Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Martin Reinecke
ducc
Commits
e3d06876
Commit
e3d06876
authored
Jun 08, 2020
by
Martin Reinecke
Browse files
use new numpy random interface everywhere
parent
bf32424e
Pipeline
#76240
passed with stages
in 13 minutes and 2 seconds
Changes
8
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
python/demos/fft_bench.py
View file @
e3d06876
...
...
@@ -3,7 +3,8 @@ import ducc_0_1.fft as duccfft
from
time
import
time
import
matplotlib.pyplot
as
plt
np
.
random
.
seed
(
42
)
rng
=
np
.
random
.
default_rng
(
42
)
def
_l2error
(
a
,
b
):
...
...
@@ -107,11 +108,11 @@ def bench_nd(ndim, nmax, nthr, ntry, tp, funcs, nrepeat, ttl="", filename="",
print
(
"{}D, type {}, max extent is {}:"
.
format
(
ndim
,
tp
,
nmax
))
results
=
[[]
for
i
in
range
(
len
(
funcs
))]
for
n
in
range
(
ntry
):
shp
=
np
.
random
.
randint
(
nmax
//
3
,
nmax
+
1
,
ndim
)
shp
=
rng
.
integers
(
nmax
//
3
,
nmax
+
1
,
ndim
)
if
nice_sizes
:
shp
=
np
.
array
([
duccfft
.
good_size
(
sz
)
for
sz
in
shp
])
print
(
" {0:4d}/{1}: shape={2} ..."
.
format
(
n
,
ntry
,
shp
),
end
=
" "
,
flush
=
True
)
a
=
(
np
.
random
.
rand
(
*
shp
)
-
0.5
+
1j
*
(
np
.
random
.
rand
(
*
shp
)
-
0.5
)).
astype
(
tp
)
a
=
(
rng
.
random
(
shp
)
-
0.5
+
1j
*
(
rng
.
random
(
shp
)
-
0.5
)).
astype
(
tp
)
output
=
[]
for
func
,
res
in
zip
(
funcs
,
results
):
tmp
=
func
(
a
,
nrepeat
,
nthr
)
...
...
python/demos/fft_stress.py
View file @
e3d06876
...
...
@@ -2,6 +2,9 @@ import numpy as np
import
ducc_0_1.fft
as
fft
rng
=
np
.
random
.
default_rng
(
42
)
def
_l2error
(
a
,
b
,
axes
):
return
np
.
sqrt
(
np
.
sum
(
np
.
abs
(
a
-
b
)
**
2
)
/
np
.
sum
(
np
.
abs
(
a
)
**
2
))
/
np
.
log2
(
np
.
max
([
2
,
np
.
prod
(
np
.
take
(
a
.
shape
,
axes
))]))
...
...
@@ -41,15 +44,15 @@ def update_err(err, name, value, shape):
def
test
(
err
):
ndim
=
np
.
random
.
randint
(
1
,
5
)
ndim
=
rng
.
integers
(
1
,
5
)
axlen
=
int
((
2
**
20
)
**
(
1.
/
ndim
))
shape
=
np
.
random
.
randint
(
1
,
axlen
,
ndim
)
shape
=
rng
.
integers
(
1
,
axlen
,
ndim
)
axes
=
np
.
arange
(
ndim
)
np
.
random
.
shuffle
(
axes
)
nax
=
np
.
random
.
randint
(
1
,
ndim
+
1
)
rng
.
shuffle
(
axes
)
nax
=
rng
.
integers
(
1
,
ndim
+
1
)
axes
=
axes
[:
nax
]
lastsize
=
shape
[
axes
[
-
1
]]
a
=
np
.
random
.
rand
(
*
shape
)
-
0.5
+
1j
*
np
.
random
.
rand
(
*
shape
)
-
0.5j
a
=
rng
.
random
(
shape
)
-
0.5
+
1j
*
rng
.
random
(
shape
)
-
0.5j
a_32
=
a
.
astype
(
np
.
complex64
)
b
=
ifftn
(
fftn
(
a
,
axes
=
axes
,
nthreads
=
nthreads
),
axes
=
axes
,
inorm
=
2
,
nthreads
=
nthreads
)
...
...
python/demos/healpix_perftest.py
View file @
e3d06876
...
...
@@ -3,17 +3,19 @@ import math
import
numpy
as
np
import
ducc_0_1.healpix
as
ph
rng
=
np
.
random
.
default_rng
(
42
)
def
report
(
name
,
vlen
,
ntry
,
nside
,
isnest
,
perf
):
print
(
name
,
": "
,
perf
*
1e-6
,
"MOps/s"
,
sep
=
""
)
def
random_ptg
(
vlen
):
res
=
np
.
empty
((
vlen
,
2
),
dtype
=
np
.
float64
)
res
[:,
0
]
=
np
.
arccos
((
np
.
random
.
random_sample
(
vlen
)
-
0.5
)
*
2
)
res
[:,
1
]
=
np
.
random
.
random_sample
(
vlen
)
*
2
*
math
.
pi
res
[:,
0
]
=
np
.
arccos
((
rng
.
random
(
vlen
)
-
0.5
)
*
2
)
res
[:,
1
]
=
rng
.
random
(
vlen
)
*
2
*
math
.
pi
return
res
def
random_pix
(
nside
,
vlen
):
return
np
.
random
.
randint
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
,
dtype
=
np
.
int64
)
return
rng
.
integers
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
,
dtype
=
np
.
int64
)
def
dummy
(
vlen
):
inp
=
np
.
zeros
(
vlen
,
dtype
=
np
.
int64
)
...
...
python/demos/healpix_test.py
View file @
e3d06876
...
...
@@ -2,10 +2,12 @@ import ducc_0_1.healpix as ph
import
numpy
as
np
import
math
rng
=
np
.
random
.
default_rng
(
42
)
def
random_ptg
(
vlen
):
res
=
np
.
empty
((
vlen
,
2
),
dtype
=
np
.
float64
)
res
[:,
0
]
=
np
.
arccos
((
np
.
random
.
random_sample
(
vlen
)
-
0.5
)
*
2
)
res
[:,
1
]
=
np
.
random
.
random_sample
(
vlen
)
*
2
*
math
.
pi
res
[:,
0
]
=
np
.
arccos
((
rng
.
random
(
vlen
)
-
0.5
)
*
2
)
res
[:,
1
]
=
rng
.
random
(
vlen
)
*
2
*
math
.
pi
return
res
def
check_pixangpix
(
vlen
,
ntry
,
nside
,
isnest
):
...
...
@@ -13,7 +15,7 @@ def check_pixangpix(vlen,ntry,nside,isnest):
cnt
=
0
while
cnt
<
ntry
:
cnt
+=
1
inp
=
np
.
random
.
randint
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
inp
=
rng
.
integers
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
out
=
base
.
ang2pix
(
base
.
pix2ang
(
inp
))
if
not
np
.
array_equal
(
inp
,
out
):
raise
ValueError
(
"Test failed"
)
...
...
@@ -33,7 +35,7 @@ def check_pixangvecpix(vlen, ntry, nside, isnest):
cnt
=
0
while
cnt
<
ntry
:
cnt
+=
1
inp
=
np
.
random
.
randint
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
inp
=
rng
.
integers
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
out
=
base
.
vec2pix
(
ph
.
ang2vec
(
base
.
pix2ang
(
inp
)))
if
not
np
.
array_equal
(
inp
,
out
):
raise
ValueError
(
"Test failed"
)
...
...
@@ -43,7 +45,7 @@ def check_pixvecangpix(vlen, ntry, nside, isnest):
cnt
=
0
while
cnt
<
ntry
:
cnt
+=
1
inp
=
np
.
random
.
randint
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
inp
=
rng
.
integers
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
out
=
base
.
ang2pix
(
ph
.
vec2ang
(
base
.
pix2vec
(
inp
)))
if
not
np
.
array_equal
(
inp
,
out
):
raise
ValueError
(
"Test failed"
)
...
...
@@ -53,7 +55,7 @@ def check_pixvecpix(vlen,ntry,nside,isnest):
cnt
=
0
while
(
cnt
<
ntry
):
cnt
+=
1
inp
=
np
.
random
.
randint
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
inp
=
rng
.
integers
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
out
=
base
.
vec2pix
(
base
.
pix2vec
(
inp
))
if
(
np
.
array_equal
(
inp
,
out
)
==
False
):
raise
ValueError
(
"Test failed"
)
...
...
@@ -63,7 +65,7 @@ def check_ringnestring(vlen,ntry,nside):
cnt
=
0
while
(
cnt
<
ntry
):
cnt
+=
1
inp
=
np
.
random
.
randint
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
inp
=
rng
.
integers
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
out
=
base
.
nest2ring
(
base
.
ring2nest
(
inp
))
if
(
np
.
array_equal
(
inp
,
out
)
==
False
):
raise
ValueError
(
"Test failed"
)
...
...
@@ -73,7 +75,7 @@ def check_pixxyfpix(vlen,ntry,nside,isnest):
cnt
=
0
while
(
cnt
<
ntry
):
cnt
+=
1
inp
=
np
.
random
.
randint
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
inp
=
rng
.
integers
(
low
=
0
,
high
=
12
*
nside
*
nside
-
1
,
size
=
vlen
)
out
=
base
.
xyf2pix
(
base
.
pix2xyf
(
inp
))
if
(
np
.
array_equal
(
inp
,
out
)
==
False
):
raise
ValueError
(
"Test failed"
)
...
...
python/demos/sht_demo.py
View file @
e3d06876
...
...
@@ -35,7 +35,8 @@ job = sht.sharpjob_d()
# number of required a_lm coefficients
nalm
=
((
mmax
+
1
)
*
(
mmax
+
2
))
//
2
+
(
mmax
+
1
)
*
(
lmax
-
mmax
)
# get random a_lm
alm
=
np
.
random
.
uniform
(
-
1.
,
1.
,
nalm
)
+
1j
*
np
.
random
.
uniform
(
-
1.
,
1.
,
nalm
)
rng
=
np
.
random
.
default_rng
(
42
)
alm
=
rng
.
uniform
(
-
1.
,
1.
,
nalm
)
+
1j
*
rng
.
uniform
(
-
1.
,
1.
,
nalm
)
# make a_lm with m==0 real-valued
alm
[
0
:
lmax
+
1
].
imag
=
0.
...
...
python/demos/sht_upsample_demo.py
View file @
e3d06876
...
...
@@ -14,7 +14,8 @@ print("Generating spherical harmonic coefficients up to {}".format(lmax))
# number of required a_lm coefficients
nalm
=
((
mmax
+
1
)
*
(
mmax
+
2
))
//
2
+
(
mmax
+
1
)
*
(
lmax
-
mmax
)
# get random a_lm
alm
=
np
.
random
.
uniform
(
-
1.
,
1.
,
nalm
)
+
1j
*
np
.
random
.
uniform
(
-
1.
,
1.
,
nalm
)
rng
=
np
.
random
.
default_rng
(
42
)
alm
=
rng
.
uniform
(
-
1.
,
1.
,
nalm
)
+
1j
*
rng
.
uniform
(
-
1.
,
1.
,
nalm
)
# make a_lm with m==0 real-valued
alm
[
0
:
lmax
+
1
].
imag
=
0.
...
...
python/demos/totalconvolve_accuracy.py
View file @
e3d06876
...
...
@@ -5,15 +5,15 @@ import ducc_0_1.misc as misc
import
time
import
matplotlib.pyplot
as
plt
np
.
random
.
seed
(
4
8
)
rng
=
np
.
random
.
default_rng
(
4
2
)
def
nalm
(
lmax
,
mmax
):
return
((
mmax
+
1
)
*
(
mmax
+
2
))
//
2
+
(
mmax
+
1
)
*
(
lmax
-
mmax
)
def
random_alm
(
lmax
,
mmax
,
ncomp
):
res
=
np
.
random
.
uniform
(
-
1.
,
1.
,
(
nalm
(
lmax
,
mmax
),
ncomp
))
\
+
1j
*
np
.
random
.
uniform
(
-
1.
,
1.
,
(
nalm
(
lmax
,
mmax
),
ncomp
))
res
=
rng
.
uniform
(
-
1.
,
1.
,
(
nalm
(
lmax
,
mmax
),
ncomp
))
\
+
1j
*
rng
.
uniform
(
-
1.
,
1.
,
(
nalm
(
lmax
,
mmax
),
ncomp
))
# make a_lm with m==0 real-valued
res
[
0
:
lmax
+
1
,:].
imag
=
0.
return
res
...
...
python/demos/totalconvolve_demo.py
View file @
e3d06876
...
...
@@ -2,15 +2,15 @@ import ducc_0_1.totalconvolve as totalconvolve
import
numpy
as
np
import
time
np
.
random
.
seed
(
48
)
rng
=
np
.
random
.
default_rng
(
48
)
def
nalm
(
lmax
,
mmax
):
return
((
mmax
+
1
)
*
(
mmax
+
2
))
//
2
+
(
mmax
+
1
)
*
(
lmax
-
mmax
)
def
random_alm
(
lmax
,
mmax
,
ncomp
):
res
=
np
.
random
.
uniform
(
-
1.
,
1.
,
(
nalm
(
lmax
,
mmax
),
ncomp
))
\
+
1j
*
np
.
random
.
uniform
(
-
1.
,
1.
,
(
nalm
(
lmax
,
mmax
),
ncomp
))
res
=
rng
.
uniform
(
-
1.
,
1.
,
(
nalm
(
lmax
,
mmax
),
ncomp
))
\
+
1j
*
rng
.
uniform
(
-
1.
,
1.
,
(
nalm
(
lmax
,
mmax
),
ncomp
))
# make a_lm with m==0 real-valued
res
[
0
:
lmax
+
1
,:].
imag
=
0.
return
res
...
...
@@ -68,7 +68,7 @@ t0=time.time()
nth
=
lmax
+
1
nph
=
2
*
lmax
+
1
ptg
=
np
.
random
.
uniform
(
0.
,
1.
,
3
*
nptg
).
reshape
(
nptg
,
3
)
ptg
=
rng
.
uniform
(
0.
,
1.
,
3
*
nptg
).
reshape
(
nptg
,
3
)
ptg
[:,
0
]
*=
np
.
pi
ptg
[:,
1
]
*=
2
*
np
.
pi
ptg
[:,
2
]
*=
2
*
np
.
pi
...
...
@@ -78,7 +78,7 @@ bar=foo.interpol(ptg)
del
foo
print
(
"Interpolating {} random angle triplets: {}s"
.
format
(
nptg
,
time
.
time
()
-
t0
))
t0
=
time
.
time
()
fake
=
np
.
random
.
uniform
(
0.
,
1.
,
(
ptg
.
shape
[
0
],
ncomp2
))
fake
=
rng
.
uniform
(
0.
,
1.
,
(
ptg
.
shape
[
0
],
ncomp2
))
foo2
=
totalconvolve
.
PyInterpolator
(
lmax
,
kmax
,
ncomp2
,
epsilon
=
epsilon
,
ofactor
=
ofactor
,
nthreads
=
nthreads
)
t0
=
time
.
time
()
foo2
.
deinterpol
(
ptg
.
reshape
((
-
1
,
3
)),
fake
)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment