) {
			atomtrajectoryrestarts.push_back(std::vector<int>());
			atomtrajectoryrestarts[t].push_back(0);
372
			for (int p=1;p<getAtomTimesteps() ;p++) {
373
				int a=atomtrajectories[t];
374
375
376
377
378
				if (has_abc)
					if (fabs(atoms[p][a*4+0]-atoms[p-1][a*4+0])+
						fabs(atoms[p][a*4+1]-atoms[p-1][a*4+1])+
						fabs(atoms[p][a*4+2]-atoms[p-1][a*4+2])>max)
							atomtrajectoryrestarts[t].push_back(p);
379
			}
380
			atomtrajectoryrestarts[t].push_back(getAtomTimesteps() );
381
		}
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
	//need to setup a specific buffer because of GL_MAX_VERTEX_ATTRIB_STRIDE
	//only need xyz, not atom size
	//rgh FIXME: If we use index buffer instead, GPU storage is 1/3 of this
		float *traj = new float[atomtrajectories.size()*TIMESTEPS*3];
		for (unsigned int t = 0; t < atomtrajectories.size(); t++) {
			for (int i=0;i<TIMESTEPS;i++)
				for (int j = 0; j < 3; j++) {
					traj[t*TIMESTEPS * 3 + i * 3 + j] = tmp[i*numAtoms[0]*4+
																+atomtrajectories[t]*4
																+j];
				}
		}
		glBindVertexArray((*AtomVAO)[3]);
		glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[2]);
		glBufferData(GL_ARRAY_BUFFER, sizeof(float) *atomtrajectories.size()*TIMESTEPS * 3, traj,
			GL_STATIC_DRAW);
		glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (const void *)(0));
		glEnableVertexAttribArray(0);
		e = glGetError();
		if ((e = glGetError()) != GL_NO_ERROR)
			eprintf("opengl error %d, creating atom trajectories, l %d\n", e, __LINE__);

		delete[] traj;
405
406
	}
	delete[] tmp;
407
408
409
410
411
412
413
414
415
416
417
418
	//bonds
	glBindVertexArray((*AtomVAO)[2]);
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[0]);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *BondIndices);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*bonds.size(), bonds.data(), GL_STATIC_DRAW);
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(0));
	glEnableVertexAttribArray(0);
	glBindVertexArray(0);

	e=glGetError();
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, creating chemical bonds, l %d\n", e, __LINE__);
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

	//now clones
	if (basisvectorreps ||!clonedAtoms) //do not replicate
		return e;


	glBindVertexArray((*AtomVAO)[1]); //rgh FIXME, only works for TIMESTEPS=1
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[1]);
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * clonedAtoms[0].size(), clonedAtoms[0].data(),
			GL_STATIC_DRAW);
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(0));
	glVertexAttribPointer(1, 1, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(3 * sizeof(float)));
	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, end of Setup cloned Atoms, l %d\n", e, __LINE__);

	//rgh: we will need these again if we don't have tesselation
	//delete[] clonedAtoms;
	//clonedAtoms=0;
439
	glBindVertexArray(0);
440
441
442
	return e;
}

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
GLenum SetupInfoCube (GLuint *VAO, GLuint *VertBuffer, GLuint *IndexBuffer)
{
	glGenVertexArrays(1, VAO);
	glGenBuffers(1, VertBuffer);
	glGenBuffers(1, IndexBuffer);

	glBindVertexArray(*VAO);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *IndexBuffer);
	glBindBuffer(GL_ARRAY_BUFFER, *VertBuffer);

	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glEnableVertexAttribArray(2);
	glDisableVertexAttribArray(3);
	//vec4 pos, vec3 normal, vec2 uv
	const int Nvert=9*26;
	const GLfloat vert[]={
		-1, +1, -1, 0,		0, 0, -1,	0, 1, //-z
		-1, -1, -1,	0,		0, 0, -1,	0, 0,
		+1, +1, -1,	0,		0, 0, -1,	1, 1,
		+1, -1, -1,	0,		0, 0, -1,	1, 0,
		-1, +1, +1, 0,		0, 0, 1,	0, 0,//+z
		-1, -1, +1,	0,		0, 0, 1,	0, 1,
		+1, +1, +1,	0,		0, 0, 1,	1, 0,
		+1, -1, +1,	0,		0, 0, 1,	1, 1,

		+1, -1, -1, 0,		+1, 0, 0,	0, 1,//+x
		+1, -1, +1, 0,		+1, 0, 0,	0, 0,//+x
		+1, +1, -1, 0,		+1, 0, 0,	1, 1,//+x
		+1, +1, +1, 0,		+1, 0, 0,	1, 0,//+x
		-1, -1, -1, 0,		-1, 0, 0,	0, 0,//-x
		-1, -1, +1, 0,		-1, 0, 0,	0, 1,//-x
		-1, +1, -1, 0,		-1, 0, 0,	1, 0,//-x
		-1, +1, +1, 0,		-1, 0, 0,	1, 1,//-x

		-1, 1, +1, 0,		0, -1, 0,	0, 1, //+y
		-1, 1, -1, 0,		0, -1, 0,	0, 0,
		+1, 1, +1, 0,		0, -1, 0,	1, 1,
		+1, 1, -1, 0,		0, -1, 0,	1, 0,
		-1, -1, +1, 0,		0, +1, 0,	0, 0,//-y
		-1, -1, -1, 0,		0, +1, 0,	0, 1,
		+1, -1, +1, 0,		0, +1, 0,	1, 0,
		+1, -1, -1, 0,		0, +1, 0,	1, 1,
		0, 0, 0, 1,			0,0,0,		0,0, //for the line between the cube and the atom
		0, 0, 1, 1,			0, 0, 0,	0, 0, //for the line between the cube and the atom

	};
	const short int ind[]={
		0, 1, 2, //z
		1, 3, 2,
		4, 5, 6,
		5, 7, 6,
		8, 9, 10,//x
		9, 11, 10,
		12, 13, 14,
		13, 15, 14,
		16, 17, 18,//y
		17, 19, 18,
		20, 21, 22,
		21, 23, 22,
	};

	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * Nvert , vert,
			GL_STATIC_DRAW);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(ind), ind, GL_STATIC_DRAW);
	glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 9 * sizeof(float), (const void *)(0));
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 9 * sizeof(float), (const void *)(4*sizeof(float)));
	glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 9 * sizeof(float), (const void *)(7*sizeof(float)));
	glBindVertexArray(0);

	return glGetError();
}

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
GLenum SetupMarker(GLuint *MarkerVAO, GLuint *MarkerVertBuffer)
{
	if (!markers)
		return glGetError();
	GLenum e;
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, begin of SetupMarker\n", e, __LINE__);

	glGenVertexArrays(1, MarkerVAO);
	glGenBuffers(1, MarkerVertBuffer);
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, glGenBuffers, l %d\n", e, __LINE__);

	glBindVertexArray(*MarkerVAO);
	glBindBuffer(GL_ARRAY_BUFFER, *MarkerVertBuffer);

	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glDisableVertexAttribArray(2);
	glDisableVertexAttribArray(3);

	const float size=atomRadius(0)*atomScaling*markerscaling;
	float *tmp = new float [8*TIMESTEPS];
	for (int i=0;i<TIMESTEPS;i++) {
		for (int j=0;j<3;j++) { //center [3]
			tmp[i*8+j]=markers[i][j];
		}
		tmp[i*8+3]=0.8*size; //size [1]
		for (int j=0;j<4;j++) {//colour[4]
			tmp[i*8+4+j]=markercolours[i][j];
		}
	}
	
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * TIMESTEPS*8 , tmp,
			GL_STATIC_DRAW);
	glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (const void *)(0));
	glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (const void *)(4*sizeof(float)));
	glBindVertexArray(0);
	return glGetError();
}

557
558
GLenum SetupUnitCell(GLuint *UnitCellVAO, GLuint *UnitCellVertBuffer, GLuint *UnitCellIndexBuffer)
{
559
	//add here both unit cell and supercell
560
	GLenum e;
561
562
563
564
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, begin of SetupUnitCell\n", e, __LINE__);
	if (!has_abc)
		return e;
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
	glGenVertexArrays(1, UnitCellVAO);
	glGenBuffers(1, UnitCellVertBuffer);
	glGenBuffers(1, UnitCellIndexBuffer);
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, glGenBuffers, l %d\n", e, __LINE__);

	glBindVertexArray(*UnitCellVAO);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *UnitCellIndexBuffer);
	glBindBuffer(GL_ARRAY_BUFFER, *UnitCellVertBuffer);

	glEnableVertexAttribArray(0);
	glDisableVertexAttribArray(1);
	glDisableVertexAttribArray(2);
	glDisableVertexAttribArray(3);

580
	float *tmp = new float[3*8*2];
581
	//0, a, b, c, a+b+c, b+c, a+c, a+b
582
	for (int i=0;i<3;i++) { //unit cell
583
584
585
586
587
588
589
590
		tmp[0+i]=0;
		for (int j=0;j<3;j++)
			tmp[3*(j+1)+i]=abc[j][i];
		tmp[3*4+i]=abc[0][i]+abc[1][i]+abc[2][i];
		tmp[3*5+i]=			abc[1][i]+abc[2][i];
		tmp[3*6+i]=abc[0][i]+		abc[2][i];
		tmp[3*7+i]=abc[0][i]+abc[1][i];
	}
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
	float displ[3]={0,0,0};
	if (translations && ISOS) 
		for (int j=0;j<3;j++)
			for (int i=0;i<3;i++)
				displ[i]+=-translations[0][i]*abc[j][i];
	for (int i=0;i<3;i++) { //rgh fixme, add displacement here as well
		tmp[3*8+i]=displ[i];
		for (int j=0;j<3;j++)
			tmp[3*(j+8+1)+i]=abc[j][i]*supercell[j]+displ[i];
		tmp[3*12+i]=abc[0][i]*supercell[0]+abc[1][i]*supercell[1]+abc[2][i]*supercell[2]+displ[i];
		tmp[3*13+i]=			abc[1][i]*supercell[1]+abc[2][i]*supercell[2]+displ[i];
		tmp[3*14+i]=abc[0][i]*supercell[0]+		abc[2][i]*supercell[2]+displ[i];
		tmp[3*15+i]=abc[0][i]*supercell[0]+abc[1][i]*supercell[1]+displ[i];
	}
	int tmpi[12*2*2]={ //lines, unit cell, 
606
607
608
609
610
611
612
613
614
615
616
		0,1, 
		1,6,
		6,3,
		3,0,
		2,7,
		7,4,
		4,5,
		5,2,
		0,2,
		1,7,
		6,4,
617
618
619
620
621
622
623
624
625
626
627
628
629
		3,5, // supercell
		0+8,1+8, 
		1+8,6+8,
		6+8,3+8,
		3+8,0+8,
		2+8,7+8,
		7+8,4+8,
		4+8,5+8,
		5+8,2+8,
		0+8,2+8,
		1+8,7+8,
		6+8,4+8,
		3+8,5+8
630
	};
631
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3*8*2 , tmp,
632
633
			GL_STATIC_DRAW);
	if ((e = glGetError()) != GL_NO_ERROR)
634
		eprintf( "opengl error %d, glBufferData vertex, l %d\n", e, __LINE__);
635
636
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (const void *)(0));
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(tmpi), tmpi, GL_STATIC_DRAW);
637
638
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, glBufferData index, l %d\n", e, __LINE__);
639
	glBindVertexArray(0);
640
641
642
643
	return e;
}


644
645
bool PrepareUnitCellAtomShader (GLuint *AtomP, GLuint *cellP, GLuint *MarkerP, 
								GLint *AtomMatrixLocation, GLint *UnitCellMatrixLocation,  GLint *UnitCellColourLocation,
646
647
								GLint *MarkerMatrixLocation, GLint *totalatomsLocation){
	if (!PrepareAtomShader(AtomP, AtomMatrixLocation, totalatomsLocation))
648
649
650
651
652
		return false;

	if (!PrepareUnitCellShader(cellP, UnitCellMatrixLocation, UnitCellColourLocation))
		return false;

653
654
655
	if (!PrepareMarkerShader(MarkerP, MarkerMatrixLocation))
		return false;

656
657
658
	return true;
}

659
bool PrepareAtomShader (GLuint *AtomP, GLint *AtomMatrixLocation, GLint *totalatomsLocation){
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
		//https://www.gamedev.net/topic/591110-geometry-shader-point-sprites-to-spheres/
	//no rotation, only translations means we can do directional lighting in the shader.
	//FIXME
	//http://stackoverflow.com/questions/40101023/flat-shading-in-webgl
	*AtomP = CompileGLShader(
		AtomShaders[SHADERNAME],
		AtomShaders[SHADERVERTEX],
		AtomShaders[SHADERFRAGMENT],
		AtomShaders[SHADERTESSEVAL]
		);
	*AtomMatrixLocation=glGetUniformLocation(*AtomP, "matrix");
	if( *AtomMatrixLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader\n" );
		return false;
	}
676
677
678
679
680
681
682
	*totalatomsLocation=glGetUniformLocation(*AtomP, "totalatoms");
	if( *totalatomsLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader\n" );
		return false;
	}

683
684
685
	return true;
}

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
bool PrepareMarkerShader (GLuint *MP, GLint *MMatrixLocation){
		//https://www.gamedev.net/topic/591110-geometry-shader-point-sprites-to-spheres/
	//no rotation, only translations means we can do directional lighting in the shader.
	//FIXME
	//http://stackoverflow.com/questions/40101023/flat-shading-in-webgl
	*MP = CompileGLShader(
		MarkerShaders[SHADERNAME],
		MarkerShaders[SHADERVERTEX],
		MarkerShaders[SHADERFRAGMENT],
		MarkerShaders[SHADERTESSEVAL]
		);
	*MMatrixLocation=glGetUniformLocation(*MP, "matrix");
	if( *MMatrixLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader\n" );
		return false;
	}
	return true;
}

706
bool PrepareAtomShaderNoTess (GLuint *AtomP, GLint *AtomMatrixLocation, GLint *totalatomsLocation){
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
		//https://www.gamedev.net/topic/591110-geometry-shader-point-sprites-to-spheres/
	//no rotation, only translations means we can do directional lighting in the shader.
	//FIXME
	//http://stackoverflow.com/questions/40101023/flat-shading-in-webgl
	*AtomP = CompileGLShader(
		AtomShadersNoTess[SHADERNAME],
		AtomShadersNoTess[SHADERVERTEX],
		AtomShadersNoTess[SHADERFRAGMENT],
		AtomShadersNoTess[SHADERTESSEVAL]
		);
	*AtomMatrixLocation=glGetUniformLocation(*AtomP, "matrix");
	if( *AtomMatrixLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader no tess\n" );
		return false;
	}
723
724
725
726
727
728
	*totalatomsLocation=glGetUniformLocation(*AtomP, "totalatoms");
	if( *totalatomsLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader\n" );
		return false;
	}
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
	return true;
}


bool PrepareUnitCellShader (GLuint *cellP, GLint *UnitCellMatrixLocation,  GLint *UnitCellColourLocation){
	*cellP= CompileGLShader(
		UnitCellShaders[SHADERNAME],
		UnitCellShaders[SHADERVERTEX],
		UnitCellShaders[SHADERFRAGMENT],
		UnitCellShaders[SHADERTESSEVAL]
		);
	*UnitCellMatrixLocation=glGetUniformLocation(*cellP, "matrix");
	if( *UnitCellMatrixLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in UnitCell shader\n" );
		return false;
	}
	*UnitCellColourLocation=glGetUniformLocation(*cellP, "color");
	if( *UnitCellColourLocation == -1 )
	{
		eprintf( "Unable to find color uniform in UnitCell shader\n" );
		return false;
	}
	return true;
}


/**p: input, f: output*/
void GetDisplacement(int p[3], float f[3])
{
float delta[3][3];
for (int ss=0;ss<3;ss++)
	for (int i=0;i<3;i++)
		delta[ss][i]=static_cast<float>(p[ss])*abc[ss][i];

for (int i=0;i<3;i++)
	f[i]=0;

for (int ss=0;ss<3;ss++)
	for (int i=0;i<3;i++)
		f[i]+=delta[ss][i];
770
}