Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Martin Reinecke
ducc
Commits
c37e6c89
Commit
c37e6c89
authored
Jul 02, 2020
by
Martin Reinecke
Browse files
smaller
parent
656634b4
Pipeline
#77751
passed with stages
in 13 minutes and 3 seconds
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
src/ducc0/math/horner_kernel.h
View file @
c37e6c89
...
...
@@ -34,46 +34,21 @@ namespace detail_horner_kernel {
using
namespace
std
;
constexpr
double
pi
=
3.141592653589793238462643383279502884197
;
/*! Class providing fast piecewise polynomial approximation of a function which
is defined on the interval [-1;1]
W is the number of equal-length intervals into which [-1;1] is subdivided.
D is the degree of the approximating polynomials.
T is the type at which the approximation is calculated;
should be float or double. */
template
<
size_t
W
,
size_t
D
,
typename
T
>
class
HornerKernel
template
<
typename
Func
>
vector
<
double
>
getCoeffs
(
size_t
W
,
size_t
D
,
Func
func
)
{
private:
using
Tsimd
=
native_simd
<
T
>
;
static
constexpr
auto
vlen
=
Tsimd
::
size
();
static
constexpr
auto
nvec
=
(
W
+
vlen
-
1
)
/
vlen
;
array
<
array
<
Tsimd
,
nvec
>
,
D
+
1
>
coeff
;
union
{
array
<
Tsimd
,
nvec
>
v
;
array
<
T
,
W
>
s
;
}
res
;
public:
template
<
typename
Func
>
HornerKernel
(
Func
func
)
{
for
(
size_t
i
=
0
;
i
<=
D
;
++
i
)
for
(
size_t
j
=
0
;
j
<
nvec
;
++
j
)
coeff
[
i
][
j
]
=
0
;
array
<
double
,
D
+
1
>
chebroot
;
vector
<
double
>
coeff
(
W
*
(
D
+
1
));
vector
<
double
>
chebroot
(
D
+
1
);
for
(
size_t
i
=
0
;
i
<=
D
;
++
i
)
chebroot
[
i
]
=
cos
((
2
*
i
+
1.
)
*
pi
/
(
2
*
D
+
2
));
vector
<
double
>
y
(
D
+
1
),
lcf
(
D
+
1
),
C
((
D
+
1
)
*
(
D
+
1
)),
lcf2
(
D
+
1
);
for
(
size_t
i
=
0
;
i
<
W
;
++
i
)
{
double
l
=
-
1
+
2.
*
i
/
double
(
W
);
double
r
=
-
1
+
2.
*
(
i
+
1
)
/
double
(
W
);
// function values at Chebyshev nodes
array
<
double
,
D
+
1
>
y
;
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
y
[
j
]
=
func
(
chebroot
[
j
]
*
(
r
-
l
)
*
0.5
+
(
r
+
l
)
*
0.5
);
// Chebyshev coefficients
array
<
double
,
D
+
1
>
lcf
;
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
{
lcf
[
j
]
=
0
;
...
...
@@ -82,25 +57,56 @@ template<size_t W, size_t D, typename T> class HornerKernel
}
lcf
[
0
]
*=
0.5
;
// Polynomial coefficients
array
<
array
<
double
,
D
+
1
>
,
D
+
1
>
C
;
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
for
(
size_t
k
=
0
;
k
<=
D
;
++
k
)
C
[
j
][
k
]
=
0
;
C
[
0
][
0
]
=
1.
;
C
[
1
][
1
]
=
1.
;
fill
(
C
.
begin
(),
C
.
end
(),
0.
);
C
[
0
]
=
1.
;
C
[
1
*
(
D
+
1
)
+
1
]
=
1.
;
for
(
size_t
j
=
2
;
j
<=
D
;
++
j
)
{
C
[
j
][
0
]
=
-
C
[
j
-
2
][
0
];
C
[
j
*
(
D
+
1
)
+
0
]
=
-
C
[
(
j
-
2
)
*
(
D
+
1
)
+
0
];
for
(
size_t
k
=
1
;
k
<=
j
;
++
k
)
C
[
j
][
k
]
=
2
*
C
[
j
-
1
][
k
-
1
]
-
C
[
j
-
2
][
k
];
C
[
j
*
(
D
+
1
)
+
k
]
=
2
*
C
[
(
j
-
1
)
*
(
D
+
1
)
+
k
-
1
]
-
C
[
(
j
-
2
)
*
(
D
+
1
)
+
k
];
}
array
<
double
,
D
+
1
>
lcf2
;
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
lcf2
[
j
]
=
0
;
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
for
(
size_t
k
=
0
;
k
<=
D
;
++
k
)
lcf2
[
k
]
+=
C
[
j
][
k
]
*
lcf
[
j
];
lcf2
[
k
]
+=
C
[
j
*
(
D
+
1
)
+
k
]
*
lcf
[
j
];
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
coeff
[
j
][
i
/
vlen
][
i
%
vlen
]
=
T
(
lcf2
[
D
-
j
]);
coeff
[
j
*
W
+
i
]
=
lcf2
[
D
-
j
];
}
return
coeff
;
}
/*! Class providing fast piecewise polynomial approximation of a function which
is defined on the interval [-1;1]
W is the number of equal-length intervals into which [-1;1] is subdivided.
D is the degree of the approximating polynomials.
T is the type at which the approximation is calculated;
should be float or double. */
template
<
size_t
W
,
size_t
D
,
typename
T
>
class
HornerKernel
{
private:
using
Tsimd
=
native_simd
<
T
>
;
static
constexpr
auto
vlen
=
Tsimd
::
size
();
static
constexpr
auto
nvec
=
(
W
+
vlen
-
1
)
/
vlen
;
array
<
array
<
Tsimd
,
nvec
>
,
D
+
1
>
coeff
;
union
{
array
<
Tsimd
,
nvec
>
v
;
array
<
T
,
W
>
s
;
}
res
;
public:
template
<
typename
Func
>
HornerKernel
(
Func
func
)
{
auto
coeff_raw
=
getCoeffs
(
W
,
D
,
func
);
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
{
for
(
size_t
i
=
0
;
i
<
W
;
++
i
)
coeff
[
j
][
i
/
vlen
][
i
%
vlen
]
=
T
(
coeff_raw
[
j
*
W
+
i
]);
for
(
size_t
i
=
W
;
i
<
vlen
*
nvec
;
++
i
)
coeff
[
j
][
i
/
vlen
][
i
%
vlen
]
=
T
(
0
);
}
}
...
...
@@ -187,41 +193,13 @@ template<typename T> class HornerKernelFlexible
:
W
(
W_
),
D
(
D_
),
nvec
((
W
+
vlen
-
1
)
/
vlen
),
res
(
nvec
),
coeff
(
nvec
*
(
D
+
1
),
0
),
evalfunc
(
evfhelper1
<
1
>
())
{
vector
<
double
>
chebroot
(
D
+
1
);
for
(
size_t
i
=
0
;
i
<=
D
;
++
i
)
chebroot
[
i
]
=
cos
((
2
*
i
+
1.
)
*
pi
/
(
2
*
D
+
2
));
vector
<
double
>
y
(
D
+
1
),
lcf
(
D
+
1
),
C
((
D
+
1
)
*
(
D
+
1
)),
lcf2
(
D
+
1
);
for
(
size_t
i
=
0
;
i
<
W
;
++
i
)
{
double
l
=
-
1
+
2.
*
i
/
double
(
W
);
double
r
=
-
1
+
2.
*
(
i
+
1
)
/
double
(
W
);
// function values at Chebyshev nodes
auto
coeff_raw
=
getCoeffs
(
W
,
D
,
func
);
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
y
[
j
]
=
func
(
chebroot
[
j
]
*
(
r
-
l
)
*
0.5
+
(
r
+
l
)
*
0.5
);
// Chebyshev coefficients
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
{
lcf
[
j
]
=
0
;
for
(
size_t
k
=
0
;
k
<=
D
;
++
k
)
lcf
[
j
]
+=
2.
/
(
D
+
1
)
*
y
[
k
]
*
cos
(
j
*
(
2
*
k
+
1
)
*
pi
/
(
2
*
D
+
2
));
}
lcf
[
0
]
*=
0.5
;
// Polynomial coefficients
fill
(
C
.
begin
(),
C
.
end
(),
0.
);
C
[
0
]
=
1.
;
C
[
1
*
(
D
+
1
)
+
1
]
=
1.
;
for
(
size_t
j
=
2
;
j
<=
D
;
++
j
)
{
C
[
j
*
(
D
+
1
)
+
0
]
=
-
C
[(
j
-
2
)
*
(
D
+
1
)
+
0
];
for
(
size_t
k
=
1
;
k
<=
j
;
++
k
)
C
[
j
*
(
D
+
1
)
+
k
]
=
2
*
C
[(
j
-
1
)
*
(
D
+
1
)
+
k
-
1
]
-
C
[(
j
-
2
)
*
(
D
+
1
)
+
k
];
}
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
lcf2
[
j
]
=
0
;
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
for
(
size_t
k
=
0
;
k
<=
D
;
++
k
)
lcf2
[
k
]
+=
C
[
j
*
(
D
+
1
)
+
k
]
*
lcf
[
j
];
for
(
size_t
j
=
0
;
j
<=
D
;
++
j
)
coeff
[
j
*
nvec
+
i
/
vlen
][
i
%
vlen
]
=
T
(
lcf2
[
D
-
j
]);
for
(
size_t
i
=
0
;
i
<
W
;
++
i
)
coeff
[
j
*
nvec
+
i
/
vlen
][
i
%
vlen
]
=
T
(
coeff_raw
[
j
*
W
+
i
]);
for
(
size_t
i
=
W
;
i
<
vlen
*
nvec
;
++
i
)
coeff
[
j
*
nvec
+
i
/
vlen
][
i
%
vlen
]
=
T
(
0
);
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment