pypocketfft.cc 17.1 KB
Newer Older
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
1 2 3 4 5 6
/*
 * This file is part of pocketfft.
 * Licensed under a 3-clause BSD style license - see LICENSE.md
 */

/*
7
 *  Python interface.
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
8
 *
9
 *  Copyright (C) 2019 Max-Planck-Society
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
10 11 12
 *  \author Martin Reinecke
 */

Martin Reinecke's avatar
Martin Reinecke committed
13 14
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
Martin Reinecke's avatar
more  
Martin Reinecke committed
15
#include <pybind11/stl.h>
Martin Reinecke's avatar
Martin Reinecke committed
16

17
#include "pocketfft_hdronly.h"
Martin Reinecke's avatar
Martin Reinecke committed
18

Martin Reinecke's avatar
Martin Reinecke committed
19
//
20
// Python interface
Martin Reinecke's avatar
Martin Reinecke committed
21 22
//

23
namespace {
24

25 26
using namespace std;
using namespace pocketfft;
Martin Reinecke's avatar
Martin Reinecke committed
27

Martin Reinecke's avatar
Martin Reinecke committed
28 29
namespace py = pybind11;

30 31 32 33
// Only instantiate long double transforms if they offer more precision
using ldbl_t = typename std::conditional<
  sizeof(long double)==sizeof(double), double, long double>::type;

Martin Reinecke's avatar
Martin Reinecke committed
34 35
auto c64 = py::dtype("complex64");
auto c128 = py::dtype("complex128");
36
auto clong = py::dtype("longcomplex");
Martin Reinecke's avatar
Martin Reinecke committed
37 38
auto f32 = py::dtype("float32");
auto f64 = py::dtype("float64");
39
auto flong = py::dtype("longfloat");
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
40 41

shape_t copy_shape(const py::array &arr)
Martin Reinecke's avatar
Martin Reinecke committed
42
  {
43
  shape_t res(size_t(arr.ndim()));
Martin Reinecke's avatar
Martin Reinecke committed
44
  for (size_t i=0; i<res.size(); ++i)
45
    res[i] = size_t(arr.shape(int(i)));
Martin Reinecke's avatar
Martin Reinecke committed
46 47
  return res;
  }
Martin Reinecke's avatar
Martin Reinecke committed
48

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
49
stride_t copy_strides(const py::array &arr)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
50
  {
51
  stride_t res(size_t(arr.ndim()));
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
52
  for (size_t i=0; i<res.size(); ++i)
53
    res[i] = arr.strides(int(i));
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
54 55
  return res;
  }
Martin Reinecke's avatar
Martin Reinecke committed
56

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
57
shape_t makeaxes(const py::array &in, py::object axes)
Martin Reinecke's avatar
more  
Martin Reinecke committed
58
  {
Martin Reinecke's avatar
Martin Reinecke committed
59
  if (axes.is(py::none()))
Martin Reinecke's avatar
more  
Martin Reinecke committed
60
    {
61
    shape_t res(size_t(in.ndim()));
Martin Reinecke's avatar
Martin Reinecke committed
62 63 64
    for (size_t i=0; i<res.size(); ++i)
      res[i]=i;
    return res;
Martin Reinecke's avatar
more  
Martin Reinecke committed
65
    }
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
66
  auto tmp=axes.cast<shape_t>();
Martin Reinecke's avatar
fix  
Martin Reinecke committed
67
  if ((tmp.size()>size_t(in.ndim())) || (tmp.size()==0))
Martin Reinecke's avatar
more  
Martin Reinecke committed
68
    throw runtime_error("bad axes argument");
Martin Reinecke's avatar
Martin Reinecke committed
69 70
  for (auto sz: tmp)
    if (sz>=size_t(in.ndim()))
Martin Reinecke's avatar
more  
Martin Reinecke committed
71
      throw runtime_error("invalid axis number");
Martin Reinecke's avatar
Martin Reinecke committed
72
  return tmp;
Martin Reinecke's avatar
more  
Martin Reinecke committed
73 74
  }

75 76 77 78
#define DISPATCH(arr, T1, T2, T3, func, args) \
  auto dtype = arr.dtype(); \
  if (dtype.is(T1)) return func<double> args; \
  if (dtype.is(T2)) return func<float> args; \
79
  if (dtype.is(T3)) return func<ldbl_t> args; \
80 81
  throw runtime_error("unsupported data type");

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
template<typename T> T norm_fct(int inorm, size_t N)
  {
  if (inorm==0) return T(1);
  if (inorm==2) return T(1/ldbl_t(N));
  if (inorm==1) return T(1/sqrt(ldbl_t(N)));
  throw invalid_argument("invalid value for inorm (must be 0, 1, or 2)");
  }

template<typename T> T norm_fct(int inorm, const shape_t &shape,
  const shape_t &axes)
  {
  if (inorm==0) return T(1);
  size_t N(1);
  for (auto a: axes)
    N *= shape[a];
  return norm_fct<T>(inorm, N);
  }

Martin Reinecke's avatar
Martin Reinecke committed
100
template<typename T> py::array xfftn_internal(const py::array &in,
101
  const shape_t &axes, int inorm, bool inplace, bool fwd, size_t nthreads)
Martin Reinecke's avatar
Martin Reinecke committed
102
  {
Martin Reinecke's avatar
Martin Reinecke committed
103
  auto dims(copy_shape(in));
104
  py::array res = inplace ? in : py::array_t<complex<T>>(dims);
Martin Reinecke's avatar
Martin Reinecke committed
105 106 107 108 109 110
  auto s_in=copy_strides(in);
  auto s_out=copy_strides(res);
  auto d_in=reinterpret_cast<const complex<T> *>(in.data());
  auto d_out=reinterpret_cast<complex<T> *>(res.mutable_data());
  {
  py::gil_scoped_release release;
111 112
  T fct = norm_fct<T>(inorm, dims, axes);
  c2c(dims, s_in, s_out, axes, fwd, d_in, d_out, fct, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
113
  }
Martin Reinecke's avatar
Martin Reinecke committed
114 115
  return res;
  }
Martin Reinecke's avatar
Martin Reinecke committed
116

117 118
py::array xfftn(const py::array &a, py::object axes, int inorm,
  bool inplace, bool fwd, size_t nthreads)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
119
  {
120
  DISPATCH(a, c128, c64, clong, xfftn_internal, (a, makeaxes(a, axes), inorm,
Martin Reinecke's avatar
Martin Reinecke committed
121
           inplace, fwd, nthreads))
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
122
  }
123

Martin Reinecke's avatar
Martin Reinecke committed
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
template<typename T> py::array sym_rfftn_internal(const py::array &in,
  py::object axes_, int inorm, size_t nthreads)
  {
  auto axes = makeaxes(in, axes_);
  auto dims(copy_shape(in));
  py::array res = py::array_t<complex<T>>(dims);
  auto s_in=copy_strides(in);
  auto s_out=copy_strides(res);
  auto d_in=reinterpret_cast<const T *>(in.data());
  auto d_out=reinterpret_cast<complex<T> *>(res.mutable_data());
  {
  py::gil_scoped_release release;
  T fct = norm_fct<T>(inorm, dims, axes);
  r2c(dims, s_in, s_out, axes, d_in, d_out, fct, nthreads);
  // now fill in second half
  using namespace pocketfft::detail;
  ndarr<complex<T>> ares(res.mutable_data(), dims, s_out);
  rev_iter<complex<T>> iter(ares, axes);
  while(iter.remaining()>0)
    {
    auto v = ares.get(iter.ofs());
    ares.set(iter.rev_ofs(), conj(v));
    iter.advance();
    }
  }
  return res;
  }

py::array fftn(const py::array &a, py::object axes, int inorm, bool inplace,
  size_t nthreads)
  {
  try {
    return xfftn(a, axes, inorm, inplace, true, nthreads);
    }
  catch (runtime_error &)
    {
    if (inplace) throw runtime_error("cannot do this operation in-place");
    DISPATCH(a, f64, f32, flong, sym_rfftn_internal, (a, axes, inorm, nthreads))
    }
  }
164

165 166 167
py::array ifftn(const py::array &a, py::object axes, int inorm,
  bool inplace, size_t nthreads)
  { return xfftn(a, axes, inorm, inplace, false, nthreads); }
Martin Reinecke's avatar
Martin Reinecke committed
168

Martin Reinecke's avatar
Martin Reinecke committed
169
template<typename T> py::array rfftn_internal(const py::array &in,
170
  py::object axes_, int inorm, size_t nthreads)
Martin Reinecke's avatar
Martin Reinecke committed
171
  {
Martin Reinecke's avatar
Martin Reinecke committed
172
  auto axes = makeaxes(in, axes_);
Martin Reinecke's avatar
Martin Reinecke committed
173
  auto dims_in(copy_shape(in)), dims_out(dims_in);
Martin Reinecke's avatar
more  
Martin Reinecke committed
174
  dims_out[axes.back()] = (dims_out[axes.back()]>>1)+1;
Martin Reinecke's avatar
Martin Reinecke committed
175
  py::array res = py::array_t<complex<T>>(dims_out);
Martin Reinecke's avatar
Martin Reinecke committed
176 177 178 179 180 181
  auto s_in=copy_strides(in);
  auto s_out=copy_strides(res);
  auto d_in=reinterpret_cast<const T *>(in.data());
  auto d_out=reinterpret_cast<complex<T> *>(res.mutable_data());
  {
  py::gil_scoped_release release;
182 183
  T fct = norm_fct<T>(inorm, dims_in, axes);
  r2c(dims_in, s_in, s_out, axes, d_in, d_out, fct, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
184
  }
Martin Reinecke's avatar
more  
Martin Reinecke committed
185 186
  return res;
  }
187

188
py::array rfftn(const py::array &in, py::object axes_, int inorm,
Martin Reinecke's avatar
Martin Reinecke committed
189
  size_t nthreads)
Martin Reinecke's avatar
Martin Reinecke committed
190
  {
191
  DISPATCH(in, f64, f32, flong, rfftn_internal, (in, axes_, inorm, nthreads))
Martin Reinecke's avatar
Martin Reinecke committed
192
  }
193

194
template<typename T> py::array xrfft_scipy(const py::array &in,
195
  size_t axis, int inorm, bool inplace, bool fwd, size_t nthreads)
196 197 198
  {
  auto dims(copy_shape(in));
  py::array res = inplace ? in : py::array_t<T>(dims);
Martin Reinecke's avatar
Martin Reinecke committed
199 200 201 202 203 204
  auto s_in=copy_strides(in);
  auto s_out=copy_strides(res);
  auto d_in=reinterpret_cast<const T *>(in.data());
  auto d_out=reinterpret_cast<T *>(res.mutable_data());
  {
  py::gil_scoped_release release;
205 206
  T fct = norm_fct<T>(inorm, dims[axis]);
  r2r_fftpack(dims, s_in, s_out, axis, fwd, d_in, d_out, fct, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
207
  }
208 209
  return res;
  }
210

211 212
py::array rfft_scipy(const py::array &in, size_t axis, int inorm,
  bool inplace, size_t nthreads)
213
  {
214
  DISPATCH(in, f64, f32, flong, xrfft_scipy, (in, axis, inorm, inplace, true,
Martin Reinecke's avatar
Martin Reinecke committed
215
    nthreads))
216
  }
217

218
py::array irfft_scipy(const py::array &in, size_t axis, int inorm,
Martin Reinecke's avatar
Martin Reinecke committed
219
  bool inplace, size_t nthreads)
220
  {
221
  DISPATCH(in, f64, f32, flong, xrfft_scipy, (in, axis, inorm, inplace, false,
Martin Reinecke's avatar
Martin Reinecke committed
222
    nthreads))
223
  }
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
224
template<typename T> py::array irfftn_internal(const py::array &in,
225
  py::object axes_, size_t lastsize, int inorm, size_t nthreads)
Martin Reinecke's avatar
more  
Martin Reinecke committed
226
  {
Martin Reinecke's avatar
Martin Reinecke committed
227
  auto axes = makeaxes(in, axes_);
Martin Reinecke's avatar
more  
Martin Reinecke committed
228
  size_t axis = axes.back();
Martin Reinecke's avatar
Martin Reinecke committed
229 230 231
  shape_t dims_in(copy_shape(in)), dims_out=dims_in;
  if (lastsize==0) lastsize=2*dims_in[axis]-1;
  if ((lastsize/2) + 1 != dims_in[axis])
Martin Reinecke's avatar
more  
Martin Reinecke committed
232 233
    throw runtime_error("bad lastsize");
  dims_out[axis] = lastsize;
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
234
  py::array res = py::array_t<T>(dims_out);
Martin Reinecke's avatar
Martin Reinecke committed
235 236 237 238 239 240
  auto s_in=copy_strides(in);
  auto s_out=copy_strides(res);
  auto d_in=reinterpret_cast<const complex<T> *>(in.data());
  auto d_out=reinterpret_cast<T *>(res.mutable_data());
  {
  py::gil_scoped_release release;
241 242
  T fct = norm_fct<T>(inorm, dims_out, axes);
  c2r(dims_out, s_in, s_out, axes, d_in, d_out, fct, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
243
  }
Martin Reinecke's avatar
more  
Martin Reinecke committed
244 245
  return res;
  }
246

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
247
py::array irfftn(const py::array &in, py::object axes_, size_t lastsize,
248
  int inorm, size_t nthreads)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
249
  {
250
  DISPATCH(in, c128, c64, clong, irfftn_internal, (in, axes_, lastsize, inorm,
Martin Reinecke's avatar
Martin Reinecke committed
251
    nthreads))
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
252
  }
Martin Reinecke's avatar
Martin Reinecke committed
253 254

template<typename T> py::array hartley_internal(const py::array &in,
255
  py::object axes_, int inorm, bool inplace, size_t nthreads)
Martin Reinecke's avatar
more  
Martin Reinecke committed
256
  {
Martin Reinecke's avatar
Martin Reinecke committed
257
  auto dims(copy_shape(in));
258
  py::array res = inplace ? in : py::array_t<T>(dims);
Martin Reinecke's avatar
Martin Reinecke committed
259 260 261 262 263 264 265
  auto axes = makeaxes(in, axes_);
  auto s_in=copy_strides(in);
  auto s_out=copy_strides(res);
  auto d_in=reinterpret_cast<const T *>(in.data());
  auto d_out=reinterpret_cast<T *>(res.mutable_data());
  {
  py::gil_scoped_release release;
266 267
  T fct = norm_fct<T>(inorm, dims, axes);
  r2r_hartley(dims, s_in, s_out, axes, d_in, d_out, fct, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
268
  }
Martin Reinecke's avatar
Martin Reinecke committed
269 270
  return res;
  }
271

272
py::array hartley(const py::array &in, py::object axes_, int inorm,
Martin Reinecke's avatar
Martin Reinecke committed
273
  bool inplace, size_t nthreads)
Martin Reinecke's avatar
Martin Reinecke committed
274
  {
275
  DISPATCH(in, f64, f32, flong, hartley_internal, (in, axes_, inorm, inplace,
Martin Reinecke's avatar
Martin Reinecke committed
276
    nthreads))
Martin Reinecke's avatar
Martin Reinecke committed
277
  }
278

Martin Reinecke's avatar
fixes  
Martin Reinecke committed
279
template<typename T>py::array complex2hartley(const py::array &in,
Martin Reinecke's avatar
Martin Reinecke committed
280
  const py::array &tmp, py::object axes_, bool inplace)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
281
  {
Martin Reinecke's avatar
Martin Reinecke committed
282
  using namespace pocketfft::detail;
Martin Reinecke's avatar
Martin Reinecke committed
283
  auto dims_out(copy_shape(in));
Martin Reinecke's avatar
Martin Reinecke committed
284 285 286
  py::array out = inplace ? in : py::array_t<T>(dims_out);
  ndarr<cmplx<T>> atmp(tmp.data(), copy_shape(tmp), copy_strides(tmp));
  ndarr<T> aout(out.mutable_data(), copy_shape(out), copy_strides(out));
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
287
  auto axes = makeaxes(in, axes_);
Martin Reinecke's avatar
Martin Reinecke committed
288 289
  {
  py::gil_scoped_release release;
290 291 292 293
  simple_iter<cmplx<T>> iin(atmp);
  rev_iter<T> iout(aout, axes);
  if (iin.remaining()!=iout.remaining()) throw runtime_error("oops");
  while(iin.remaining()>0)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
294
    {
295 296 297 298
    auto v = atmp.get(iin.ofs());
    aout.set(iout.ofs(), v.r+v.i);
    aout.set(iout.rev_ofs(), v.r-v.i);
    iin.advance(); iout.advance();
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
299
    }
Martin Reinecke's avatar
Martin Reinecke committed
300
  }
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
301 302
  return out;
  }
303

304
py::array mycomplex2hartley(const py::array &in,
Martin Reinecke's avatar
Martin Reinecke committed
305
  const py::array &tmp, py::object axes_, bool inplace)
306
  {
307
  DISPATCH(in, f64, f32, flong, complex2hartley, (in, tmp, axes_, inplace))
308
  }
309

310
py::array hartley2(const py::array &in, py::object axes_, int inorm,
Martin Reinecke's avatar
Martin Reinecke committed
311
  bool inplace, size_t nthreads)
Martin Reinecke's avatar
Martin Reinecke committed
312
  {
313
  return mycomplex2hartley(in, rfftn(in, axes_, inorm, nthreads), axes_,
Martin Reinecke's avatar
Martin Reinecke committed
314 315
    inplace);
  }
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
316

Martin Reinecke's avatar
Martin Reinecke committed
317
const char *pypocketfft_DS = R"""(Fast Fourier and Hartley transforms.
Martin Reinecke's avatar
Martin Reinecke committed
318 319 320 321 322 323 324 325 326

This module supports
- single and double precision
- complex and real-valued transforms
- multi-dimensional transforms

For two- and higher-dimensional transforms the code will use SSE2 and AVX
vector instructions for faster execution if these are supported by the CPU and
were enabled during compilation.
Martin Reinecke's avatar
Martin Reinecke committed
327
)""";
Martin Reinecke's avatar
Martin Reinecke committed
328

Martin Reinecke's avatar
Martin Reinecke committed
329
const char *fftn_DS = R"""(
330 331 332 333 334 335 336
Performs a forward complex FFT.

Parameters
----------
a : numpy.ndarray (np.complex64 or np.complex128)
    The input data
axes : list of integers
337
    The axes along which the FFT is carried out.
338
    If not set, all axes will be transformed.
339 340 341 342 343 344
inorm : int
    Normalization type
      0 : no normalization
      1 : divide by sqrt(N)
      2 : divide by N
    where N is the product of the lengths of the transformed axes.
345
inplace : bool
Martin Reinecke's avatar
Martin Reinecke committed
346
    if False, returns the result in a new array and leaves the input unchanged.
347
    if True, stores the result in the input array and returns a handle to it.
Martin Reinecke's avatar
Martin Reinecke committed
348 349 350
nthreads : int
    Number of threads to use. If 0, use the system default (typically governed
    by the `OMP_NUM_THREADS` environment variable).
351 352 353 354

Returns
-------
np.ndarray (same shape and data type as a)
355
    The transformed data.
Martin Reinecke's avatar
Martin Reinecke committed
356
)""";
357

Martin Reinecke's avatar
Martin Reinecke committed
358
const char *ifftn_DS = R"""(Performs a backward complex FFT.
359 360 361 362 363 364

Parameters
----------
a : numpy.ndarray (np.complex64 or np.complex128)
    The input data
axes : list of integers
365
    The axes along which the FFT is carried out.
366
    If not set, all axes will be transformed.
367 368 369 370 371 372
inorm : int
    Normalization type
      0 : no normalization
      1 : divide by sqrt(N)
      2 : divide by N
    where N is the product of the lengths of the transformed axes.
373
inplace : bool
Martin Reinecke's avatar
Martin Reinecke committed
374
    if False, returns the result in a new array and leaves the input unchanged.
375
    if True, stores the result in the input array and returns a handle to it.
Martin Reinecke's avatar
Martin Reinecke committed
376 377 378
nthreads : int
    Number of threads to use. If 0, use the system default (typically governed
    by the `OMP_NUM_THREADS` environment variable).
379 380 381 382

Returns
-------
np.ndarray (same shape and data type as a)
Martin Reinecke's avatar
Martin Reinecke committed
383
    The transformed data
Martin Reinecke's avatar
Martin Reinecke committed
384
)""";
385

Martin Reinecke's avatar
Martin Reinecke committed
386
const char *rfftn_DS = R"""(Performs a forward real-valued FFT.
Martin Reinecke's avatar
Martin Reinecke committed
387 388 389 390 391 392

Parameters
----------
a : numpy.ndarray (np.float32 or np.float64)
    The input data
axes : list of integers
393
    The axes along which the FFT is carried out.
Martin Reinecke's avatar
Martin Reinecke committed
394
    If not set, all axes will be transformed in ascending order.
395 396 397 398 399 400
inorm : int
    Normalization type
      0 : no normalization
      1 : divide by sqrt(N)
      2 : divide by N
    where N is the product of the lengths of the transformed input axes.
Martin Reinecke's avatar
Martin Reinecke committed
401 402 403
nthreads : int
    Number of threads to use. If 0, use the system default (typically governed
    by the `OMP_NUM_THREADS` environment variable).
Martin Reinecke's avatar
Martin Reinecke committed
404 405 406 407

Returns
-------
np.ndarray (np.complex64 or np.complex128)
Martin Reinecke's avatar
Martin Reinecke committed
408
    The transformed data. The shape is identical to that of the input array,
Martin Reinecke's avatar
Martin Reinecke committed
409 410
    except for the axis that was transformed last. If the length of that axis
    was n on input, it is n//2+1 on output.
Martin Reinecke's avatar
Martin Reinecke committed
411
)""";
Martin Reinecke's avatar
Martin Reinecke committed
412

Martin Reinecke's avatar
Martin Reinecke committed
413
const char *rfft_scipy_DS = R"""(Performs a forward real-valued FFT.
414 415 416 417 418 419 420

Parameters
----------
a : numpy.ndarray (np.float32 or np.float64)
    The input data
axis : int
    The axis along which the FFT is carried out.
421 422 423 424 425 426
inorm : int
    Normalization type
      0 : no normalization
      1 : divide by sqrt(N)
      2 : divide by N
    where N is the length of `axis`.
427 428 429
inplace : bool
    if False, returns the result in a new array and leaves the input unchanged.
    if True, stores the result in the input array and returns a handle to it.
Martin Reinecke's avatar
Martin Reinecke committed
430 431 432
nthreads : int
    Number of threads to use. If 0, use the system default (typically governed
    by the `OMP_NUM_THREADS` environment variable).
433 434 435 436 437 438 439

Returns
-------
np.ndarray (np.float32 or np.float64)
    The transformed data. The shape is identical to that of the input array.
    Along the transformed axis, values are arranged in
    FFTPACK half-complex order, i.e. `a[0].re, a[1].re, a[1].im, a[2].re ...`.
Martin Reinecke's avatar
Martin Reinecke committed
440
)""";
441

Martin Reinecke's avatar
Martin Reinecke committed
442
const char *irfftn_DS = R"""(Performs a backward real-valued FFT.
Martin Reinecke's avatar
Martin Reinecke committed
443 444 445 446 447 448

Parameters
----------
a : numpy.ndarray (np.complex64 or np.complex128)
    The input data
axes : list of integers
449
    The axes along which the FFT is carried out.
Martin Reinecke's avatar
Martin Reinecke committed
450 451 452
    If not set, all axes will be transformed in ascending order.
lastsize : the output size of the last axis to be transformed.
    If the corresponding input axis has size n, this can be 2*n-2 or 2*n-1.
453 454 455 456 457 458
inorm : int
    Normalization type
      0 : no normalization
      1 : divide by sqrt(N)
      2 : divide by N
    where N is the product of the lengths of the transformed output axes.
Martin Reinecke's avatar
Martin Reinecke committed
459 460 461
nthreads : int
    Number of threads to use. If 0, use the system default (typically governed
    by the `OMP_NUM_THREADS` environment variable).
Martin Reinecke's avatar
Martin Reinecke committed
462 463 464 465

Returns
-------
np.ndarray (np.float32 or np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
466 467
    The transformed data. The shape is identical to that of the input array,
    except for the axis that was transformed last, which has now `lastsize`
Martin Reinecke's avatar
Martin Reinecke committed
468
    entries.
Martin Reinecke's avatar
Martin Reinecke committed
469
)""";
Martin Reinecke's avatar
Martin Reinecke committed
470

Martin Reinecke's avatar
Martin Reinecke committed
471
const char *irfft_scipy_DS = R"""(Performs a backward real-valued FFT.
472 473 474 475 476 477 478 479

Parameters
----------
a : numpy.ndarray (np.float32 or np.float64)
    The input data. Along the transformed axis, values are expected in
    FFTPACK half-complex order, i.e. `a[0].re, a[1].re, a[1].im, a[2].re ...`.
axis : int
    The axis along which the FFT is carried out.
480 481 482 483 484 485
inorm : int
    Normalization type
      0 : no normalization
      1 : divide by sqrt(N)
      2 : divide by N
    where N is the length of `axis`.
486 487 488
inplace : bool
    if False, returns the result in a new array and leaves the input unchanged.
    if True, stores the result in the input array and returns a handle to it.
Martin Reinecke's avatar
Martin Reinecke committed
489 490 491
nthreads : int
    Number of threads to use. If 0, use the system default (typically governed
    by the `OMP_NUM_THREADS` environment variable).
492 493 494 495 496

Returns
-------
np.ndarray (np.float32 or np.float64)
    The transformed data. The shape is identical to that of the input array.
Martin Reinecke's avatar
Martin Reinecke committed
497
)""";
498

Martin Reinecke's avatar
Martin Reinecke committed
499
const char *hartley_DS = R"""(Performs a Hartley transform.
500 501 502 503 504 505 506 507 508
For every requested axis, a 1D forward Fourier transform is carried out,
and the sum of real and imaginary parts of the result is stored in the output
array.

Parameters
----------
a : numpy.ndarray (np.float32 or np.float64)
    The input data
axes : list of integers
509
    The axes along which the transform is carried out.
510
    If not set, all axes will be transformed.
511 512 513 514 515 516
inorm : int
    Normalization type
      0 : no normalization
      1 : divide by sqrt(N)
      2 : divide by N
    where N is the product of the lengths of the transformed axes.
517
inplace : bool
Martin Reinecke's avatar
Martin Reinecke committed
518
    if False, returns the result in a new array and leaves the input unchanged.
519
    if True, stores the result in the input array and returns a handle to it.
Martin Reinecke's avatar
Martin Reinecke committed
520 521 522
nthreads : int
    Number of threads to use. If 0, use the system default (typically governed
    by the `OMP_NUM_THREADS` environment variable).
523 524 525 526

Returns
-------
np.ndarray (same shape and data type as a)
Martin Reinecke's avatar
Martin Reinecke committed
527
    The transformed data
Martin Reinecke's avatar
Martin Reinecke committed
528
)""";
529

Martin Reinecke's avatar
Martin Reinecke committed
530 531 532 533
} // unnamed namespace

PYBIND11_MODULE(pypocketfft, m)
  {
Martin Reinecke's avatar
more  
Martin Reinecke committed
534 535
  using namespace pybind11::literals;

Martin Reinecke's avatar
Martin Reinecke committed
536
  m.doc() = pypocketfft_DS;
537
  m.def("fftn",&fftn, fftn_DS, "a"_a, "axes"_a=py::none(), "inorm"_a=0,
Martin Reinecke's avatar
Martin Reinecke committed
538
    "inplace"_a=false, "nthreads"_a=1);
539
  m.def("ifftn",&ifftn, ifftn_DS, "a"_a, "axes"_a=py::none(), "inorm"_a=0,
Martin Reinecke's avatar
Martin Reinecke committed
540
    "inplace"_a=false, "nthreads"_a=1);
541
  m.def("rfftn",&rfftn, rfftn_DS, "a"_a, "axes"_a=py::none(), "inorm"_a=0,
Martin Reinecke's avatar
Martin Reinecke committed
542
    "nthreads"_a=1);
543
  m.def("rfft_scipy",&rfft_scipy, rfft_scipy_DS, "a"_a, "axis"_a, "inorm"_a=0,
Martin Reinecke's avatar
Martin Reinecke committed
544
    "inplace"_a=false, "nthreads"_a=1);
545
  m.def("irfftn",&irfftn, irfftn_DS, "a"_a, "axes"_a=py::none(), "lastsize"_a=0,
546 547 548 549
    "inorm"_a=0, "nthreads"_a=1);
  m.def("irfft_scipy",&irfft_scipy, irfft_scipy_DS, "a"_a, "axis"_a,
    "inorm"_a=0, "inplace"_a=false, "nthreads"_a=1);
  m.def("hartley",&hartley, hartley_DS, "a"_a, "axes"_a=py::none(), "inorm"_a=0,
Martin Reinecke's avatar
Martin Reinecke committed
550
    "inplace"_a=false, "nthreads"_a=1);
551
  m.def("hartley2",&hartley2, "a"_a, "axes"_a=py::none(), "inorm"_a=0,
Martin Reinecke's avatar
Martin Reinecke committed
552
    "inplace"_a=false, "nthreads"_a=1);
Martin Reinecke's avatar
Martin Reinecke committed
553 554
  m.def("complex2hartley",&mycomplex2hartley, "in"_a, "tmp"_a, "axes"_a,
    "inplace"_a=false);
Martin Reinecke's avatar
Martin Reinecke committed
555
  }