interpol_ng.cc 18.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 *  Copyright (C) 2020 Max-Planck-Society
 *  Author: Martin Reinecke
 */

#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <vector>
#include <complex>
#include "mr_util/math/constants.h"
#include "mr_util/math/gl_integrator.h"
#include "mr_util/math/es_kernel.h"
#include "mr_util/infra/mav.h"
#include "mr_util/sharp/sharp.h"
#include "mr_util/sharp/sharp_almhelpers.h"
#include "mr_util/sharp/sharp_geomhelpers.h"
#include "alm.h"
#include "mr_util/math/fft.h"
#include "mr_util/bindings/pybind_utils.h"
Martin Reinecke's avatar
Martin Reinecke committed
20

21
22
23
24
25
26
27
using namespace std;
using namespace mr;

namespace py = pybind11;

namespace {

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
28
29
constexpr double ofmin=1.5;

30
31
32
template<typename T> class Interpolator
  {
  protected:
33
    bool adjoint;
Martin Reinecke's avatar
Martin Reinecke committed
34
    size_t lmax, kmax, nphi0, ntheta0, nphi, ntheta;
Martin Reinecke's avatar
Martin Reinecke committed
35
    int nthreads;
Martin Reinecke's avatar
fix    
Martin Reinecke committed
36
37
    double ofactor;
    size_t supp;
38
39
40
    ES_Kernel kernel;
    mav<T,3> cube; // the data cube (theta, phi, 2*mbeam+1[, IQU])

41
    void correct(mav<T,2> &arr, int spin)
42
      {
43
      double sfct = (spin&1) ? -1 : 1;
44
      mav<T,2> tmp({nphi,nphi});
Martin Reinecke's avatar
Martin Reinecke committed
45
      fmav<T> ftmp(tmp);
Martin Reinecke's avatar
Martin Reinecke committed
46
      tmp.apply([](T &v){v=0.;});
Martin Reinecke's avatar
Martin Reinecke committed
47
      auto tmp0=tmp.template subarray<2>({0,0},{nphi0, nphi0});
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
      fmav<T> ftmp0(tmp0);
      for (size_t i=0; i<ntheta0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) = arr(i,j);
52
      // extend to second half
Martin Reinecke's avatar
Martin Reinecke committed
53
      for (size_t i=1, i2=nphi0-1; i+1<ntheta0; ++i,--i2)
Martin Reinecke's avatar
Martin Reinecke committed
54
        for (size_t j=0,j2=nphi0/2; j<nphi0; ++j,++j2)
55
          {
Martin Reinecke's avatar
Martin Reinecke committed
56
          if (j2>=nphi0) j2-=nphi0;
Martin Reinecke's avatar
Martin Reinecke committed
57
          tmp0.v(i2,j) = sfct*tmp0(i,j2);
58
          }
Martin Reinecke's avatar
Martin Reinecke committed
59
      // FFT to frequency domain on minimal grid
60
      r2r_fftpack(ftmp0,ftmp0,{1,0},true,true,1./(nphi0*nphi0),nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
61
62
63
64
65
      for (size_t i=0; i<nphi0; ++i)
        {
        tmp0.v(i,nphi0-1)*=0.5;
        tmp0.v(nphi0-1,i)*=0.5;
        }
Martin Reinecke's avatar
Martin Reinecke committed
66
      auto fct = kernel.correction_factors(nphi, nphi0/2+1, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
67
68
69
      for (size_t i=0; i<nphi0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) *= fct[(i+1)/2] * fct[(j+1)/2];
Martin Reinecke's avatar
Martin Reinecke committed
70
71
72
73
      r2r_fftpack(ftmp,ftmp,{0,1},false,false,1.,nthreads);
      for (size_t i=0; i<ntheta; ++i)
        for (size_t j=0; j<nphi; ++j)
          arr.v(i,j) = tmp(i,j);
74
      }
75
76
77
78
79
80
81
82
83
84
    void decorrect(mav<T,2> &arr, int spin)
      {
      double sfct = (spin&1) ? -1 : 1;
      mav<T,2> tmp({nphi,nphi});
      fmav<T> ftmp(tmp);

      for (size_t i=0; i<ntheta; ++i)
        for (size_t j=0; j<nphi; ++j)
          tmp.v(i,j) = arr(i,j);
      // extend to second half
Martin Reinecke's avatar
Martin Reinecke committed
85
      for (size_t i=1, i2=nphi-1; i+1<ntheta; ++i,--i2)
86
87
88
89
90
91
92
93
94
95
96
97
98
        for (size_t j=0,j2=nphi/2; j<nphi; ++j,++j2)
          {
          if (j2>=nphi) j2-=nphi;
          tmp.v(i2,j) = sfct*tmp(i,j2);
          }
      r2r_fftpack(ftmp,ftmp,{0,1},true,true,1.,nthreads);
      auto fct = kernel.correction_factors(nphi, nphi0/2+1, nthreads);
      auto tmp0=tmp.template subarray<2>({0,0},{nphi0, nphi0});
      fmav<T> ftmp0(tmp0);
      for (size_t i=0; i<nphi0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) *= fct[(i+1)/2] * fct[(j+1)/2];
      // FFT to (theta, phi) domain on minimal grid
Martin Reinecke's avatar
Martin Reinecke committed
99
      r2r_fftpack(ftmp0,ftmp0,{1,0},false, false,1./(nphi0*nphi0),nthreads);
100
101
102
103
      for (size_t i=0; i<ntheta0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          arr.v(i,j) = tmp0(i,j);
      }
104
105
106

  public:
    Interpolator(const Alm<complex<T>> &slmT, const Alm<complex<T>> &blmT,
Martin Reinecke's avatar
Martin Reinecke committed
107
      double epsilon, int nthreads_)
108
109
      : adjoint(false),
        lmax(slmT.Lmax()),
110
        kmax(blmT.Mmax()),
Martin Reinecke's avatar
Martin Reinecke committed
111
112
        nphi0(2*good_size_real(lmax+1)),
        ntheta0(nphi0/2+1),
113
        nphi(max<size_t>(20,2*good_size_real(size_t((2*lmax+1)*ofmin/2.)))),
Martin Reinecke's avatar
Martin Reinecke committed
114
        ntheta(nphi/2+1),
Martin Reinecke's avatar
Martin Reinecke committed
115
        nthreads(nthreads_),
Martin Reinecke's avatar
Martin Reinecke committed
116
        ofactor(double(nphi)/(2*lmax+1)),
Martin Reinecke's avatar
fix    
Martin Reinecke committed
117
        supp(ES_Kernel::get_supp(epsilon, ofactor)),
Martin Reinecke's avatar
Martin Reinecke committed
118
        kernel(supp, ofactor, nthreads),
119
120
121
122
123
124
        cube({ntheta+2*supp, nphi+2*supp, 2*kmax+1})
      {
      MR_assert((supp<=ntheta) && (supp<=nphi), "support too large!");
      MR_assert(slmT.Mmax()==lmax, "Sky lmax must be equal to Sky mmax");
      MR_assert(blmT.Lmax()==lmax, "Sky and beam lmax must be equal");
      Alm<complex<T>> a1(lmax, lmax), a2(lmax,lmax);
Martin Reinecke's avatar
Martin Reinecke committed
125
      auto ginfo = sharp_make_cc_geom_info(ntheta0,nphi0,0.,cube.stride(1),cube.stride(0));
126
127
128
129
130
131
      auto ainfo = sharp_make_triangular_alm_info(lmax,lmax,1);

      vector<double>lnorm(lmax+1);
      for (size_t i=0; i<=lmax; ++i)
        lnorm[i]=sqrt(4*pi/(2*i+1.));

132
133
134
135
136
137
138
139
140
      {
      for (size_t m=0; m<=lmax; ++m)
        for (size_t l=m; l<=lmax; ++l)
          a1(l,m) = slmT(l,m)*blmT(l,0).real()*T(lnorm[l]);
      auto m1 = cube.template subarray<2>({supp,supp,0},{ntheta,nphi,0});
      sharp_alm2map(a1.Alms().data(), m1.vdata(), *ginfo, *ainfo, 0, nthreads);
      correct(m1,0);
      }
      for (size_t k=1; k<=kmax; ++k)
141
142
143
144
145
146
147
148
        {
        for (size_t m=0; m<=lmax; ++m)
          for (size_t l=m; l<=lmax; ++l)
            {
            if (l<k)
              a1(l,m)=a2(l,m)=0.;
            else
              {
149
              auto tmp = -2.*blmT(l,k)*T(lnorm[l]);
Martin Reinecke's avatar
Martin Reinecke committed
150
              a1(l,m) = slmT(l,m)*tmp.real();
151
              a2(l,m) = slmT(l,m)*tmp.imag();
152
153
              }
            }
154
155
156
157
        auto m1 = cube.template subarray<2>({supp,supp,2*k-1},{ntheta,nphi,0});
        auto m2 = cube.template subarray<2>({supp,supp,2*k  },{ntheta,nphi,0});
        sharp_alm2map_spin(k, a1.Alms().data(), a2.Alms().data(), m1.vdata(),
          m2.vdata(), *ginfo, *ainfo, 0, nthreads);
158
        correct(m1,k);
159
        correct(m2,k);
160
161
162
163
164
165
        }
      // fill border regions
      for (size_t i=0; i<supp; ++i)
        for (size_t j=0, j2=nphi/2; j<nphi; ++j,++j2)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
166
            double fct = (((k+1)/2)&1) ? -1 : 1;
167
            if (j2>=nphi) j2-=nphi;
168
169
            cube.v(supp-1-i,j2+supp,k) = fct*cube(supp+1+i,j+supp,k);
            cube.v(supp+ntheta+i,j2+supp,k) = fct*cube(supp+ntheta-2-i, j+supp,k);
170
171
172
173
174
175
176
177
178
179
            }
      for (size_t i=0; i<ntheta+2*supp; ++i)
        for (size_t j=0; j<supp; ++j)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            cube.v(i,j,k) = cube(i,j+nphi,k);
            cube.v(i,j+nphi+supp,k) = cube(i,j+supp,k);
            }
      }

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    Interpolator(size_t lmax_, size_t kmax_, double epsilon, int nthreads_)
      : adjoint(true),
        lmax(lmax_),
        kmax(kmax_),
        nphi0(2*good_size_real(lmax+1)),
        ntheta0(nphi0/2+1),
        nphi(max<size_t>(20,2*good_size_real(size_t((2*lmax+1)*ofmin/2.)))),
        ntheta(nphi/2+1),
        nthreads(nthreads_),
        ofactor(double(nphi)/(2*lmax+1)),
        supp(ES_Kernel::get_supp(epsilon, ofactor)),
        kernel(supp, ofactor, nthreads),
        cube({ntheta+2*supp, nphi+2*supp, 2*kmax+1})
      {
      MR_assert((supp<=ntheta) && (supp<=nphi), "support too large!");
      cube.apply([](T &v){v=0.;});
      }

198
199
    void interpolx (const mav<T,2> &ptg, mav<T,1> &res) const
      {
200
      MR_assert(!adjoint, "cannot be called in adjoint mode");
201
202
      MR_assert(ptg.shape(0)==res.shape(0), "dimension mismatch");
      MR_assert(ptg.shape(1)==3, "second dimension must have length 3");
Martin Reinecke's avatar
Martin Reinecke committed
203
204
205
      double delta = 2./supp;
      double xdtheta = (ntheta-1)/pi,
             xdphi = nphi/(2*pi);
Martin Reinecke's avatar
Martin Reinecke committed
206
207
      vector<size_t> idx(ptg.shape(0));
      {
208
      // do some pre-sorting to improve cache use
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
209
210
211
212
213
214
      constexpr size_t cellsize=16;
      size_t nct = ntheta/cellsize+1,
             ncp = nphi/cellsize+1;
      vector<vector<size_t>> mapper(nct*ncp);
      for (size_t i=0; i<ptg.shape(0); ++i)
        {
215
216
        size_t itheta=min(nct-1,size_t(ptg(i,0)/pi*nct)),
               iphi=min(ncp-1,size_t(ptg(i,1)/(2*pi)*ncp));
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
217
218
        mapper[itheta*ncp+iphi].push_back(i);
        }
Martin Reinecke's avatar
Martin Reinecke committed
219
      size_t cnt=0;
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
220
      for (const auto &vec: mapper)
Martin Reinecke's avatar
Martin Reinecke committed
221
222
223
224
        for (auto i:vec)
          idx[cnt++] = i;
      }
      execStatic(idx.size(), nthreads, 0, [&](Scheduler &sched)
225
        {
Martin Reinecke's avatar
Martin Reinecke committed
226
227
228
        vector<T> wt(supp), wp(supp);
        vector<T> psiarr(2*kmax+1);
        while (auto rng=sched.getNext()) for(auto ind=rng.lo; ind<rng.hi; ++ind)
229
          {
Martin Reinecke's avatar
Martin Reinecke committed
230
231
232
233
234
235
236
237
238
239
240
          size_t i=idx[ind];
          double f0=0.5*supp+ptg(i,0)*xdtheta;
          size_t i0 = size_t(f0+1.);
          for (size_t t=0; t<supp; ++t)
            wt[t] = kernel((t+i0-f0)*delta - 1);
          double f1=0.5*supp+ptg(i,1)*xdphi;
          size_t i1 = size_t(f1+1.);
          for (size_t t=0; t<supp; ++t)
            wp[t] = kernel((t+i1-f1)*delta - 1);
          double val=0;
          psiarr[0]=1.;
241
242
          double psi=ptg(i,2);
          double cpsi=cos(psi), spsi=sin(psi);
Martin Reinecke's avatar
Martin Reinecke committed
243
244
245
246
          double cnpsi=cpsi, snpsi=spsi;
          for (size_t l=1; l<=kmax; ++l)
            {
            psiarr[2*l-1]=cnpsi;
247
            psiarr[2*l]=snpsi;
Martin Reinecke's avatar
Martin Reinecke committed
248
249
250
251
252
253
254
255
256
            const double tmp = snpsi*cpsi + cnpsi*spsi;
            cnpsi=cnpsi*cpsi - snpsi*spsi;
            snpsi=tmp;
            }
          for (size_t j=0; j<supp; ++j)
            for (size_t k=0; k<supp; ++k)
              for (size_t l=0; l<2*kmax+1; ++l)
                val += cube(i0+j,i1+k,l)*wt[j]*wp[k]*psiarr[l];
          res.v(i) = val;
257
          }
Martin Reinecke's avatar
Martin Reinecke committed
258
        });
259
      }
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

    void deinterpolx (const mav<T,2> &ptg, const mav<T,1> &data)
      {
      MR_assert(adjoint, "can only be called in adjoint mode");
      MR_assert(ptg.shape(0)==data.shape(0), "dimension mismatch");
      MR_assert(ptg.shape(1)==3, "second dimension must have length 3");
      double delta = 2./supp;
      double xdtheta = (ntheta-1)/pi,
             xdphi = nphi/(2*pi);
      vector<size_t> idx(ptg.shape(0));
      {
      // do some pre-sorting to improve cache use
      constexpr size_t cellsize=16;
      size_t nct = ntheta/cellsize+1,
             ncp = nphi/cellsize+1;
      vector<vector<size_t>> mapper(nct*ncp);
      for (size_t i=0; i<ptg.shape(0); ++i)
        {
        size_t itheta=min(nct-1,size_t(ptg(i,0)/pi*nct)),
               iphi=min(ncp-1,size_t(ptg(i,1)/(2*pi)*ncp));
        mapper[itheta*ncp+iphi].push_back(i);
        }
      size_t cnt=0;
      for (const auto &vec: mapper)
        for (auto i:vec)
          idx[cnt++] = i;
      }
      execStatic(idx.size(), 1, 0, [&](Scheduler &sched) // not parallel yet
        {
        vector<T> wt(supp), wp(supp);
        vector<T> psiarr(2*kmax+1);
        while (auto rng=sched.getNext()) for(auto ind=rng.lo; ind<rng.hi; ++ind)
          {
          size_t i=idx[ind];
          double f0=0.5*supp+ptg(i,0)*xdtheta;
          size_t i0 = size_t(f0+1.);
          for (size_t t=0; t<supp; ++t)
            wt[t] = kernel((t+i0-f0)*delta - 1);
          double f1=0.5*supp+ptg(i,1)*xdphi;
          size_t i1 = size_t(f1+1.);
          for (size_t t=0; t<supp; ++t)
            wp[t] = kernel((t+i1-f1)*delta - 1);
          double val=data(i);
          psiarr[0]=1.;
          double psi=ptg(i,2);
          double cpsi=cos(psi), spsi=sin(psi);
          double cnpsi=cpsi, snpsi=spsi;
          for (size_t l=1; l<=kmax; ++l)
            {
            psiarr[2*l-1]=cnpsi;
            psiarr[2*l]=snpsi;
            const double tmp = snpsi*cpsi + cnpsi*spsi;
            cnpsi=cnpsi*cpsi - snpsi*spsi;
            snpsi=tmp;
            }
          for (size_t j=0; j<supp; ++j)
            for (size_t k=0; k<supp; ++k)
              for (size_t l=0; l<2*kmax+1; ++l)
                cube.v(i0+j,i1+k,l) += val*wt[j]*wp[k]*psiarr[l];
          }
        });
      }
    void getSlmx (const Alm<complex<T>> &blmT, Alm<complex<T>> &slmT)
      {
      MR_assert(adjoint, "can only be called in adjoint mode");
      Alm<complex<T>> a1(lmax, lmax), a2(lmax,lmax);
      auto ginfo = sharp_make_cc_geom_info(ntheta0,nphi0,0.,cube.stride(1),cube.stride(0));
      auto ainfo = sharp_make_triangular_alm_info(lmax,lmax,1);

      // move stuff from border regions onto the main grid
330
      for (size_t i=0; i<cube.shape(0); ++i)
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        for (size_t j=0; j<supp; ++j)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            cube.v(i,j+nphi,k) += cube(i,j,k);
            cube.v(i,j+supp,k) += cube(i,j+nphi+supp,k);
            }
      for (size_t i=0; i<supp; ++i)
        for (size_t j=0, j2=nphi/2; j<nphi; ++j,++j2)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            double fct = (((k+1)/2)&1) ? -1 : 1;
            if (j2>=nphi) j2-=nphi;
            cube.v(supp+1+i,j+supp,k) += fct*cube(supp-1-i,j2+supp,k);
            cube.v(supp+ntheta-2-i, j+supp,k) += fct*cube(supp+ntheta+i,j2+supp,k);
            }
346
347
348
349
350
351
352
353
354
355
356
357
358
359
for (size_t k=0; k<cube.shape(2); ++k)
{
double fct = (((k+1)/2)&1) ? -1 : 1;
for (size_t j=0,j2=nphi/2; j<nphi/2; ++j,++j2)
  {
  if (j2>=nphi) j2-=nphi;
  double tval = (cube(supp,j+supp,k) + fct*cube(supp,j2+supp,k));
  cube.v(supp,j+supp,k) = tval;
  cube.v(supp,j2+supp,k) = fct*tval;
  tval = (cube(supp+ntheta-1,j+supp,k) + fct*cube(supp+ntheta-1,j2+supp,k));
  cube.v(supp+ntheta-1,j+supp,k) = tval;
  cube.v(supp+ntheta-1,j2+supp,k) = fct*tval;
  }
}
360
361
362
363
364
365
366
      vector<double>lnorm(lmax+1);
      for (size_t i=0; i<=lmax; ++i)
        lnorm[i]=sqrt(4*pi/(2*i+1.));

      {
      auto m1 = cube.template subarray<2>({supp,supp,0},{ntheta,nphi,0});
      decorrect(m1,0);
367
368
   for (size_t j=0; j<nphi0; ++j)
     {
369
370
     m1.v(0,j)*=0.5;
     m1.v(ntheta0-1,j)*=0.5;
371
     }
372
373
374
      sharp_alm2map_adjoint(a1.Alms().vdata(), m1.data(), *ginfo, *ainfo, 0, nthreads);
      for (size_t m=0; m<=lmax; ++m)
        for (size_t l=m; l<=lmax; ++l)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
375
          slmT(l,m)=a1(l,m)*blmT(l,0).real()*T(lnorm[l]);
376
377
378
379
380
381
382
383
      }

      for (size_t k=1; k<=kmax; ++k)
        {
        auto m1 = cube.template subarray<2>({supp,supp,2*k-1},{ntheta,nphi,0});
        auto m2 = cube.template subarray<2>({supp,supp,2*k  },{ntheta,nphi,0});
        decorrect(m1,k);
        decorrect(m2,k);
384
385
   for (size_t j=0; j<nphi0; ++j)
     {
386
387
     m1.v(0,j)*=0.5;
     m1.v(ntheta0-1,j)*=0.5;
388
389
390
     }
   for (size_t j=0; j<nphi0; ++j)
     {
391
392
     m2.v(0,j)*=0.5;
     m2.v(ntheta0-1,j)*=0.5;
393
     }
394
395
396
397
398
399
400
401
402

        sharp_alm2map_spin_adjoint(k, a1.Alms().vdata(), a2.Alms().vdata(), m1.data(),
          m2.data(), *ginfo, *ainfo, 0, nthreads);
        for (size_t m=0; m<=lmax; ++m)
          for (size_t l=m; l<=lmax; ++l)
            {
            if (l>=k)
              {
              auto tmp = -2.*conj(blmT(l,k))*T(lnorm[l]);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
403
404
              slmT(l,m) += a1(l,m)*tmp.real();
              slmT(l,m) -= a2(l,m)*tmp.imag();
405
406
407
408
              }
            }
        }
      }
409
410
411
412
413
  };

template<typename T> class PyInterpolator: public Interpolator<T>
  {
  public:
414
415
    PyInterpolator(const py::array &slmT, const py::array &blmT,
      int64_t lmax, int64_t kmax, double epsilon, int nthreads=0)
416
417
      : Interpolator<T>(Alm<complex<T>>(to_mav<complex<T>,1>(slmT), lmax, lmax),
                        Alm<complex<T>>(to_mav<complex<T>,1>(blmT), lmax, kmax),
Martin Reinecke's avatar
Martin Reinecke committed
418
                        epsilon, nthreads) {}
419
420
    PyInterpolator(int64_t lmax, int64_t kmax, double epsilon, int nthreads=0)
      : Interpolator<T>(lmax, kmax, epsilon, nthreads) {}
421
    using Interpolator<T>::interpolx;
422
423
424
425
    using Interpolator<T>::deinterpolx;
    using Interpolator<T>::getSlmx;
    using Interpolator<T>::lmax;
    using Interpolator<T>::kmax;
Martin Reinecke's avatar
Martin Reinecke committed
426
427
428
429
430
431
    using Interpolator<T>::nphi;
    using Interpolator<T>::ntheta;
    using Interpolator<T>::nphi0;
    using Interpolator<T>::ntheta0;
    using Interpolator<T>::correct;
    using Interpolator<T>::decorrect;
432
    py::array interpol(const py::array &ptg) const
433
434
435
436
437
438
439
      {
      auto ptg2 = to_mav<T,2>(ptg);
      auto res = make_Pyarr<double>({ptg2.shape(0)});
      auto res2 = to_mav<double,1>(res,true);
      interpolx(ptg2, res2);
      return res;
      }
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

    void deinterpol(const py::array &ptg, const py::array &data)
      {
      auto ptg2 = to_mav<T,2>(ptg);
      auto data2 = to_mav<T,1>(data);
      deinterpolx(ptg2, data2);
      }
    py::array getSlm(const py::array &blmT_)
      {
      auto res = make_Pyarr<complex<T>>({Alm_Base::Num_Alms(lmax, lmax)});
      Alm<complex<T>> blmT(to_mav<complex<T>,1>(blmT_, false), lmax, kmax);
      auto slmT_=to_mav<complex<T>,1>(res, true);
slmT_.apply([](complex<T> &v){v=0;});
      Alm<complex<T>> slmT(slmT_, lmax, lmax);
      getSlmx(blmT, slmT);
      return res;
      }
Martin Reinecke's avatar
Martin Reinecke committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    py::array test_correct(const py::array &in, int spin)
      {
      auto in2 = to_mav<T,2>(in);
      MR_assert(in2.conformable({ntheta0, nphi0}), "bad input shape");
      auto res = make_Pyarr<T>({ntheta, nphi});
      auto res2 = to_mav<T,2>(res,true);
res2.apply([](T &v){v=0;});
      for (size_t i=0; i<ntheta0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          res2.v(i,j) = in2(i,j);
      correct (res2, spin);
      return res;
      }
    py::array test_decorrect(const py::array &in, int spin)
      {
      auto in2 = to_mav<T,2>(in);
      MR_assert(in2.conformable({ntheta, nphi}), "bad input shape");
      auto tmp = mav<T,2>({ntheta, nphi});
      for (size_t i=0; i<ntheta; ++i)
        for (size_t j=0; j<nphi; ++j)
          tmp.v(i,j) = in2(i,j);
      decorrect (tmp, spin);
      auto res = make_Pyarr<T>({ntheta0, nphi0});
      auto res2 = to_mav<T,2>(res,true);
      for (size_t i=0; i<ntheta0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          res2.v(i,j) = tmp(i,j);
      return res;
      }
    int Nphi0() const { return nphi0; }
    int Ntheta0() const { return ntheta0; }
    int Nphi() const { return nphi; }
    int Ntheta() const { return ntheta; }
490
491
  };

492
#if 1
Martin Reinecke's avatar
Martin Reinecke committed
493
494
495
template<typename T> py::array pyrotate_alm(const py::array &alm_, int64_t lmax,
  double psi, double theta, double phi)
  {
496
497
498
499
500
501
502
  auto a1 = to_mav<complex<T>,1>(alm_);
  auto alm = make_Pyarr<complex<T>>({a1.shape(0)});
  auto a2 = to_mav<complex<T>,1>(alm,true);
  for (size_t i=0; i<a1.shape(0); ++i) a2.v(i)=a1(i);
  auto blah = Alm<complex<T>>(a2,lmax,lmax);
  rotate_alm(blah, psi, theta, phi);
  return alm;
Martin Reinecke's avatar
Martin Reinecke committed
503
504
505
  }
#endif

506
507
508
509
510
511
512
} // unnamed namespace

PYBIND11_MODULE(interpol_ng, m)
  {
  using namespace pybind11::literals;

  py::class_<PyInterpolator<double>> (m, "PyInterpolator")
Martin Reinecke's avatar
Martin Reinecke committed
513
514
    .def(py::init<const py::array &, const py::array &, int64_t, int64_t, double, int>(),
      "sky"_a, "beam"_a, "lmax"_a, "kmax"_a, "epsilon"_a, "nthreads"_a)
515
516
517
518
    .def(py::init<int64_t, int64_t, double, int>(),
      "lmax"_a, "kmax"_a, "epsilon"_a, "nthreads"_a)
    .def ("interpol", &PyInterpolator<double>::interpol, "ptg"_a)
    .def ("deinterpol", &PyInterpolator<double>::deinterpol, "ptg"_a, "data"_a)
Martin Reinecke's avatar
Martin Reinecke committed
519
520
521
522
523
524
525
    .def ("getSlm", &PyInterpolator<double>::getSlm, "blmT"_a)
    .def ("test_correct", &PyInterpolator<double>::test_correct, "in"_a, "spin"_a)
    .def ("test_decorrect", &PyInterpolator<double>::test_decorrect, "in"_a, "spin"_a)
    .def ("Nphi", &PyInterpolator<double>::Nphi)
    .def ("Ntheta", &PyInterpolator<double>::Ntheta)
    .def ("Nphi0", &PyInterpolator<double>::Nphi0)
    .def ("Ntheta0", &PyInterpolator<double>::Ntheta0);
526
#if 1
Martin Reinecke's avatar
Martin Reinecke committed
527
528
529
  m.def("rotate_alm", &pyrotate_alm<double>, "alm"_a, "lmax"_a, "psi"_a, "theta"_a,
    "phi"_a);
#endif
530
  }