interpol_ng.cc 8.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 *  Copyright (C) 2020 Max-Planck-Society
 *  Author: Martin Reinecke
 */

#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <vector>
#include <complex>
#include "mr_util/math/constants.h"
#include "mr_util/math/gl_integrator.h"
#include "mr_util/math/es_kernel.h"
#include "mr_util/infra/mav.h"
#include "mr_util/sharp/sharp.h"
#include "mr_util/sharp/sharp_almhelpers.h"
#include "mr_util/sharp/sharp_geomhelpers.h"
#include "alm.h"
#include "mr_util/math/fft.h"
#include "mr_util/bindings/pybind_utils.h"
Martin Reinecke's avatar
fix    
Martin Reinecke committed
20

21
22
23
24
25
26
27
using namespace std;
using namespace mr;

namespace py = pybind11;

namespace {

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
28
29
constexpr double ofmin=1.5;

30
31
32
template<typename T> class Interpolator
  {
  protected:
Martin Reinecke's avatar
Martin Reinecke committed
33
    size_t lmax, kmax, nphi0, ntheta0, nphi, ntheta;
Martin Reinecke's avatar
Martin Reinecke committed
34
    int nthreads;
Martin Reinecke's avatar
fix    
Martin Reinecke committed
35
36
    double ofactor;
    size_t supp;
37
38
39
40
41
42
    ES_Kernel kernel;
    mav<T,3> cube; // the data cube (theta, phi, 2*mbeam+1[, IQU])

    void correct(mav<T,2> &arr)
      {
      mav<T,2> tmp({nphi,nphi});
Martin Reinecke's avatar
Martin Reinecke committed
43
      auto tmp0=tmp.template subarray<2>({0,0},{nphi0, nphi0});
Martin Reinecke's avatar
Martin Reinecke committed
44
45
46
47
      fmav<T> ftmp0(tmp0);
      for (size_t i=0; i<ntheta0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) = arr(i,j);
48
      // extend to second half
Martin Reinecke's avatar
Martin Reinecke committed
49
50
      for (size_t i=1, i2=2*ntheta0-3; i+1<ntheta0; ++i,--i2)
        for (size_t j=0,j2=nphi0/2; j<nphi0; ++j,++j2)
51
          {
Martin Reinecke's avatar
Martin Reinecke committed
52
53
          if (j2>=nphi0) j2-=nphi0;
          tmp0.v(i2,j) = arr(i,j2);
54
          }
Martin Reinecke's avatar
Martin Reinecke committed
55
      // FFT to frequency domain on minimal grid
Martin Reinecke's avatar
Martin Reinecke committed
56
57
      r2r_fftpack(ftmp0,ftmp0,{0,1},true,true,1./(nphi0*nphi0),nthreads);
      auto fct = kernel.correction_factors(nphi, nphi0/2+1, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
58
59
60
      for (size_t i=0; i<nphi0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) *= fct[(i+1)/2] * fct[(j+1)/2];
Martin Reinecke's avatar
Martin Reinecke committed
61
      auto tmp1=tmp.template subarray<2>({0,0},{nphi, nphi0});
Martin Reinecke's avatar
Martin Reinecke committed
62
      fmav<T> ftmp1(tmp1);
Martin Reinecke's avatar
Martin Reinecke committed
63
      // zero-padded FFT in theta direction
Martin Reinecke's avatar
Martin Reinecke committed
64
      r2r_fftpack(ftmp1,ftmp1,{0},false,false,1.,nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
65
      auto tmp2=tmp.template subarray<2>({0,0},{ntheta, nphi});
Martin Reinecke's avatar
Martin Reinecke committed
66
67
      fmav<T> ftmp2(tmp2);
      fmav<T> farr(arr);
Martin Reinecke's avatar
Martin Reinecke committed
68
      // zero-padded FFT in phi direction
Martin Reinecke's avatar
Martin Reinecke committed
69
      r2r_fftpack(ftmp2,farr,{1},false,false,1.,nthreads);
70
71
72
73
      }

  public:
    Interpolator(const Alm<complex<T>> &slmT, const Alm<complex<T>> &blmT,
Martin Reinecke's avatar
Martin Reinecke committed
74
      double epsilon, int nthreads_)
Martin Reinecke's avatar
fix    
Martin Reinecke committed
75
      : lmax(slmT.Lmax()),
76
        kmax(blmT.Mmax()),
Martin Reinecke's avatar
Martin Reinecke committed
77
78
        nphi0(2*good_size_real(lmax+1)),
        ntheta0(nphi0/2+1),
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
79
        nphi(2*good_size_real(size_t((2*lmax+1)*ofmin/2.))),
Martin Reinecke's avatar
Martin Reinecke committed
80
        ntheta(nphi/2+1),
Martin Reinecke's avatar
Martin Reinecke committed
81
        nthreads(nthreads_),
Martin Reinecke's avatar
Martin Reinecke committed
82
        ofactor(double(nphi)/(2*lmax+1)),
Martin Reinecke's avatar
fix    
Martin Reinecke committed
83
        supp(ES_Kernel::get_supp(epsilon, ofactor)),
Martin Reinecke's avatar
Martin Reinecke committed
84
        kernel(supp, ofactor, nthreads),
85
86
87
88
89
90
        cube({ntheta+2*supp, nphi+2*supp, 2*kmax+1})
      {
      MR_assert((supp<=ntheta) && (supp<=nphi), "support too large!");
      MR_assert(slmT.Mmax()==lmax, "Sky lmax must be equal to Sky mmax");
      MR_assert(blmT.Lmax()==lmax, "Sky and beam lmax must be equal");
      Alm<complex<T>> a1(lmax, lmax), a2(lmax,lmax);
Martin Reinecke's avatar
Martin Reinecke committed
91
      auto ginfo = sharp_make_cc_geom_info(ntheta0,nphi0,0,cube.stride(1),cube.stride(0));
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
      auto ainfo = sharp_make_triangular_alm_info(lmax,lmax,1);

      vector<double>lnorm(lmax+1);
      for (size_t i=0; i<=lmax; ++i)
        lnorm[i]=sqrt(4*pi/(2*i+1.));

      for (size_t k=0; k<=kmax; ++k)
        {
        double spinsign = (k==0) ? 1. : -1.;
        for (size_t m=0; m<=lmax; ++m)
          {
          T mfac=T((m&1) ? -1.:1.);
          for (size_t l=m; l<=lmax; ++l)
            {
            if (l<k)
              a1(l,m)=a2(l,m)=0.;
            else
              {
              complex<T> v1=slmT(l,m)*blmT(l,k),
                         v2=conj(slmT(l,m))*blmT(l,k)*mfac;
              a1(l,m) = (v1+conj(v2)*mfac)*T(0.5*spinsign*lnorm[l]);
              if (k>0)
                {
                complex<T> tmp = (v1-conj(v2)*mfac)*T(-spinsign*0.5*lnorm[l]);
                a2(l,m) = complex<T>(-tmp.imag(), tmp.real());
                }
              }
            }
          }
        size_t kidx1 = (k==0) ? 0 : 2*k-1,
               kidx2 = (k==0) ? 0 : 2*k;
        auto quadrant=k%4;
        if (quadrant&1)
          swap(kidx1, kidx2);
Martin Reinecke's avatar
Martin Reinecke committed
126
127
        auto m1 = cube.template subarray<2>({supp,supp,kidx1},{ntheta,nphi,0});
        auto m2 = cube.template subarray<2>({supp,supp,kidx2},{ntheta,nphi,0});
128
        if (k==0)
Martin Reinecke's avatar
Martin Reinecke committed
129
          sharp_alm2map(a1.Alms().data(), m1.vdata(), *ginfo, *ainfo, nthreads, nullptr, nullptr);
130
        else
Martin Reinecke's avatar
Martin Reinecke committed
131
          sharp_alm2map_spin(k, a1.Alms().data(), a2.Alms().data(), m1.vdata(), m2.vdata(), *ginfo, *ainfo, nthreads, nullptr, nullptr);
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        correct(m1);
        if (k!=0) correct(m2);

        if ((quadrant==1)||(quadrant==2)) m1.apply([](T &v){v=-v;});
        if ((k>0) &&((quadrant==0)||(quadrant==1))) m2.apply([](T &v){v=-v;});
        }
      // fill border regions
      for (size_t i=0; i<supp; ++i)
        for (size_t j=0, j2=nphi/2; j<nphi; ++j,++j2)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            if (j2>=nphi) j2-=nphi;
            cube.v(supp-1-i,j2+supp,k) = cube(supp+1+i,j+supp,k);
            cube.v(supp+ntheta+i,j2+supp,k) = cube(supp+ntheta-2-i, j+supp,k);
            }
      for (size_t i=0; i<ntheta+2*supp; ++i)
        for (size_t j=0; j<supp; ++j)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            cube.v(i,j,k) = cube(i,j+nphi,k);
            cube.v(i,j+nphi+supp,k) = cube(i,j+supp,k);
            }
      }

    void interpolx (const mav<T,2> &ptg, mav<T,1> &res) const
      {
      MR_assert(ptg.shape(0)==res.shape(0), "dimension mismatch");
      MR_assert(ptg.shape(1)==3, "second dimension must have length 3");
Martin Reinecke's avatar
Martin Reinecke committed
160
161
162
      double delta = 2./supp;
      double xdtheta = (ntheta-1)/pi,
             xdphi = nphi/(2*pi);
Martin Reinecke's avatar
Martin Reinecke committed
163
      vector<size_t> idx(ptg.shape(0));
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
164
#if 1
Martin Reinecke's avatar
Martin Reinecke committed
165
      {
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
166
167
168
169
170
171
172
173
174
175
      constexpr size_t cellsize=16;
      size_t nct = ntheta/cellsize+1,
             ncp = nphi/cellsize+1;
      vector<vector<size_t>> mapper(nct*ncp);
      for (size_t i=0; i<ptg.shape(0); ++i)
        {
        size_t itheta=size_t(ptg(i,0)/pi*nct),
               iphi=size_t(ptg(i,1)/(2*pi)*ncp);
        mapper[itheta*ncp+iphi].push_back(i);
        }
Martin Reinecke's avatar
Martin Reinecke committed
176
      size_t cnt=0;
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
177
      for (const auto &vec: mapper)
Martin Reinecke's avatar
Martin Reinecke committed
178
179
180
        for (auto i:vec)
          idx[cnt++] = i;
      }
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
181
#else
Martin Reinecke's avatar
Martin Reinecke committed
182
183
      for (size_t i=0; i<idx.size(); ++i)
        idx[i]=i;
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
184
#endif
Martin Reinecke's avatar
Martin Reinecke committed
185
186

      execStatic(idx.size(), nthreads, 0, [&](Scheduler &sched)
187
        {
Martin Reinecke's avatar
Martin Reinecke committed
188
189
190
        vector<T> wt(supp), wp(supp);
        vector<T> psiarr(2*kmax+1);
        while (auto rng=sched.getNext()) for(auto ind=rng.lo; ind<rng.hi; ++ind)
191
          {
Martin Reinecke's avatar
Martin Reinecke committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
          size_t i=idx[ind];
          double f0=0.5*supp+ptg(i,0)*xdtheta;
          size_t i0 = size_t(f0+1.);
          for (size_t t=0; t<supp; ++t)
            wt[t] = kernel((t+i0-f0)*delta - 1);
          double f1=0.5*supp+ptg(i,1)*xdphi;
          size_t i1 = size_t(f1+1.);
          for (size_t t=0; t<supp; ++t)
            wp[t] = kernel((t+i1-f1)*delta - 1);
          double val=0;
          psiarr[0]=1.;
          double cpsi=cos(ptg(i,2)), spsi=sin(ptg(i,2));
          double cnpsi=cpsi, snpsi=spsi;
          for (size_t l=1; l<=kmax; ++l)
            {
            psiarr[2*l-1]=cnpsi;
            psiarr[2*l]=-snpsi;
            const double tmp = snpsi*cpsi + cnpsi*spsi;
            cnpsi=cnpsi*cpsi - snpsi*spsi;
            snpsi=tmp;
            }
          for (size_t j=0; j<supp; ++j)
            for (size_t k=0; k<supp; ++k)
              for (size_t l=0; l<2*kmax+1; ++l)
                val += cube(i0+j,i1+k,l)*wt[j]*wp[k]*psiarr[l];
          res.v(i) = val;
218
          }
Martin Reinecke's avatar
Martin Reinecke committed
219
        });
220
221
222
223
224
225
      }
  };

template<typename T> class PyInterpolator: public Interpolator<T>
  {
  public:
Martin Reinecke's avatar
Martin Reinecke committed
226
    PyInterpolator(const py::array &slmT, const py::array &blmT, int64_t lmax, int64_t kmax, double epsilon, int nthreads=0)
227
228
      : Interpolator<T>(Alm<complex<T>>(to_mav<complex<T>,1>(slmT), lmax, lmax),
                        Alm<complex<T>>(to_mav<complex<T>,1>(blmT), lmax, kmax),
Martin Reinecke's avatar
Martin Reinecke committed
229
                        epsilon, nthreads) {}
230
231
232
233
234
235
236
237
238
239
240
    using Interpolator<T>::interpolx;
    py::array interpol(const py::array &ptg)
      {
      auto ptg2 = to_mav<T,2>(ptg);
      auto res = make_Pyarr<double>({ptg2.shape(0)});
      auto res2 = to_mav<double,1>(res,true);
      interpolx(ptg2, res2);
      return res;
      }
  };

Martin Reinecke's avatar
Martin Reinecke committed
241
242
243
244
245
246
247
248
249
250
#if 0
template<typename T> py::array pyrotate_alm(const py::array &alm_, int64_t lmax,
  double psi, double theta, double phi)
  {
  Alm<complex<T>> alm(to_mav<complex<T>,1>(alm_), lmax, lmax);
  rotate_alm(alm, psi, theta, phi);
return alm_;
  }
#endif

251
252
253
254
255
256
257
} // unnamed namespace

PYBIND11_MODULE(interpol_ng, m)
  {
  using namespace pybind11::literals;

  py::class_<PyInterpolator<double>> (m, "PyInterpolator")
Martin Reinecke's avatar
Martin Reinecke committed
258
259
    .def(py::init<const py::array &, const py::array &, int64_t, int64_t, double, int>(),
      "sky"_a, "beam"_a, "lmax"_a, "kmax"_a, "epsilon"_a, "nthreads"_a)
260
    .def ("interpol", &PyInterpolator<double>::interpol, "ptg"_a);
Martin Reinecke's avatar
Martin Reinecke committed
261
262
263
264
#if 0
  m.def("rotate_alm", &pyrotate_alm<double>, "alm"_a, "lmax"_a, "psi"_a, "theta"_a,
    "phi"_a);
#endif
265
  }