totalconvolve.cc 9.39 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
/*
 *  Copyright (C) 2020 Max-Planck-Society
 *  Author: Martin Reinecke
 */

#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
Martin Reinecke's avatar
Martin Reinecke committed
8
#include "totalconvolve.h"
Martin Reinecke's avatar
Martin Reinecke committed
9

10
11
namespace mr {

Martin Reinecke's avatar
Martin Reinecke committed
12
namespace detail_pymodule_totalconvolve {
13

Martin Reinecke's avatar
Martin Reinecke committed
14
15
16
17
18
19
20
21
22
using namespace std;

namespace py = pybind11;

template<typename T> class PyInterpolator: public Interpolator<T>
  {
  protected:
    using Interpolator<T>::lmax;
    using Interpolator<T>::kmax;
23
    using Interpolator<T>::ncomp;
24
25
26
    using Interpolator<T>::interpol;
    using Interpolator<T>::deinterpol;
    using Interpolator<T>::getSlm;
Martin Reinecke's avatar
Martin Reinecke committed
27

28
vector<Alm<complex<T>>> makevec(const py::array &inp, int64_t lmax, int64_t kmax)
29
  {
30
  auto inp2 = to_mav<complex<T>,2>(inp);
31
32
33
34
35
  vector<Alm<complex<T>>> res;
  for (size_t i=0; i<inp2.shape(1); ++i)
    res.push_back(Alm<complex<T>>(inp2.template subarray<1>({0,i},{inp2.shape(0),0}),lmax, kmax));
  return res;
  }
36
37
38
39
40
41
42
43
44
void makevec_v(py::array &inp, int64_t lmax, int64_t kmax, vector<Alm<complex<T>>> &res)
  {
  auto inp2 = to_mav<complex<T>,2>(inp, true);
  for (size_t i=0; i<inp2.shape(1); ++i)
    {
    auto xtmp = inp2.template subarray<1>({0,i},{inp2.shape(0),0});
    res.emplace_back(xtmp, lmax, kmax);
    }
  }
Martin Reinecke's avatar
Martin Reinecke committed
45
  public:
46
    PyInterpolator(const py::array &slm, const py::array &blm,
47
      bool separate, int64_t lmax, int64_t kmax, T epsilon, T ofactor, int nthreads)
48
49
      : Interpolator<T>(makevec(slm, lmax, lmax),
                        makevec(blm, lmax, kmax),
50
51
52
53
54
55
                        separate, epsilon, ofactor, nthreads) {}
    PyInterpolator(int64_t lmax, int64_t kmax, int64_t ncomp_, T epsilon, T ofactor, int nthreads)
      : Interpolator<T>(lmax, kmax, ncomp_, epsilon, ofactor, nthreads) {}

    using Interpolator<T>::support;

56
    py::array pyinterpol(const py::array &ptg) const
Martin Reinecke's avatar
Martin Reinecke committed
57
58
      {
      auto ptg2 = to_mav<T,2>(ptg);
59
60
      auto res = make_Pyarr<T>({ptg2.shape(0),ncomp});
      auto res2 = to_mav<T,2>(res,true);
61
      interpol(ptg2, res2);
62
      return move(res);
Martin Reinecke's avatar
Martin Reinecke committed
63
64
      }

65
    void pydeinterpol(const py::array &ptg, const py::array &data)
Martin Reinecke's avatar
Martin Reinecke committed
66
67
      {
      auto ptg2 = to_mav<T,2>(ptg);
68
      auto data2 = to_mav<T,2>(data);
69
      deinterpol(ptg2, data2);
Martin Reinecke's avatar
Martin Reinecke committed
70
      }
71
    py::array pygetSlm(const py::array &blm_)
Martin Reinecke's avatar
Martin Reinecke committed
72
      {
73
74
      auto blm = makevec(blm_, lmax, kmax);
      auto res = make_Pyarr<complex<T>>({Alm_Base::Num_Alms(lmax, lmax),blm.size()});
75
      vector<Alm<complex<T>>> slm;
76
      makevec_v(res, lmax, lmax, slm);
77
      getSlm(blm, slm);
78
      return move(res);
Martin Reinecke's avatar
Martin Reinecke committed
79
80
81
82
83
84
85
86
87
88
89
90
91
      }
  };

#if 1
template<typename T> py::array pyrotate_alm(const py::array &alm_, int64_t lmax,
  double psi, double theta, double phi)
  {
  auto a1 = to_mav<complex<T>,1>(alm_);
  auto alm = make_Pyarr<complex<T>>({a1.shape(0)});
  auto a2 = to_mav<complex<T>,1>(alm,true);
  for (size_t i=0; i<a1.shape(0); ++i) a2.v(i)=a1(i);
  auto tmp = Alm<complex<T>>(a2,lmax,lmax);
  rotate_alm(tmp, psi, theta, phi);
92
  return move(alm);
Martin Reinecke's avatar
Martin Reinecke committed
93
94
95
  }
#endif

Martin Reinecke's avatar
Martin Reinecke committed
96
constexpr const char *totalconvolve_DS = R"""(
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
Python interface for total convolution/interpolation library

All arrays containing spherical harmonic coefficients are assumed to have the
following format:
- values for m=0, l going from 0 to lmax
  (these values must have an imaginary part of zero)
- values for m=1, l going from 1 to lmax
  (these values can be fully complex)
- values for m=2, l going from 2 to lmax
- ...
- values for m=mmax, l going from mmax to lmax 

Error conditions are reported by raising exceptions.
)""";

constexpr const char *pyinterpolator_DS = R"""(
Class encapsulating the convolution/interpolation functionality

The class can be configured for interpolation or for adjoint interpolation, by
means of two different constructors.
)""";

constexpr const char *initnormal_DS = R"""(
Constructor for interpolation mode

Parameters
----------
124
125
126
127
128
129
sky : numpy.ndarray((nalm_sky, ncomp), dtype=numpy.complex)
    spherical harmonic coefficients of the sky. ncomp can be 1 or 3.
beam : numpy.ndarray((nalm_beam, ncomp), dtype=numpy.complex)
    spherical harmonic coefficients of the beam. ncomp can be 1 or 3
separate : bool
    whether contributions of individual components should be added together.
130
131
132
133
134
135
lmax : int
    maximum l in the coefficient arays
kmax : int
    maximum azimuthal moment in the beam coefficients
epsilon : float
    desired accuracy for the interpolation; a typical value is 1e-5
136
137
138
139
140
ofactor : float
    oversampling factor to be used for the interpolation grids.
    Should be in the range [1.2; 2], a typical value is 1.5
    Increasing this factor makes (adjoint) convolution slower and
    increases memory consumption, but speeds up interpolation/deinterpolation.
141
142
143
144
145
146
147
148
149
150
151
152
nthreads : the number of threads to use for computation
)""";

constexpr const char *initadjoint_DS = R"""(
Constructor for adjoint interpolation mode

Parameters
----------
lmax : int
    maximum l in the coefficient arays
kmax : int
    maximum azimuthal moment in the beam coefficients
153
154
155
ncomp : int
    the number of components which are going to input to `deinterpol`.
    Can be 1 or 3.
156
157
epsilon : float
    desired accuracy for the interpolation; a typical value is 1e-5
158
159
160
161
162
ofactor : float
    oversampling factor to be used for the interpolation grids.
    Should be in the range [1.2; 2], a typical value is 1.5
    Increasing this factor makes (adjoint) convolution slower and
    increases memory consumption, but speeds up interpolation/deinterpolation.
163
164
165
166
167
168
169
170
nthreads : the number of threads to use for computation
)""";

constexpr const char *interpol_DS = R"""(
Computes the interpolated values for a given set of angle triplets

Parameters
----------
171
ptg : numpy.ndarray((N, 3), dtype=numpy.float64)
172
173
174
175
176
177
178
    theta, phi and psi angles (in radian) for N pointings
    theta must be in the range [0; pi]
    phi must be in the range [0; 2pi]
    psi should be in the range [-2pi; 2pi]

Returns
-------
179
numpy.array((N, n2), dtype=numpy.float64)
180
    the interpolated values
181
182
    n2 is either 1 (if separate=True was used in the constructor) or the
    second dimension of the input slm and blm arrays (otherwise)
183
184
185
186
187
188
189
190
191
192
193
194
195
196

Notes
-----
    - Can only be called in "normal" (i.e. not adjoint) mode
    - repeated calls to this method are fine, but for good performance the
      number of pointings passed per call should be as large as possible.
)""";

constexpr const char *deinterpol_DS = R"""(
Takes a set of angle triplets and interpolated values and spreads them onto the
data cube.

Parameters
----------
197
ptg : numpy.ndarray((N,3), dtype=numpy.float64)
198
199
200
201
    theta, phi and psi angles (in radian) for N pointings
    theta must be in the range [0; pi]
    phi must be in the range [0; 2pi]
    psi should be in the range [-2pi; 2pi]
202
data : numpy.ndarray((N, n2), dtype=numpy.float64)
203
    the interpolated values
204
    n2 must match the `ncomp` value specified in the constructor.
205
206
207
208
209
210
211
212
213
214

Notes
-----
    - Can only be called in adjoint mode
    - repeated calls to this method are fine, but for good performance the
      number of pointings passed per call should be as large as possible.
)""";

constexpr const char *getSlm_DS = R"""(
Returns a set of sky spherical hamonic coefficients resulting from adjoint
215
interpolation
216
217
218

Parameters
----------
219
beam : numpy.array(nalm_beam, nbeam), dtype=numpy.complex)
220
221
    spherical harmonic coefficients of the beam with lmax and kmax defined
    in the constructor call
222
    nbeam must match the ncomp specified in the constructor, unless ncomp was 1.
223
224
225

Returns
-------
226
227
numpy.array(nalm_sky, nbeam), dtype=numpy.complex):
    spherical harmonic coefficients of the sky with lmax defined
228
229
230
231
232
233
234
235
    in the constructor call

Notes
-----
    - Can only be called in adjoint mode
    - must be the last call to the object
)""";

Martin Reinecke's avatar
Martin Reinecke committed
236
void add_totalconvolve(py::module &msup)
Martin Reinecke's avatar
Martin Reinecke committed
237
238
  {
  using namespace pybind11::literals;
Martin Reinecke's avatar
Martin Reinecke committed
239
  auto m = msup.def_submodule("totalconvolve");
Martin Reinecke's avatar
Martin Reinecke committed
240

Martin Reinecke's avatar
Martin Reinecke committed
241
  m.doc() = totalconvolve_DS;
242

Martin Reinecke's avatar
Martin Reinecke committed
243
  using inter_d = PyInterpolator<double>;
Martin Reinecke's avatar
Martin Reinecke committed
244
  py::class_<inter_d> (m, "PyInterpolator", py::module_local(), pyinterpolator_DS)
245
246
    .def(py::init<const py::array &, const py::array &, bool, int64_t, int64_t, double, double, int>(),
      initnormal_DS, "sky"_a, "beam"_a, "separate"_a, "lmax"_a, "kmax"_a, "epsilon"_a, "ofactor"_a=1.5,
247
      "nthreads"_a=0)
248
249
    .def(py::init<int64_t, int64_t, int64_t, double, double, int>(), initadjoint_DS,
      "lmax"_a, "kmax"_a, "ncomp"_a, "epsilon"_a, "ofactor"_a=1.5, "nthreads"_a=0)
Martin Reinecke's avatar
Martin Reinecke committed
250
251
252
253
    .def ("interpol", &inter_d::pyinterpol, interpol_DS, "ptg"_a)
    .def ("deinterpol", &inter_d::pydeinterpol, deinterpol_DS, "ptg"_a, "data"_a)
    .def ("getSlm", &inter_d::pygetSlm, getSlm_DS, "beam"_a)
    .def ("support", &inter_d::support);
254
  using inter_f = PyInterpolator<float>;
Martin Reinecke's avatar
Martin Reinecke committed
255
  py::class_<inter_f> (m, "PyInterpolator_f", py::module_local(), pyinterpolator_DS)
256
257
258
259
260
261
262
263
264
    .def(py::init<const py::array &, const py::array &, bool, int64_t, int64_t, float, float, int>(),
      initnormal_DS, "sky"_a, "beam"_a, "separate"_a, "lmax"_a, "kmax"_a, "epsilon"_a, "ofactor"_a=1.5f,
      "nthreads"_a=0)
    .def(py::init<int64_t, int64_t, int64_t, float, float, int>(), initadjoint_DS,
      "lmax"_a, "kmax"_a, "ncomp"_a, "epsilon"_a, "ofactor"_a=1.5f, "nthreads"_a=0)
    .def ("interpol", &inter_f::pyinterpol, interpol_DS, "ptg"_a)
    .def ("deinterpol", &inter_f::pydeinterpol, deinterpol_DS, "ptg"_a, "data"_a)
    .def ("getSlm", &inter_f::pygetSlm, getSlm_DS, "beam"_a)
    .def ("support", &inter_f::support);
Martin Reinecke's avatar
Martin Reinecke committed
265
#if 1
266
  m.def("rotate_alm", &pyrotate_alm<double>, "alm"_a, "lmax"_a, "psi"_a, "theta"_a,
Martin Reinecke's avatar
Martin Reinecke committed
267
268
    "phi"_a);
#endif
269
  m.def("epsilon_guess", &epsilon_guess, "support"_a, "ofactor"_a);
Martin Reinecke's avatar
Martin Reinecke committed
270
  }
271
272
273

}

Martin Reinecke's avatar
Martin Reinecke committed
274
using detail_pymodule_totalconvolve::add_totalconvolve;
275
276

}