interpol_ng.cc 7.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
 *  Copyright (C) 2020 Max-Planck-Society
 *  Author: Martin Reinecke
 */

#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <vector>
#include <complex>
#include "mr_util/math/constants.h"
#include "mr_util/math/gl_integrator.h"
#include "mr_util/math/es_kernel.h"
#include "mr_util/infra/mav.h"
#include "mr_util/sharp/sharp.h"
#include "mr_util/sharp/sharp_almhelpers.h"
#include "mr_util/sharp/sharp_geomhelpers.h"
#include "alm.h"
#include "mr_util/math/fft.h"
#include "mr_util/bindings/pybind_utils.h"
#include <iostream>
using namespace std;
using namespace mr;

namespace py = pybind11;

namespace {

template<typename T> class Interpolator
  {
  protected:
    size_t supp;
    size_t lmax, kmax, ppring, ntheta, nphi;
    ES_Kernel kernel;
    mav<T,3> cube; // the data cube (theta, phi, 2*mbeam+1[, IQU])

    void correct(mav<T,2> &arr)
      {
      mav<T,2> tmp({nphi,nphi});
      fmav<T> ftmp(tmp);
      for (size_t i=0; i<ntheta; ++i)
        for (size_t j=0; j<nphi; ++j)
          tmp.v(i,j) = arr(i,j);
      // extend to second half
      for (size_t i=1, i2=2*ntheta-3; i+1<ntheta; ++i,--i2)
        for (size_t j=0,j2=nphi/2; j<nphi; ++j,++j2)
          {
          if (j2>=nphi) j2-=nphi;
          tmp.v(i2,j) = arr(i,j2);
          }
      // FFT
      r2r_fftpack(ftmp,ftmp,{0,1},true,true,1.,0);
      ES_Kernel kernel(supp,nphi/double(2*lmax+1),0);
      auto fct = kernel.correction_factors(nphi, nphi/2+2, 0);
      for (size_t i=0; i<nphi; ++i)
        for (size_t j=0; j<nphi; ++j)
          tmp.v(i,j) *= fct[(i+1)/2] * fct[(j+1)/2];
      r2r_fftpack(ftmp,ftmp,{0,1},false,false,1./(nphi*nphi),0);
      for (size_t i=0; i<ntheta; ++i)
        for (size_t j=0; j<nphi; ++j)
          arr.v(i,j) = tmp(i,j);
      }

  public:
    Interpolator(const Alm<complex<T>> &slmT, const Alm<complex<T>> &blmT,
      double epsilon)
      : supp(ES_Kernel::get_supp(epsilon)),
        lmax(slmT.Lmax()),
        kmax(blmT.Mmax()),
        ppring(2*good_size_real(2*lmax+1)),
        ntheta(ppring/2+1),
        nphi(ppring),
        kernel(supp, 2, 1),
        cube({ntheta+2*supp, nphi+2*supp, 2*kmax+1})
      {
      MR_assert((supp<=ntheta) && (supp<=nphi), "support too large!");
      MR_assert(slmT.Mmax()==lmax, "Sky lmax must be equal to Sky mmax");
      MR_assert(blmT.Lmax()==lmax, "Sky and beam lmax must be equal");
      Alm<complex<T>> a1(lmax, lmax), a2(lmax,lmax);
      auto ginfo = sharp_make_cc_geom_info(ntheta,nphi,0,cube.stride(1),cube.stride(0));
      auto ainfo = sharp_make_triangular_alm_info(lmax,lmax,1);

      vector<double>lnorm(lmax+1);
      for (size_t i=0; i<=lmax; ++i)
        lnorm[i]=sqrt(4*pi/(2*i+1.));

      for (size_t k=0; k<=kmax; ++k)
        {
        double spinsign = (k==0) ? 1. : -1.;
        for (size_t m=0; m<=lmax; ++m)
          {
          T mfac=T((m&1) ? -1.:1.);
          for (size_t l=m; l<=lmax; ++l)
            {
            if (l<k)
              a1(l,m)=a2(l,m)=0.;
            else
              {
              complex<T> v1=slmT(l,m)*blmT(l,k),
                         v2=conj(slmT(l,m))*blmT(l,k)*mfac;
              a1(l,m) = (v1+conj(v2)*mfac)*T(0.5*spinsign*lnorm[l]);
              if (k>0)
                {
                complex<T> tmp = (v1-conj(v2)*mfac)*T(-spinsign*0.5*lnorm[l]);
                a2(l,m) = complex<T>(-tmp.imag(), tmp.real());
                }
              }
            }
          }
        size_t kidx1 = (k==0) ? 0 : 2*k-1,
               kidx2 = (k==0) ? 0 : 2*k;
        auto quadrant=k%4;
        if (quadrant&1)
          swap(kidx1, kidx2);
        mav<T,2> m1(&cube.v(supp,supp,kidx1),{ntheta,nphi},{cube.stride(0),cube.stride(1)},true);
        mav<T,2> m2(&cube.v(supp,supp,kidx2),{ntheta,nphi},{cube.stride(0),cube.stride(1)},true);
        if (k==0)
          sharp_alm2map(a1.Alms().data(), m1.vdata(), *ginfo, *ainfo, 0, nullptr, nullptr);
        else
          sharp_alm2map_spin(k, a1.Alms().data(), a2.Alms().data(), m1.vdata(), m2.vdata(), *ginfo, *ainfo, 0, nullptr, nullptr);
        correct(m1);
        if (k!=0) correct(m2);

        if ((quadrant==1)||(quadrant==2)) m1.apply([](T &v){v=-v;});
        if ((k>0) &&((quadrant==0)||(quadrant==1))) m2.apply([](T &v){v=-v;});
        }
      // fill border regions
      for (size_t i=0; i<supp; ++i)
        for (size_t j=0, j2=nphi/2; j<nphi; ++j,++j2)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            if (j2>=nphi) j2-=nphi;
            cube.v(supp-1-i,j2+supp,k) = cube(supp+1+i,j+supp,k);
            cube.v(supp+ntheta+i,j2+supp,k) = cube(supp+ntheta-2-i, j+supp,k);
            }
      for (size_t i=0; i<ntheta+2*supp; ++i)
        for (size_t j=0; j<supp; ++j)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            cube.v(i,j,k) = cube(i,j+nphi,k);
            cube.v(i,j+nphi+supp,k) = cube(i,j+supp,k);
            }
      }

    void interpolx (const mav<T,2> &ptg, mav<T,1> &res) const
      {
      MR_assert(ptg.shape(0)==res.shape(0), "dimension mismatch");
      MR_assert(ptg.shape(1)==3, "second dimension must have length 3");
      vector<T> wt(supp), wp(supp);
      vector<T> psiarr(2*kmax+1);
      for (size_t i=0; i<ptg.shape(0); ++i)
        {
        double theta=ptg(i,0);
        double phi=ptg(i,1);
        double psi=ptg(i,2);
        double f0=supp+theta*((ntheta-1)/pi)-0.5*supp;
        size_t i0 = size_t(f0+1.);
        for (size_t t=0; t<supp; ++t)
          wt[t] = kernel(((t+i0)-f0-0.5*supp)/supp);
        double f1=supp+phi*(nphi/(2*pi))-0.5*supp;
        size_t i1 = size_t(f1+1.);
        for (size_t t=0; t<supp; ++t)
          wp[t] = kernel(((t+i1)-f1-0.5*supp)/supp);
        double val=0;
        psiarr[0]=1.;
        double cpsi=cos(psi), spsi=sin(psi);
        double cnpsi=cpsi, snpsi=spsi;
        for (size_t l=1; l<=kmax; ++l)
          {
          psiarr[2*l-1]=cnpsi;
Martin Reinecke's avatar
Martin Reinecke committed
170
          psiarr[2*l]=-snpsi;
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
          const double tmp = snpsi*cpsi + cnpsi*spsi;
          cnpsi=cnpsi*cpsi - snpsi*spsi;
          snpsi=tmp;
          }
        for (size_t j=0; j<supp; ++j)
          for (size_t k=0; k<supp; ++k)
            for (size_t l=0; l<2*kmax+1; ++l)
              val += cube(i0+j,i1+k,0)*wt[j]*wp[k]*psiarr[l];
        res.v(i) = val;
        }
      }
  };

template<typename T> class PyInterpolator: public Interpolator<T>
  {
  public:
    PyInterpolator(const py::array &slmT, const py::array &blmT, int64_t lmax, int64_t kmax, double epsilon)
      : Interpolator<T>(Alm<complex<T>>(to_mav<complex<T>,1>(slmT), lmax, lmax),
                        Alm<complex<T>>(to_mav<complex<T>,1>(blmT), lmax, kmax),
                        epsilon) {}
    using Interpolator<T>::interpolx;
    py::array interpol(const py::array &ptg)
      {
      auto ptg2 = to_mav<T,2>(ptg);
      auto res = make_Pyarr<double>({ptg2.shape(0)});
      auto res2 = to_mav<double,1>(res,true);
      interpolx(ptg2, res2);
      return res;
      }
  };

} // unnamed namespace

PYBIND11_MODULE(interpol_ng, m)
  {
  using namespace pybind11::literals;

  py::class_<PyInterpolator<double>> (m, "PyInterpolator")
    .def(py::init<const py::array &, const py::array &, int64_t, int64_t, double>(),
      "sky"_a, "beam"_a, "lmax"_a, "kmax"_a, "epsilon"_a)
    .def ("interpol", &PyInterpolator<double>::interpol, "ptg"_a);
  }