atomsGL.cpp 24 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
# Copyright 2016-2018 The NOMAD Developers Group
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
 #
 #     http://www.apache.org/licenses/LICENSE-2.0
 #
 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an "AS IS" BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
*/


18 19 20 21 22
#include <math.h>

#include "eprintf.h"
#include "TessShaders.h"
#include "UnitCellShaders.h"
23
#include "markerShaders.h"
24 25 26 27 28
#include "atomsGL.h"
#include "atoms.hpp"
#include "ConfigFile.h"
#include "CompileGLShader.h"
#include "polyhedron.h"
29
#include "Grid.h"
30

31 32 33 34 35 36 37 38
int getAtomTimesteps() 
{
	if (fixedAtoms)
		return 1;
	else
		return TIMESTEPS;
}

39 40 41
GLenum atomTexture(GLuint t)
{
	GLenum e;
42
	int finalatoms=getTotalAtomsInTexture();
43
	//rgh: scale atoms here
44
	//in google cardboard, this is called again if the program is running, so leave original or atoms get progresivelly smaller!
45 46
	float *a=new float[finalatoms*4];
	for (int i = 0; i < atomsInPeriodicTable; i++) {
47 48 49 50 51
		a[i*4+0]=atomColours[i][0];
		a[i*4+1]=atomColours[i][1];
		a[i*4+2]=atomColours[i][2];
		a[i*4+3]=atomColours[i][3] * atomScaling;
	}
52 53 54 55 56 57
	for (int i=0;i<extraAtomNames.size();i++) {
		a[(i+atomsInPeriodicTable)*4+0]=extraAtomData[i][0];
		a[(i+atomsInPeriodicTable)*4+1]=extraAtomData[i][1];
		a[(i+atomsInPeriodicTable)*4+2]=extraAtomData[i][2];
		a[(i+atomsInPeriodicTable)*4+3]=extraAtomData[i][3]*atomScaling;
	}
58 59 60 61 62
	glBindTexture(GL_TEXTURE_2D, t); //atom texture
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
63
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, finalatoms, 1, 0, GL_RGBA, GL_FLOAT, a);
64 65 66 67 68

	glBindTexture( GL_TEXTURE_2D, 0 );
	if ((e = glGetError()) != GL_NO_ERROR) {
		eprintf( "opengl error %d, atomTexture\n", e);
	}
69
	delete [] a;
70 71 72 73 74 75
	return e;
}

//WARNING: This should be called after SetupAtoms
//This means that numAtoms now has the cummulative distribution!
//This should be called after the atom texture is prepared, and therefore has the atomscaling pre-multiplied
76
GLenum SetupAtomsNoTess (GLuint **AtomVAO /*[4]*/, GLuint **AtomVertBuffer/*[3]*/, GLuint **AtomIndexBuffer/*[2]*/)
77 78
	//atoms, cloned atoms
	//rgh: FIXME: add AtomVAO[2] for atom trajectories
79 80 81 82 83
{
	//eprintf ("SetupAtomsNoTess 1");
if (!numAtoms)
		return 0;

84 85 86 87 88
if (!solid) {
	eprintf ("SetupAtomsNoTess, error: no solid defined");
	return 0;
}

89 90 91 92 93 94
//eprintf ("SetupAtomsNoTess 2");
	//for now, render an icosahedron
	//http://prideout.net/blog/?p=48 //public domain code
	//xyz nxnynz u=atom type ; 7 floats
	int e;

95
	int totalatoms=numAtoms[getAtomTimesteps() -1];
96 97
	
//eprintf ("SetupAtomsNoTess 2");
98
	*AtomVAO = new GLuint[4]; //atoms, cloned atoms, unused (bonds use Tess atom positions), trajectories
99
	*AtomIndexBuffer= new GLuint[3];//atoms, cloned atoms, bonds
100
	*AtomVertBuffer = new GLuint[3];//atoms, cloned atoms, trajectories
101

102
	glGenVertexArrays(4, *AtomVAO);
103
	glGenBuffers(2, *AtomIndexBuffer);
104
	glGenBuffers(3, *AtomVertBuffer);
105 106 107 108 109 110 111 112 113
//eprintf ("SetupAtomsNoTess 3");
	glBindVertexArray((*AtomVAO)[0]);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, (*AtomIndexBuffer)[0]);
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[0]);
//eprintf ("SetupAtomsNoTess 4");
	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glEnableVertexAttribArray(2);
	glDisableVertexAttribArray(3);
114 115
	//eprintf ("SetupAtomsNoTess 5, totalatoms=%d, nVerts=%d", totalatoms, solid->nVerts);
	float *tmp = new float[solid->nVerts * 7 * totalatoms];
116 117
	//eprintf ("SetupAtomsNoTess 6");
#ifdef INDICESGL32		
118
	int *tmpi = new int[solid->nFaces*3 * totalatoms];
119 120 121
	//eprintf ("SetupAtomsNoTess 7");
	int *currenti=tmpi;
#else
122
	unsigned short *tmpi = new unsigned short[solid->nFaces*3 * totalatoms];
123 124 125 126 127 128
	//eprintf ("SetupAtomsNoTess 7B");
	unsigned short *currenti=tmpi;
#endif

	float *current=tmp;
	//eprintf ("Before For 1");
129
	for (int p=0;p<getAtomTimesteps() ;p++) {
130 131
		for (int a = 0; a < numAtoms[p]-(p==0?0:numAtoms[p-1]); a++) {
			const int atomNumber = static_cast<int>(atoms[p][4 * a + 3]);
132
			const float radius = atomRadius(atomNumber)*atomScaling;
133
			for (int i = 0; i < solid->nVerts; i++) { //verts
134
				for (int k = 0; k < 3; k++) {
135
					*current++ = solid->Verts[3 * i + k]* radius +atoms[p][4 * a + k]; //pos
136 137
				}
				for (int k = 0; k < 3; k++) {
138
					*current++ = solid->Verts[3 * i + k]; //normal
139
				}
140
				*current++ = static_cast<float>(atomNumber);
141
			} //i
142 143
			for (int i = 0; i < solid->nFaces * 3; i++)
				*currenti++ = solid->Faces[i] + (a+(p==0?0:numAtoms[p-1]))*solid->nVerts;
144 145
		} //a
	} //p
146
		glBufferData(GL_ARRAY_BUFFER, sizeof(float) *totalatoms* 7 * solid->nVerts, tmp,
147 148 149 150 151 152 153 154 155 156
			GL_STATIC_DRAW);
		if ((e = glGetError()) != GL_NO_ERROR)
			eprintf("opengl error %d, glBufferData, l %d\n", e, __LINE__);

		glBufferData(GL_ELEMENT_ARRAY_BUFFER, 
#ifdef INDICESGL32		
	sizeof(int)
#else
	sizeof(unsigned int)
#endif
157
		* totalatoms * 3 * solid->nFaces, tmpi, GL_STATIC_DRAW);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174


	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 7*sizeof(float), (const void *)0);
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 7 * sizeof(float), (const void *)(3*sizeof(float)));
	glVertexAttribPointer(2, 1, GL_FLOAT, GL_FALSE, 7 * sizeof(float), (const void *)(6 * sizeof(float)));

	if (glGetError() != GL_NO_ERROR)
		eprintf("opengl error attrib pointer 0\n");

	//glBindVertexArray(0);
	//glDisableVertexAttribArray(0);
	delete[] tmp;
	delete[] tmpi;
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf("opengl error %d, end of SetupAtoms, l %d\n", e, __LINE__);

	//FIXME TODO: cloned atoms
175
	tmp = new float[solid->nVerts * 7 * numClonedAtoms];
176 177 178
	current=tmp;
	//eprintf ("SetupAtomsNoTess 6");
#ifdef INDICESGL32		
179
	tmpi = new int[solid->nFaces*3 * numClonedAtoms];
180 181 182
	//eprintf ("SetupAtomsNoTess 7");
	currenti=tmpi;
#else
183
	tmpi = new unsigned short[solid->nFaces*3 * numClonedAtoms];
184 185 186 187 188 189 190
	//eprintf ("SetupAtomsNoTess 7B");
	currenti=tmpi;
#endif
	//eprintf ("Before For 2");

	for (int a = 0; a < numClonedAtoms; a++) {
		const int atomNumber = static_cast<int>(clonedAtoms[0][4 * a + 3]);
191
		const float radius = atomRadius(atomNumber)*atomScaling;
192
		for (int i = 0; i < solid->nVerts; i++) { //verts
193
				for (int k = 0; k < 3; k++) {
194
					*current++ = solid->Verts[3 * i + k]* radius +clonedAtoms[0][4 * a + k]; //pos
195 196
				}
				for (int k = 0; k < 3; k++) {
197
					*current++ = solid->Verts[3 * i + k]; //normal
198
				}
199
				*current++ =  static_cast<float>(atomNumber);
200
		} //i
201 202
		for (int i = 0; i < solid->nFaces * 3; i++)
			*currenti++ = solid->Faces[i] + a*solid->nVerts;
203 204 205 206 207 208 209 210 211 212 213 214 215 216
	} //a
	
	//eprintf ("After For 2");


	glBindVertexArray((*AtomVAO)[1]);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, (*AtomIndexBuffer)[1]);
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[1]);

	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glEnableVertexAttribArray(2);
	glDisableVertexAttribArray(3);

217
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) *numClonedAtoms* 7 * solid->nVerts, tmp,
218 219 220 221 222 223 224 225 226 227
			GL_STATIC_DRAW);
		if ((e = glGetError()) != GL_NO_ERROR)
			eprintf("opengl error %d, glBufferData, l %d\n", e, __LINE__);
	//eprintf ("After bufferdata, array buffer");
		glBufferData(GL_ELEMENT_ARRAY_BUFFER, 
#ifdef INDICESGL32		
	sizeof(int)
#else
	sizeof(unsigned int)
#endif
228
		* numClonedAtoms * 3 * solid->nFaces, tmpi, GL_STATIC_DRAW);
229 230 231 232 233 234 235 236 237 238
	//eprintf ("After bufferdata, element array buffer");
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 7*sizeof(float), (const void *)0);
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 7 * sizeof(float), (const void *)(3*sizeof(float)));
	glVertexAttribPointer(2, 1, GL_FLOAT, GL_FALSE, 7 * sizeof(float), (const void *)(6 * sizeof(float)));

	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf("opengl error %d, glVertexAttribPointer, l %d\n", e, __LINE__);

	delete[] tmp;
	delete[] tmpi;
239

240
	glBindVertexArray(0);
241 242 243 244
	return e;
} //SetupAtomsNoTess


245
GLenum SetupAtoms(GLuint **AtomVAO /*[4]*/, GLuint **AtomVertBuffer /*[3]*/, GLuint *BondIndices)
246 247
{
	if (!numAtoms)
248
		return glGetError();
249 250 251 252 253 254 255
	//rgh FIXME: put this all in the same vao
	
	//http://prideout.net/blog/?p=48 //public domain code
	//xyz u=atom type ; 4 floats
	int e;

	int totalatoms=0;
256
	for (int i=0;i<getAtomTimesteps() ;i++) {
257 258 259 260
		totalatoms += numAtoms[i];
	}
	eprintf("SetupAtoms: totalatoms=%d", totalatoms);

261 262
	*AtomVAO = new GLuint[4]; //atoms, cloned atoms, bonds, trajectories
	*AtomVertBuffer = new GLuint[3]; //atoms, cloned atoms, trajectories
263

264 265
	glGenVertexArrays(4, *AtomVAO);
	glGenBuffers(3, *AtomVertBuffer);
266
	glGenBuffers(1, BondIndices);
267 268 269 270 271 272 273 274

	glBindVertexArray((*AtomVAO)[0]);
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[0]);

	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glDisableVertexAttribArray(2);
	glDisableVertexAttribArray(3);
275 276 277 278

	e=glGetError();
	if (e!=GL_NO_ERROR)
		eprintf ("gl error %d, %s %d", e, __FILE__, __LINE__);
279 280
	float *tmp = new float[4 * totalatoms];
	float *current=tmp;
281 282
	
	const int atomlimit=30;
283
	const float bondscaling=0.7f;
284

285 286
	numBonds=new int[getAtomTimesteps() ];
	for (int p=0;p<getAtomTimesteps() ;p++) {
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
			for (int a = 0; a < numAtoms[p]; a++) {
				for (int k = 0; k < 4; k++) {
					*current++ = atoms[p][4 * a + k];
				}
			} //a

		if (numAtoms[0]<atomlimit) {
		//eprintf ("searching bonds basic");
		//bonds FIXME quadractic complexity	
				for (int a1=0; a1 < numAtoms[p]; a1++) {
					for (int a2=a1+1; a2 < numAtoms[p]; a2++) {
						float d=0, r;
						for (int k=0;k<3;k++) {
							float dif=atoms[p][4 * a1 + k]-atoms[p][4 * a2 + k];
							d+=dif*dif;
						}
						r=atomRadius(static_cast<int>(atoms[p][4 * a1 + 3]))+
							atomRadius(static_cast<int>(atoms[p][4 * a2 + 3]));
306
						if (d*bondscaling<r*r) {// bond
307 308 309 310 311 312 313 314 315 316 317
							bonds.push_back(a1+(p==0?0:numAtoms[p-1]));
							bonds.push_back(a2+(p==0?0:numAtoms[p-1]));
						}
					}
				}
		} else { //more than 30 atoms, try grid optimization
		//eprintf ("searching bonds grid");

			float m[3];
			float M[3];
			for (int k=0; k<3;k++) {
318
				m[k]=M[k]=atoms[p][k];
319
			}
320 321
			for (int a = 1; a < numAtoms[p]; a++) {
				for (int k=0; k<3;k++) {
322 323 324 325
					if (m[k]>atoms[p][4*a+k])
						m[k]=atoms[p][4*a+k];
					if (M[k]<atoms[p][4*a+k])
						M[k]=atoms[p][4*a+k];
326 327
				}
			}
328
			grid g(m, M, pow(numAtoms[p], 1.0f/3.0f), bondscaling);
329
			for (int a = 1; a < numAtoms[p]; a++) 
330
				g.add(atoms[p]+4*a);
331
			for (int a = 0; a < numAtoms[p]; a++) {
332
				std::vector<float*> found=g.find(atoms[p]+4*a);
333 334 335 336
				for (int b=0;b<found.size();b++) {
					//if (found[b] < tmp+4*a) // already got this bound
					//	continue;
					bonds.push_back(a+(p==0?0:numAtoms[p-1]));
337
					bonds.push_back(((found[b]-atoms[p])/4)+(p==0?0:numAtoms[p-1]));
338 339 340 341
				}
			}
		}
		numBonds[p]=bonds.size();
342 343 344
		if (p!=0)
			numAtoms[p]+=numAtoms[p-1];
	} //p
345

346 347 348
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(0));
	glVertexAttribPointer(1, 1, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(3 * sizeof(float)));
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * totalatoms * 4 , tmp,
349 350 351
		GL_STATIC_DRAW);
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, glBufferData, l %d\n", e, __LINE__);
352

353
	glBindVertexArray(0);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, end of SetupAtoms, l %d\n", e, __LINE__);

	if (showTrajectories) {
			//fill the restart buffer
		//use abc for measuring
		float max=0;
		if (has_abc) {
			for (int i=0;i<3;i++)
				for (int j=0;j<3;j++)
				max+=abc[i][j];
			max /=9*2;
		}

		for (unsigned int t=0;t<atomtrajectories.size();t++) {
			atomtrajectoryrestarts.push_back(std::vector<int>());
			atomtrajectoryrestarts[t].push_back(0);
372
			for (int p=1;p<getAtomTimesteps() ;p++) {
373
				int a=atomtrajectories[t];
374 375 376 377 378
				if (has_abc)
					if (fabs(atoms[p][a*4+0]-atoms[p-1][a*4+0])+
						fabs(atoms[p][a*4+1]-atoms[p-1][a*4+1])+
						fabs(atoms[p][a*4+2]-atoms[p-1][a*4+2])>max)
							atomtrajectoryrestarts[t].push_back(p);
379
			}
380
			atomtrajectoryrestarts[t].push_back(getAtomTimesteps() );
381
		}
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	//need to setup a specific buffer because of GL_MAX_VERTEX_ATTRIB_STRIDE
	//only need xyz, not atom size
	//rgh FIXME: If we use index buffer instead, GPU storage is 1/3 of this
		float *traj = new float[atomtrajectories.size()*TIMESTEPS*3];
		for (unsigned int t = 0; t < atomtrajectories.size(); t++) {
			for (int i=0;i<TIMESTEPS;i++)
				for (int j = 0; j < 3; j++) {
					traj[t*TIMESTEPS * 3 + i * 3 + j] = tmp[i*numAtoms[0]*4+
																+atomtrajectories[t]*4
																+j];
				}
		}
		glBindVertexArray((*AtomVAO)[3]);
		glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[2]);
		glBufferData(GL_ARRAY_BUFFER, sizeof(float) *atomtrajectories.size()*TIMESTEPS * 3, traj,
			GL_STATIC_DRAW);
		glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (const void *)(0));
		glEnableVertexAttribArray(0);
		e = glGetError();
		if ((e = glGetError()) != GL_NO_ERROR)
			eprintf("opengl error %d, creating atom trajectories, l %d\n", e, __LINE__);

		delete[] traj;
405 406
	}
	delete[] tmp;
407 408 409 410 411 412 413 414 415 416 417 418
	//bonds
	glBindVertexArray((*AtomVAO)[2]);
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[0]);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *BondIndices);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*bonds.size(), bonds.data(), GL_STATIC_DRAW);
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(0));
	glEnableVertexAttribArray(0);
	glBindVertexArray(0);

	e=glGetError();
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, creating chemical bonds, l %d\n", e, __LINE__);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	//now clones
	if (basisvectorreps ||!clonedAtoms) //do not replicate
		return e;


	glBindVertexArray((*AtomVAO)[1]); //rgh FIXME, only works for TIMESTEPS=1
	glBindBuffer(GL_ARRAY_BUFFER, (*AtomVertBuffer)[1]);
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * clonedAtoms[0].size(), clonedAtoms[0].data(),
			GL_STATIC_DRAW);
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(0));
	glVertexAttribPointer(1, 1, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (const void *)(3 * sizeof(float)));
	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, end of Setup cloned Atoms, l %d\n", e, __LINE__);

	//rgh: we will need these again if we don't have tesselation
	//delete[] clonedAtoms;
	//clonedAtoms=0;
439
	glBindVertexArray(0);
440 441 442
	return e;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
GLenum SetupInfoCube (GLuint *VAO, GLuint *VertBuffer, GLuint *IndexBuffer)
{
	glGenVertexArrays(1, VAO);
	glGenBuffers(1, VertBuffer);
	glGenBuffers(1, IndexBuffer);

	glBindVertexArray(*VAO);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *IndexBuffer);
	glBindBuffer(GL_ARRAY_BUFFER, *VertBuffer);

	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glEnableVertexAttribArray(2);
	glDisableVertexAttribArray(3);
	//vec4 pos, vec3 normal, vec2 uv
	const int Nvert=9*26;
	const GLfloat vert[]={
		-1, +1, -1, 0,		0, 0, -1,	0, 1, //-z
		-1, -1, -1,	0,		0, 0, -1,	0, 0,
		+1, +1, -1,	0,		0, 0, -1,	1, 1,
		+1, -1, -1,	0,		0, 0, -1,	1, 0,
		-1, +1, +1, 0,		0, 0, 1,	0, 0,//+z
		-1, -1, +1,	0,		0, 0, 1,	0, 1,
		+1, +1, +1,	0,		0, 0, 1,	1, 0,
		+1, -1, +1,	0,		0, 0, 1,	1, 1,

		+1, -1, -1, 0,		+1, 0, 0,	0, 1,//+x
		+1, -1, +1, 0,		+1, 0, 0,	0, 0,//+x
		+1, +1, -1, 0,		+1, 0, 0,	1, 1,//+x
		+1, +1, +1, 0,		+1, 0, 0,	1, 0,//+x
		-1, -1, -1, 0,		-1, 0, 0,	0, 0,//-x
		-1, -1, +1, 0,		-1, 0, 0,	0, 1,//-x
		-1, +1, -1, 0,		-1, 0, 0,	1, 0,//-x
		-1, +1, +1, 0,		-1, 0, 0,	1, 1,//-x

		-1, 1, +1, 0,		0, -1, 0,	0, 1, //+y
		-1, 1, -1, 0,		0, -1, 0,	0, 0,
		+1, 1, +1, 0,		0, -1, 0,	1, 1,
		+1, 1, -1, 0,		0, -1, 0,	1, 0,
		-1, -1, +1, 0,		0, +1, 0,	0, 0,//-y
		-1, -1, -1, 0,		0, +1, 0,	0, 1,
		+1, -1, +1, 0,		0, +1, 0,	1, 0,
		+1, -1, -1, 0,		0, +1, 0,	1, 1,
		0, 0, 0, 1,			0,0,0,		0,0, //for the line between the cube and the atom
		0, 0, 1, 1,			0, 0, 0,	0, 0, //for the line between the cube and the atom

	};
	const short int ind[]={
		0, 1, 2, //z
		1, 3, 2,
		4, 5, 6,
		5, 7, 6,
		8, 9, 10,//x
		9, 11, 10,
		12, 13, 14,
		13, 15, 14,
		16, 17, 18,//y
		17, 19, 18,
		20, 21, 22,
		21, 23, 22,
	};

	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * Nvert , vert,
			GL_STATIC_DRAW);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(ind), ind, GL_STATIC_DRAW);
	glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 9 * sizeof(float), (const void *)(0));
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 9 * sizeof(float), (const void *)(4*sizeof(float)));
	glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 9 * sizeof(float), (const void *)(7*sizeof(float)));
	glBindVertexArray(0);

	return glGetError();
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
GLenum SetupMarker(GLuint *MarkerVAO, GLuint *MarkerVertBuffer)
{
	if (!markers)
		return glGetError();
	GLenum e;
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, begin of SetupMarker\n", e, __LINE__);

	glGenVertexArrays(1, MarkerVAO);
	glGenBuffers(1, MarkerVertBuffer);
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, glGenBuffers, l %d\n", e, __LINE__);

	glBindVertexArray(*MarkerVAO);
	glBindBuffer(GL_ARRAY_BUFFER, *MarkerVertBuffer);

	glEnableVertexAttribArray(0);
	glEnableVertexAttribArray(1);
	glDisableVertexAttribArray(2);
	glDisableVertexAttribArray(3);

	const float size=atomRadius(0)*atomScaling*markerscaling;
	float *tmp = new float [8*TIMESTEPS];
	for (int i=0;i<TIMESTEPS;i++) {
		for (int j=0;j<3;j++) { //center [3]
			tmp[i*8+j]=markers[i][j];
		}
		tmp[i*8+3]=0.8*size; //size [1]
		for (int j=0;j<4;j++) {//colour[4]
			tmp[i*8+4+j]=markercolours[i][j];
		}
	}
	
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * TIMESTEPS*8 , tmp,
			GL_STATIC_DRAW);
	glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (const void *)(0));
	glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (const void *)(4*sizeof(float)));
	glBindVertexArray(0);
	return glGetError();
}

557 558
GLenum SetupUnitCell(GLuint *UnitCellVAO, GLuint *UnitCellVertBuffer, GLuint *UnitCellIndexBuffer)
{
559
	//add here both unit cell and supercell
560
	GLenum e;
561 562 563 564
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, begin of SetupUnitCell\n", e, __LINE__);
	if (!has_abc)
		return e;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	glGenVertexArrays(1, UnitCellVAO);
	glGenBuffers(1, UnitCellVertBuffer);
	glGenBuffers(1, UnitCellIndexBuffer);
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, glGenBuffers, l %d\n", e, __LINE__);

	glBindVertexArray(*UnitCellVAO);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *UnitCellIndexBuffer);
	glBindBuffer(GL_ARRAY_BUFFER, *UnitCellVertBuffer);

	glEnableVertexAttribArray(0);
	glDisableVertexAttribArray(1);
	glDisableVertexAttribArray(2);
	glDisableVertexAttribArray(3);

580
	float *tmp = new float[3*8*2];
581
	//0, a, b, c, a+b+c, b+c, a+c, a+b
582
	for (int i=0;i<3;i++) { //unit cell
583 584 585 586 587 588 589 590
		tmp[0+i]=0;
		for (int j=0;j<3;j++)
			tmp[3*(j+1)+i]=abc[j][i];
		tmp[3*4+i]=abc[0][i]+abc[1][i]+abc[2][i];
		tmp[3*5+i]=			abc[1][i]+abc[2][i];
		tmp[3*6+i]=abc[0][i]+		abc[2][i];
		tmp[3*7+i]=abc[0][i]+abc[1][i];
	}
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	float displ[3]={0,0,0};
	if (translations && ISOS) 
		for (int j=0;j<3;j++)
			for (int i=0;i<3;i++)
				displ[i]+=-translations[0][i]*abc[j][i];
	for (int i=0;i<3;i++) { //rgh fixme, add displacement here as well
		tmp[3*8+i]=displ[i];
		for (int j=0;j<3;j++)
			tmp[3*(j+8+1)+i]=abc[j][i]*supercell[j]+displ[i];
		tmp[3*12+i]=abc[0][i]*supercell[0]+abc[1][i]*supercell[1]+abc[2][i]*supercell[2]+displ[i];
		tmp[3*13+i]=			abc[1][i]*supercell[1]+abc[2][i]*supercell[2]+displ[i];
		tmp[3*14+i]=abc[0][i]*supercell[0]+		abc[2][i]*supercell[2]+displ[i];
		tmp[3*15+i]=abc[0][i]*supercell[0]+abc[1][i]*supercell[1]+displ[i];
	}
	int tmpi[12*2*2]={ //lines, unit cell, 
606 607 608 609 610 611 612 613 614 615 616
		0,1, 
		1,6,
		6,3,
		3,0,
		2,7,
		7,4,
		4,5,
		5,2,
		0,2,
		1,7,
		6,4,
617 618 619 620 621 622 623 624 625 626 627 628 629
		3,5, // supercell
		0+8,1+8, 
		1+8,6+8,
		6+8,3+8,
		3+8,0+8,
		2+8,7+8,
		7+8,4+8,
		4+8,5+8,
		5+8,2+8,
		0+8,2+8,
		1+8,7+8,
		6+8,4+8,
		3+8,5+8
630
	};
631
	glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3*8*2 , tmp,
632 633
			GL_STATIC_DRAW);
	if ((e = glGetError()) != GL_NO_ERROR)
634
		eprintf( "opengl error %d, glBufferData vertex, l %d\n", e, __LINE__);
635 636
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (const void *)(0));
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(tmpi), tmpi, GL_STATIC_DRAW);
637 638
	if ((e = glGetError()) != GL_NO_ERROR)
		eprintf( "opengl error %d, glBufferData index, l %d\n", e, __LINE__);
639
	glBindVertexArray(0);
640 641 642 643
	return e;
}


644 645
bool PrepareUnitCellAtomShader (GLuint *AtomP, GLuint *cellP, GLuint *MarkerP, 
								GLint *AtomMatrixLocation, GLint *UnitCellMatrixLocation,  GLint *UnitCellColourLocation,
646 647
								GLint *MarkerMatrixLocation, GLint *totalatomsLocation){
	if (!PrepareAtomShader(AtomP, AtomMatrixLocation, totalatomsLocation))
648 649 650 651 652
		return false;

	if (!PrepareUnitCellShader(cellP, UnitCellMatrixLocation, UnitCellColourLocation))
		return false;

653 654 655
	if (!PrepareMarkerShader(MarkerP, MarkerMatrixLocation))
		return false;

656 657 658
	return true;
}

659
bool PrepareAtomShader (GLuint *AtomP, GLint *AtomMatrixLocation, GLint *totalatomsLocation){
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
		//https://www.gamedev.net/topic/591110-geometry-shader-point-sprites-to-spheres/
	//no rotation, only translations means we can do directional lighting in the shader.
	//FIXME
	//http://stackoverflow.com/questions/40101023/flat-shading-in-webgl
	*AtomP = CompileGLShader(
		AtomShaders[SHADERNAME],
		AtomShaders[SHADERVERTEX],
		AtomShaders[SHADERFRAGMENT],
		AtomShaders[SHADERTESSEVAL]
		);
	*AtomMatrixLocation=glGetUniformLocation(*AtomP, "matrix");
	if( *AtomMatrixLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader\n" );
		return false;
	}
676 677 678 679 680 681 682
	*totalatomsLocation=glGetUniformLocation(*AtomP, "totalatoms");
	if( *totalatomsLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader\n" );
		return false;
	}

683 684 685
	return true;
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
bool PrepareMarkerShader (GLuint *MP, GLint *MMatrixLocation){
		//https://www.gamedev.net/topic/591110-geometry-shader-point-sprites-to-spheres/
	//no rotation, only translations means we can do directional lighting in the shader.
	//FIXME
	//http://stackoverflow.com/questions/40101023/flat-shading-in-webgl
	*MP = CompileGLShader(
		MarkerShaders[SHADERNAME],
		MarkerShaders[SHADERVERTEX],
		MarkerShaders[SHADERFRAGMENT],
		MarkerShaders[SHADERTESSEVAL]
		);
	*MMatrixLocation=glGetUniformLocation(*MP, "matrix");
	if( *MMatrixLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader\n" );
		return false;
	}
	return true;
}

706
bool PrepareAtomShaderNoTess (GLuint *AtomP, GLint *AtomMatrixLocation, GLint *totalatomsLocation){
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
		//https://www.gamedev.net/topic/591110-geometry-shader-point-sprites-to-spheres/
	//no rotation, only translations means we can do directional lighting in the shader.
	//FIXME
	//http://stackoverflow.com/questions/40101023/flat-shading-in-webgl
	*AtomP = CompileGLShader(
		AtomShadersNoTess[SHADERNAME],
		AtomShadersNoTess[SHADERVERTEX],
		AtomShadersNoTess[SHADERFRAGMENT],
		AtomShadersNoTess[SHADERTESSEVAL]
		);
	*AtomMatrixLocation=glGetUniformLocation(*AtomP, "matrix");
	if( *AtomMatrixLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader no tess\n" );
		return false;
	}
723 724 725 726 727 728
	*totalatomsLocation=glGetUniformLocation(*AtomP, "totalatoms");
	if( *totalatomsLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in atom shader\n" );
		return false;
	}
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	return true;
}


bool PrepareUnitCellShader (GLuint *cellP, GLint *UnitCellMatrixLocation,  GLint *UnitCellColourLocation){
	*cellP= CompileGLShader(
		UnitCellShaders[SHADERNAME],
		UnitCellShaders[SHADERVERTEX],
		UnitCellShaders[SHADERFRAGMENT],
		UnitCellShaders[SHADERTESSEVAL]
		);
	*UnitCellMatrixLocation=glGetUniformLocation(*cellP, "matrix");
	if( *UnitCellMatrixLocation == -1 )
	{
		eprintf( "Unable to find matrix uniform in UnitCell shader\n" );
		return false;
	}
	*UnitCellColourLocation=glGetUniformLocation(*cellP, "color");
	if( *UnitCellColourLocation == -1 )
	{
		eprintf( "Unable to find color uniform in UnitCell shader\n" );
		return false;
	}
	return true;
}


/**p: input, f: output*/
void GetDisplacement(int p[3], float f[3])
{
float delta[3][3];
for (int ss=0;ss<3;ss++)
	for (int i=0;i<3;i++)
		delta[ss][i]=static_cast<float>(p[ss])*abc[ss][i];

for (int i=0;i<3;i++)
	f[i]=0;

for (int ss=0;ss<3;ss++)
	for (int i=0;i<3;i++)
		f[i]+=delta[ss][i];
770
}