interpol_ng.h 19.3 KB
Newer Older
1
2
3
4
5
/*
 *  Copyright (C) 2020 Max-Planck-Society
 *  Author: Martin Reinecke
 */

Martin Reinecke's avatar
Martin Reinecke committed
6
7
8
#ifndef MRUTIL_INTERPOL_NG_H
#define MRUTIL_INTERPOL_NG_H

9
10
#include <vector>
#include <complex>
Martin Reinecke's avatar
Martin Reinecke committed
11
#include <cmath>
12
13
14
15
16
17
18
19
20
21
#include "mr_util/math/constants.h"
#include "mr_util/math/gl_integrator.h"
#include "mr_util/math/es_kernel.h"
#include "mr_util/infra/mav.h"
#include "mr_util/sharp/sharp.h"
#include "mr_util/sharp/sharp_almhelpers.h"
#include "mr_util/sharp/sharp_geomhelpers.h"
#include "alm.h"
#include "mr_util/math/fft.h"
#include "mr_util/bindings/pybind_utils.h"
Martin Reinecke's avatar
Martin Reinecke committed
22

Martin Reinecke's avatar
Martin Reinecke committed
23
namespace mr {
24

Martin Reinecke's avatar
Martin Reinecke committed
25
namespace detail_interpol_ng {
26

Martin Reinecke's avatar
Martin Reinecke committed
27
using namespace std;
28
29
30
31

template<typename T> class Interpolator
  {
  protected:
32
    bool adjoint;
Martin Reinecke's avatar
Martin Reinecke committed
33
    size_t lmax, kmax, nphi0, ntheta0, nphi, ntheta;
Martin Reinecke's avatar
Martin Reinecke committed
34
    int nthreads;
35
    T ofactor;
Martin Reinecke's avatar
fix    
Martin Reinecke committed
36
    size_t supp;
37
    ES_Kernel kernel;
38
39
    size_t ncomp;
    mav<T,4> cube; // the data cube (theta, phi, 2*mbeam+1, TGC)
40

41
    void correct(mav<T,2> &arr, int spin)
42
      {
43
      T sfct = (spin&1) ? -1 : 1;
44
      mav<T,2> tmp({nphi,nphi});
Martin Reinecke's avatar
Martin Reinecke committed
45
      tmp.apply([](T &v){v=0.;});
Martin Reinecke's avatar
Martin Reinecke committed
46
      auto tmp0=tmp.template subarray<2>({0,0},{nphi0, nphi0});
Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
      fmav<T> ftmp0(tmp0);
      for (size_t i=0; i<ntheta0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) = arr(i,j);
51
      // extend to second half
Martin Reinecke's avatar
Martin Reinecke committed
52
      for (size_t i=1, i2=nphi0-1; i+1<ntheta0; ++i,--i2)
Martin Reinecke's avatar
Martin Reinecke committed
53
        for (size_t j=0,j2=nphi0/2; j<nphi0; ++j,++j2)
54
          {
Martin Reinecke's avatar
Martin Reinecke committed
55
          if (j2>=nphi0) j2-=nphi0;
Martin Reinecke's avatar
Martin Reinecke committed
56
          tmp0.v(i2,j) = sfct*tmp0(i,j2);
57
          }
Martin Reinecke's avatar
Martin Reinecke committed
58
      // FFT to frequency domain on minimal grid
59
      r2r_fftpack(ftmp0,ftmp0,{0,1},true,true,T(1./(nphi0*nphi0)),nthreads);
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
60
      // correct amplitude at Nyquist frequency
Martin Reinecke's avatar
Martin Reinecke committed
61
62
63
64
65
      for (size_t i=0; i<nphi0; ++i)
        {
        tmp0.v(i,nphi0-1)*=0.5;
        tmp0.v(nphi0-1,i)*=0.5;
        }
Martin Reinecke's avatar
Martin Reinecke committed
66
      auto fct = kernel.correction_factors(nphi, nphi0/2+1, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
67
68
69
      for (size_t i=0; i<nphi0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) *= fct[(i+1)/2] * fct[(j+1)/2];
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
70
71
72
      auto tmp1=tmp.template subarray<2>({0,0},{nphi, nphi0});
      fmav<T> ftmp1(tmp1);
      // zero-padded FFT in theta direction
73
      r2r_fftpack(ftmp1,ftmp1,{0},false,false,T(1),nthreads);
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
74
75
76
77
      auto tmp2=tmp.template subarray<2>({0,0},{ntheta, nphi});
      fmav<T> ftmp2(tmp2);
      fmav<T> farr(arr);
      // zero-padded FFT in phi direction
78
      r2r_fftpack(ftmp2,farr,{1},false,false,T(1),nthreads);
79
      }
80
81
    void decorrect(mav<T,2> &arr, int spin)
      {
82
      T sfct = (spin&1) ? -1 : 1;
83
84
85
86
87
88
89
      mav<T,2> tmp({nphi,nphi});
      fmav<T> ftmp(tmp);

      for (size_t i=0; i<ntheta; ++i)
        for (size_t j=0; j<nphi; ++j)
          tmp.v(i,j) = arr(i,j);
      // extend to second half
Martin Reinecke's avatar
Martin Reinecke committed
90
      for (size_t i=1, i2=nphi-1; i+1<ntheta; ++i,--i2)
91
92
93
94
95
        for (size_t j=0,j2=nphi/2; j<nphi; ++j,++j2)
          {
          if (j2>=nphi) j2-=nphi;
          tmp.v(i2,j) = sfct*tmp(i,j2);
          }
96
      r2r_fftpack(ftmp,ftmp,{1},true,true,T(1),nthreads);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
97
98
      auto tmp1=tmp.template subarray<2>({0,0},{nphi, nphi0});
      fmav<T> ftmp1(tmp1);
99
      r2r_fftpack(ftmp1,ftmp1,{0},true,true,T(1),nthreads);
100
101
102
103
104
105
106
      auto fct = kernel.correction_factors(nphi, nphi0/2+1, nthreads);
      auto tmp0=tmp.template subarray<2>({0,0},{nphi0, nphi0});
      fmav<T> ftmp0(tmp0);
      for (size_t i=0; i<nphi0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) *= fct[(i+1)/2] * fct[(j+1)/2];
      // FFT to (theta, phi) domain on minimal grid
107
      r2r_fftpack(ftmp0,ftmp0,{0,1},false, false,T(1./(nphi0*nphi0)),nthreads);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
108
109
110
111
112
      for (size_t j=0; j<nphi0; ++j)
        {
        tmp0.v(0,j)*=0.5;
        tmp0.v(ntheta0-1,j)*=0.5;
        }
113
114
115
116
      for (size_t i=0; i<ntheta0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          arr.v(i,j) = tmp0(i,j);
      }
117

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
118
119
120
121
122
123
124
125
126
127
128
    vector<size_t> getIdx(const mav<T,2> &ptg) const
      {
      vector<size_t> idx(ptg.shape(0));
      constexpr size_t cellsize=16;
      size_t nct = ntheta/cellsize+1,
             ncp = nphi/cellsize+1;
      vector<vector<size_t>> mapper(nct*ncp);
      for (size_t i=0; i<ptg.shape(0); ++i)
        {
        size_t itheta=min(nct-1,size_t(ptg(i,0)/pi*nct)),
               iphi=min(ncp-1,size_t(ptg(i,1)/(2*pi)*ncp));
129
//        MR_assert((itheta<nct)&&(iphi<ncp), "oops");
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
130
131
132
133
134
135
136
137
138
        mapper[itheta*ncp+iphi].push_back(i);
        }
      size_t cnt=0;
      for (const auto &vec: mapper)
        for (auto i:vec)
          idx[cnt++] = i;
      return idx;
      }

139
  public:
140
141
    Interpolator(const vector<Alm<complex<T>>> &slm,
                 const vector<Alm<complex<T>>> &blm,
142
                 bool separate, T epsilon, T ofmin, int nthreads_)
143
      : adjoint(false),
144
145
        lmax(slm.at(0).Lmax()),
        kmax(blm.at(0).Mmax()),
Martin Reinecke's avatar
Martin Reinecke committed
146
147
        nphi0(2*good_size_real(lmax+1)),
        ntheta0(nphi0/2+1),
Martin Reinecke's avatar
Martin Reinecke committed
148
        nphi(std::max<size_t>(20,2*good_size_real(size_t((2*lmax+1)*ofmin/2.)))),
Martin Reinecke's avatar
Martin Reinecke committed
149
        ntheta(nphi/2+1),
Martin Reinecke's avatar
Martin Reinecke committed
150
        nthreads(nthreads_),
151
        ofactor(T(nphi)/(2*lmax+1)),
Martin Reinecke's avatar
fix    
Martin Reinecke committed
152
        supp(ES_Kernel::get_supp(epsilon, ofactor)),
Martin Reinecke's avatar
Martin Reinecke committed
153
        kernel(supp, ofactor, nthreads),
154
155
        ncomp(separate ? slm.size() : 1),
        cube({ntheta+2*supp, nphi+2*supp, 2*kmax+1, ncomp})
156
      {
157
      MR_assert((ncomp==1)||(ncomp==3), "currently only 1 or 3 components allowed");
158
159
160
161
162
163
164
165
166
      MR_assert(slm.size()==blm.size(), "inconsistent slm and blm vectors");
      for (size_t i=0; i<slm.size(); ++i)
        {
        MR_assert(slm[i].Lmax()==lmax, "inconsistent Sky lmax");
        MR_assert(slm[i].Mmax()==lmax, "Sky lmax must be equal to Sky mmax");
        MR_assert(blm[i].Lmax()==lmax, "Sky and beam lmax must be equal");
        MR_assert(blm[i].Mmax()==kmax, "Inconcistent beam mmax");
        }

167
168
      MR_assert((supp<=ntheta) && (supp<=nphi), "support too large!");
      Alm<complex<T>> a1(lmax, lmax), a2(lmax,lmax);
Martin Reinecke's avatar
Martin Reinecke committed
169
      auto ginfo = sharp_make_cc_geom_info(ntheta0,nphi0,0.,cube.stride(1),cube.stride(0));
170
171
      auto ainfo = sharp_make_triangular_alm_info(lmax,lmax,1);

172
      vector<T>lnorm(lmax+1);
173
      for (size_t i=0; i<=lmax; ++i)
Martin Reinecke's avatar
Martin Reinecke committed
174
        lnorm[i]=std::sqrt(4*pi/(2*i+1.));
175

176
      for (size_t icomp=0; icomp<ncomp; ++icomp)
177
178
179
180
        {
        for (size_t m=0; m<=lmax; ++m)
          for (size_t l=m; l<=lmax; ++l)
            {
181
182
            if (separate)
              a1(l,m) = slm[icomp](l,m)*blm[icomp](l,0).real()*T(lnorm[l]);
183
184
            else
              {
185
186
187
              a1(l,m) = 0;
              for (size_t j=0; j<slm.size(); ++j)
                a1(l,m) += slm[j](l,m)*blm[j](l,0).real()*T(lnorm[l]);
188
189
              }
            }
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        auto m1 = cube.template subarray<2>({supp,supp,0,icomp},{ntheta,nphi,0,0});
        sharp_alm2map(a1.Alms().data(), m1.vdata(), *ginfo, *ainfo, 0, nthreads);
        correct(m1,0);

        for (size_t k=1; k<=kmax; ++k)
          {
          for (size_t m=0; m<=lmax; ++m)
            for (size_t l=m; l<=lmax; ++l)
              {
              if (l<k)
                a1(l,m)=a2(l,m)=0.;
              else
                {
                if (separate)
                  {
205
                  auto tmp = blm[icomp](l,k)*T(-2*lnorm[l]);
206
207
208
209
210
211
212
213
                  a1(l,m) = slm[icomp](l,m)*tmp.real();
                  a2(l,m) = slm[icomp](l,m)*tmp.imag();
                  }
                else
                  {
                  a1(l,m) = a2(l,m) = 0;
                  for (size_t j=0; j<slm.size(); ++j)
                    {
214
                    auto tmp = blm[j](l,k)*T(-2*lnorm[l]);
215
216
217
218
                    a1(l,m) += slm[j](l,m)*tmp.real();
                    a2(l,m) += slm[j](l,m)*tmp.imag();
                    }
                  }
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
219
                }
220
              }
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
221
222
223
224
225
226
          auto m1 = cube.template subarray<2>({supp,supp,2*k-1,icomp},{ntheta,nphi,0,0});
          auto m2 = cube.template subarray<2>({supp,supp,2*k  ,icomp},{ntheta,nphi,0,0});
          sharp_alm2map_spin(k, a1.Alms().data(), a2.Alms().data(), m1.vdata(),
            m2.vdata(), *ginfo, *ainfo, 0, nthreads);
          correct(m1,k);
          correct(m2,k);
227
          }
228
        }
229

230
231
232
233
234
      // fill border regions
      for (size_t i=0; i<supp; ++i)
        for (size_t j=0, j2=nphi/2; j<nphi; ++j,++j2)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
235
            T fct = (((k+1)/2)&1) ? -1 : 1;
236
            if (j2>=nphi) j2-=nphi;
237
238
239
240
241
            for (size_t l=0; l<cube.shape(3); ++l)
              {
              cube.v(supp-1-i,j2+supp,k,l) = fct*cube(supp+1+i,j+supp,k,l);
              cube.v(supp+ntheta+i,j2+supp,k,l) = fct*cube(supp+ntheta-2-i,j+supp,k,l);
              }
242
243
244
245
            }
      for (size_t i=0; i<ntheta+2*supp; ++i)
        for (size_t j=0; j<supp; ++j)
          for (size_t k=0; k<cube.shape(2); ++k)
246
            for (size_t l=0; l<cube.shape(3); ++l)
247
            {
248
249
            cube.v(i,j,k,l) = cube(i,j+nphi,k,l);
            cube.v(i,j+nphi+supp,k,l) = cube(i,j+supp,k,l);
250
251
252
            }
      }

253
    Interpolator(size_t lmax_, size_t kmax_, size_t ncomp_, T epsilon, T ofmin, int nthreads_)
254
255
256
257
258
      : adjoint(true),
        lmax(lmax_),
        kmax(kmax_),
        nphi0(2*good_size_real(lmax+1)),
        ntheta0(nphi0/2+1),
Martin Reinecke's avatar
Martin Reinecke committed
259
        nphi(std::max<size_t>(20,2*good_size_real(size_t((2*lmax+1)*ofmin/2.)))),
260
261
        ntheta(nphi/2+1),
        nthreads(nthreads_),
262
        ofactor(T(nphi)/(2*lmax+1)),
263
264
        supp(ES_Kernel::get_supp(epsilon, ofactor)),
        kernel(supp, ofactor, nthreads),
265
266
        ncomp(ncomp_),
        cube({ntheta+2*supp, nphi+2*supp, 2*kmax+1, ncomp_})
267
      {
268
      MR_assert((ncomp==1)||(ncomp==3), "currently only 1 or 3 components allowed");
269
270
271
272
      MR_assert((supp<=ntheta) && (supp<=nphi), "support too large!");
      cube.apply([](T &v){v=0.;});
      }

273
    void interpol (const mav<T,2> &ptg, mav<T,2> &res) const
274
      {
275
      MR_assert(!adjoint, "cannot be called in adjoint mode");
276
277
      MR_assert(ptg.shape(0)==res.shape(0), "dimension mismatch");
      MR_assert(ptg.shape(1)==3, "second dimension must have length 3");
278
      MR_assert(res.shape(1)==ncomp, "# of components mismatch");
279
280
281
      T delta = T(2)/supp;
      T xdtheta = T((ntheta-1)/pi),
        xdphi = T(nphi/(2*pi));
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
282
      auto idx = getIdx(ptg);
Martin Reinecke's avatar
Martin Reinecke committed
283
      execStatic(idx.size(), nthreads, 0, [&](Scheduler &sched)
284
        {
Martin Reinecke's avatar
Martin Reinecke committed
285
286
287
        vector<T> wt(supp), wp(supp);
        vector<T> psiarr(2*kmax+1);
        while (auto rng=sched.getNext()) for(auto ind=rng.lo; ind<rng.hi; ++ind)
288
          {
Martin Reinecke's avatar
Martin Reinecke committed
289
          size_t i=idx[ind];
290
291
          T f0=T(0.5*supp+ptg(i,0)*xdtheta);
          size_t i0 = size_t(f0+T(1));
Martin Reinecke's avatar
Martin Reinecke committed
292
293
          for (size_t t=0; t<supp; ++t)
            wt[t] = kernel((t+i0-f0)*delta - 1);
294
          T f1=T(0.5)*supp+ptg(i,1)*xdphi;
Martin Reinecke's avatar
Martin Reinecke committed
295
296
297
298
          size_t i1 = size_t(f1+1.);
          for (size_t t=0; t<supp; ++t)
            wp[t] = kernel((t+i1-f1)*delta - 1);
          psiarr[0]=1.;
299
300
          double psi=ptg(i,2);
          double cpsi=cos(psi), spsi=sin(psi);
Martin Reinecke's avatar
Martin Reinecke committed
301
302
303
          double cnpsi=cpsi, snpsi=spsi;
          for (size_t l=1; l<=kmax; ++l)
            {
304
305
            psiarr[2*l-1]=T(cnpsi);
            psiarr[2*l]=T(snpsi);
Martin Reinecke's avatar
Martin Reinecke committed
306
307
308
309
            const double tmp = snpsi*cpsi + cnpsi*spsi;
            cnpsi=cnpsi*cpsi - snpsi*spsi;
            snpsi=tmp;
            }
310
311
          if (ncomp==1)
            {
312
            T vv=0;
313
314
315
            for (size_t j=0; j<supp; ++j)
              for (size_t k=0; k<supp; ++k)
                for (size_t l=0; l<2*kmax+1; ++l)
316
                  vv += cube(i0+j,i1+k,l,0)*wt[j]*wp[k]*psiarr[l];
317
318
319
320
            res.v(i,0) = vv;
            }
          else // ncomp==3
            {
321
            T v0=0., v1=0., v2=0.;
322
323
324
325
            for (size_t j=0; j<supp; ++j)
              for (size_t k=0; k<supp; ++k)
                for (size_t l=0; l<2*kmax+1; ++l)
                  {
326
                  auto tmp = wt[j]*wp[k]*psiarr[l];
327
328
329
330
331
332
333
334
                  v0 += cube(i0+j,i1+k,l,0)*tmp;
                  v1 += cube(i0+j,i1+k,l,1)*tmp;
                  v2 += cube(i0+j,i1+k,l,2)*tmp;
                  }
            res.v(i,0) = v0;
            res.v(i,1) = v1;
            res.v(i,2) = v2;
            }
335
          }
Martin Reinecke's avatar
Martin Reinecke committed
336
        });
337
      }
338

339
340
341
    size_t support() const
      { return supp; }

342
    void deinterpol (const mav<T,2> &ptg, const mav<T,2> &data)
343
344
345
346
      {
      MR_assert(adjoint, "can only be called in adjoint mode");
      MR_assert(ptg.shape(0)==data.shape(0), "dimension mismatch");
      MR_assert(ptg.shape(1)==3, "second dimension must have length 3");
347
      MR_assert(data.shape(1)==ncomp, "# of components mismatch");
348
349
350
      T delta = T(2)/supp;
      T xdtheta = T((ntheta-1)/pi),
        xdphi = T(nphi/(2*pi));
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
351
      auto idx = getIdx(ptg);
352
353
354
355
356
357
358

      constexpr size_t cellsize=16;
      size_t nct = ntheta/cellsize+5,
             ncp = nphi/cellsize+5;
      mav<std::mutex,2> locks({nct,ncp});

      execStatic(idx.size(), nthreads, 0, [&](Scheduler &sched)
359
        {
360
        size_t b_theta=99999999999999, b_phi=9999999999999999;
361
362
363
364
365
        vector<T> wt(supp), wp(supp);
        vector<T> psiarr(2*kmax+1);
        while (auto rng=sched.getNext()) for(auto ind=rng.lo; ind<rng.hi; ++ind)
          {
          size_t i=idx[ind];
366
          T f0=0.5*supp+ptg(i,0)*xdtheta;
367
368
369
          size_t i0 = size_t(f0+1.);
          for (size_t t=0; t<supp; ++t)
            wt[t] = kernel((t+i0-f0)*delta - 1);
370
          T f1=0.5*supp+ptg(i,1)*xdphi;
371
372
373
374
375
376
377
378
379
          size_t i1 = size_t(f1+1.);
          for (size_t t=0; t<supp; ++t)
            wp[t] = kernel((t+i1-f1)*delta - 1);
          psiarr[0]=1.;
          double psi=ptg(i,2);
          double cpsi=cos(psi), spsi=sin(psi);
          double cnpsi=cpsi, snpsi=spsi;
          for (size_t l=1; l<=kmax; ++l)
            {
380
381
            psiarr[2*l-1]=T(cnpsi);
            psiarr[2*l]=T(snpsi);
382
383
384
385
            const double tmp = snpsi*cpsi + cnpsi*spsi;
            cnpsi=cnpsi*cpsi - snpsi*spsi;
            snpsi=tmp;
            }
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
          size_t b_theta_new = i0/cellsize,
                 b_phi_new = i1/cellsize;
          if ((b_theta_new!=b_theta) || (b_phi_new!=b_phi))
            {
            if (b_theta<locks.shape(0))  // unlock
              {
              locks.v(b_theta,b_phi).unlock();
              locks.v(b_theta,b_phi+1).unlock();
              locks.v(b_theta+1,b_phi).unlock();
              locks.v(b_theta+1,b_phi+1).unlock();
              }
            b_theta = b_theta_new;
            b_phi = b_phi_new;
            locks.v(b_theta,b_phi).lock();
            locks.v(b_theta,b_phi+1).lock();
            locks.v(b_theta+1,b_phi).lock();
            locks.v(b_theta+1,b_phi+1).lock();
            }
404
405
          if (ncomp==1)
            {
406
            T val = data(i,0);
407
408
409
410
411
412
413
            for (size_t j=0; j<supp; ++j)
              for (size_t k=0; k<supp; ++k)
                for (size_t l=0; l<2*kmax+1; ++l)
                  cube.v(i0+j,i1+k,l,0) += val*wt[j]*wp[k]*psiarr[l];
            }
          else // ncomp==3
            {
414
            T v0=data(i,0), v1=data(i,1), v2=data(i,2);
415
416
417
            for (size_t j=0; j<supp; ++j)
              for (size_t k=0; k<supp; ++k)
                {
418
                T t0 = wt[j]*wp[k];
419
420
                for (size_t l=0; l<2*kmax+1; ++l)
                  {
421
                  T tmp = t0*psiarr[l];
422
423
424
425
426
427
                  cube.v(i0+j,i1+k,l,0) += v0*tmp;
                  cube.v(i0+j,i1+k,l,1) += v1*tmp;
                  cube.v(i0+j,i1+k,l,2) += v2*tmp;
                  }
                }
            }
428
          }
429
430
431
432
433
434
435
        if (b_theta<locks.shape(0))  // unlock
          {
          locks.v(b_theta,b_phi).unlock();
          locks.v(b_theta,b_phi+1).unlock();
          locks.v(b_theta+1,b_phi).unlock();
          locks.v(b_theta+1,b_phi+1).unlock();
          }
436
437
        });
      }
438
    void getSlm (const vector<Alm<complex<T>>> &blm, vector<Alm<complex<T>>> &slm)
439
440
      {
      MR_assert(adjoint, "can only be called in adjoint mode");
441
442
      MR_assert((blm.size()==ncomp) || (ncomp==1), "incorrect number of beam a_lm sets");
      MR_assert((slm.size()==ncomp) || (ncomp==1), "incorrect number of sky a_lm sets");
443
444
445
446
447
      Alm<complex<T>> a1(lmax, lmax), a2(lmax,lmax);
      auto ginfo = sharp_make_cc_geom_info(ntheta0,nphi0,0.,cube.stride(1),cube.stride(0));
      auto ainfo = sharp_make_triangular_alm_info(lmax,lmax,1);

      // move stuff from border regions onto the main grid
448
      for (size_t i=0; i<cube.shape(0); ++i)
449
450
        for (size_t j=0; j<supp; ++j)
          for (size_t k=0; k<cube.shape(2); ++k)
451
452
453
454
455
            for (size_t l=0; l<cube.shape(3); ++l)
              {
              cube.v(i,j+nphi,k,l) += cube(i,j,k,l);
              cube.v(i,j+supp,k,l) += cube(i,j+nphi+supp,k,l);
              }
456
457
458
459
      for (size_t i=0; i<supp; ++i)
        for (size_t j=0, j2=nphi/2; j<nphi; ++j,++j2)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
460
            T fct = (((k+1)/2)&1) ? -1 : 1;
461
            if (j2>=nphi) j2-=nphi;
462
463
464
465
466
            for (size_t l=0; l<cube.shape(3); ++l)
              {
              cube.v(supp+1+i,j+supp,k,l) += fct*cube(supp-1-i,j2+supp,k,l);
              cube.v(supp+ntheta-2-i, j+supp,k,l) += fct*cube(supp+ntheta+i,j2+supp,k,l);
              }
467
            }
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
468
469
470
471

      // special treatment for poles
      for (size_t j=0,j2=nphi/2; j<nphi/2; ++j,++j2)
        for (size_t k=0; k<cube.shape(2); ++k)
472
473
          for (size_t l=0; l<cube.shape(3); ++l)
            {
474
            T fct = (((k+1)/2)&1) ? -1 : 1;
475
            if (j2>=nphi) j2-=nphi;
476
            T tval = (cube(supp,j+supp,k,l) + fct*cube(supp,j2+supp,k,l));
477
478
479
480
481
482
            cube.v(supp,j+supp,k,l) = tval;
            cube.v(supp,j2+supp,k,l) = fct*tval;
            tval = (cube(supp+ntheta-1,j+supp,k,l) + fct*cube(supp+ntheta-1,j2+supp,k,l));
            cube.v(supp+ntheta-1,j+supp,k,l) = tval;
            cube.v(supp+ntheta-1,j2+supp,k,l) = fct*tval;
            }
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
483

484
      vector<T>lnorm(lmax+1);
485
      for (size_t i=0; i<=lmax; ++i)
Martin Reinecke's avatar
Martin Reinecke committed
486
        lnorm[i]=std::sqrt(4*pi/(2*i+1.));
487

488
489
490
      for (size_t j=0; j<blm.size(); ++j)
        slm[j].SetToZero();

491
      for (size_t icomp=0; icomp<ncomp; ++icomp)
492
        {
493
        bool separate = ncomp>1;
494
        {
495
        auto m1 = cube.template subarray<2>({supp,supp,0,icomp},{ntheta,nphi,0,0});
496
497
        decorrect(m1,0);
        sharp_alm2map_adjoint(a1.Alms().vdata(), m1.data(), *ginfo, *ainfo, 0, nthreads);
498
499
        for (size_t m=0; m<=lmax; ++m)
          for (size_t l=m; l<=lmax; ++l)
500
501
502
503
504
            if (separate)
              slm[icomp](l,m) += conj(a1(l,m))*blm[icomp](l,0).real()*T(lnorm[l]);
            else
              for (size_t j=0; j<blm.size(); ++j)
                slm[j](l,m) += conj(a1(l,m))*blm[j](l,0).real()*T(lnorm[l]);
505
506
507
        }
        for (size_t k=1; k<=kmax; ++k)
          {
508
509
          auto m1 = cube.template subarray<2>({supp,supp,2*k-1,icomp},{ntheta,nphi,0,0});
          auto m2 = cube.template subarray<2>({supp,supp,2*k  ,icomp},{ntheta,nphi,0,0});
510
511
512
513
514
515
516
517
          decorrect(m1,k);
          decorrect(m2,k);

          sharp_alm2map_spin_adjoint(k, a1.Alms().vdata(), a2.Alms().vdata(), m1.data(),
            m2.data(), *ginfo, *ainfo, 0, nthreads);
          for (size_t m=0; m<=lmax; ++m)
            for (size_t l=m; l<=lmax; ++l)
              if (l>=k)
518
519
                {
                if (separate)
520
                  {
521
                  auto tmp = conj(blm[icomp](l,k))*T(-2*lnorm[l]);
522
523
                  slm[icomp](l,m) += conj(a1(l,m))*tmp.real();
                  slm[icomp](l,m) -= conj(a2(l,m))*tmp.imag();
524
                  }
525
526
527
                else
                  for (size_t j=0; j<blm.size(); ++j)
                    {
528
                    auto tmp = conj(blm[j](l,k))*T(-2*lnorm[l]);
529
530
531
532
                    slm[j](l,m) += conj(a1(l,m))*tmp.real();
                    slm[j](l,m) -= conj(a2(l,m))*tmp.imag();
                    }
                }
533
          }
534
535
        }
      }
536
537
  };

Martin Reinecke's avatar
Martin Reinecke committed
538
}
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
539

Martin Reinecke's avatar
Martin Reinecke committed
540
using detail_interpol_ng::Interpolator;
541

Martin Reinecke's avatar
Martin Reinecke committed
542
}
543

Martin Reinecke's avatar
Martin Reinecke committed
544
#endif