Analysis_final_mult.py 55.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#!/usr/bin/env python
# coding: utf-8

# In[1]:


import pandas as pd
import numpy as np
import ndjson
import jsonlines
import json
import pickle
import os
import sys
import random as rd
import json
import re, regex
from joblib import dump, load
import collections
import math
import statistics
import itertools
23
import multiprocessing as mp
24
25
26
27
28
29

from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import PassiveAggressiveClassifier, SGDClassifier
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
30
31
import matplotlib
matplotlib.use('agg')
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
32
33
34
35
import matplotlib.colors as cl
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn as sns # data visualization library  
36
37
38
# In[2]:

path = '/draco/ptmp/mschuber/PAN/Data/pan19-celebrity-profiling-training-dataset-2019-01-31/stratified_subsample/'
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
39
savedir = '/draco/ptmp/mschuber/PAN/Data/results/'
40
41
42
#path = '../Data/pan19-celebrity-profiling-training-dataset-2019-01-31/stratified_subsample/'

subana_l = ['org/', 'min_tweets_1000/', 'complete_balance/']
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
43
#subana_l = ['org/']
44
45

subsets_l = [200, 500, 1000, 2000]
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
46
#subsets_l = [200]
47
48
49
50
51
52
53
54
55
56
57
58
59
60

classifiers = ['SVM']

datafolder = 'split_data/'

ml_results = 'ml/'

filebeg = 'stratified_subsample_'

labels_l = ['age', 'gender', 'author']

phases_l = ['child_21', 'young_adult_35', 'adult_50', 'old_adult_65', 'retiree']


Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
61
62
63
64
65

    #get_ipython().run_line_magic('matplotlib', 'inline')
    #import matplotlib

cmap = cl.LinearSegmentedColormap.from_list("", ["skyblue","cadetblue","darkblue", "steelblue"]) #define colors
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# In[3]:


####tester

#subana = ['org/']

#subsets = [200]

#classifiers = ['SVM']

#datafolder = 'split_data/'

#ml_results = 'ml/'

#filebeg = 'stratified_subsample_'

#labels = ['age', 'gender', 'author']


# In[4]:


def identity_tokenizer(text):
    return text

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
92
def plot_confusion_matrix(cm, classes,normalize=True,title='Confusion matrix',cmap=plt.cm.Blues, ax = None):
93
94
95
96
97
98
99
100
   """
   This function prints and plots the confusion matrix.
   Normalization can be applied by setting `normalize=True`.
   """
   if not ax:
       ax = plt.gca()
       
       
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
101
   
102
103
104
105
106
107
   if normalize:
       cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
       print("Normalized confusion matrix")
   else:
       print('Confusion matrix, without normalization')
   #print(cm)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
108
   cm_old = cm
109
110
111


   im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
112
   #plt.title(title)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
   cbar = ax.figure.colorbar(im, ax = ax, ticks=[], label = "Heat per Row (Normalized from 0 to 1)")
   tick_marks = np.arange(len(classes))
   #ax.set_xticks(tick_marks)
   #ax.set_yticks(tick_marks)
   #ax.set_xticklabels(classes, rotation=45)
   #ax.set_yticklabels(classes)
   ax.set(xticks=np.arange(cm.shape[1]),
          yticks=np.arange(cm.shape[0]),
          # ... and label them with the respective list entries
          xticklabels=classes, yticklabels=classes,
          ylabel='True label',
          xlabel='Predicted label')    
   # Rotate the tick labels and set their alignment.
   plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
            rotation_mode="anchor")
   #make it so that text is on minor label and not on edge of boundary (i.e. half cutoff at top and bottom) 
   ax.set_xticks(np.arange(cm.shape[1]+1)-.5, minor=True)
   ax.set_yticks(np.arange(cm.shape[0]+1)-.5, minor=True)
   
   fmt = '.2f' if normalize else 'd'
   fmt = 'd'
   thresh = cm.max() / 1.5

   for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
       ax.text(j, i, format(cm_old[i, j], fmt),
                ha="center",
                va="center",
                color="white" if cm[i, j] > thresh else "black")
       
142

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
143
       
144
145
146


    # Start with analysis of precision and recall as well as heatmaps/confusion matrices:
147
148

def plotter(subsets, subana, phases, labels):
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    df_dic = {}
    res_dic = {}
    author_dic = {}

    for st in subsets:

        res_dic[st] = {}
       
        df_dic[st] = {}
        author_dic[st] = {}
        for ana in subana:
            
            res_dic[st][ana.split('/')[0]] = {}
            df_dic[st][ana.split('/')[0]] = {}
            author_dic[st][ana.split('/')[0]] = {}
            ###make dic with all authors
            with open(path+ana+str(st)+'/'+datafolder+filebeg+str(st)+'_author_train.json', 'r', encoding='utf-8') as f:
                authors = json.load(f)
            with open(path+ana+str(st)+'/'+datafolder+filebeg+str(st)+'_gender_train.json', 'r', encoding='utf-8') as f:
                gender = json.load(f)            
            with open(path+ana+str(st)+'/'+datafolder+filebeg+str(st)+'_age_train.json', 'r', encoding='utf-8') as f:
                year = json.load(f)
            

            for i in range(0, len(year)):
                age = 2019 - year[i]
                
                if age <22:
                    lifePhase = 'child_21'
                elif age <36:
                    lifePhase = 'young_adult_35'
                elif age < 51:
                    lifePhase = 'adult_50'
                elif age <66:
                    lifePhase = 'old_adult_65'
                else:
                    lifePhase = 'retiree'
                
                author_dic[st][ana.split('/')[0]][authors[i]] = {}
                author_dic[st][ana.split('/')[0]][authors[i]]['life_phase'] = lifePhase
                author_dic[st][ana.split('/')[0]][authors[i]]['age'] = year[i]
                author_dic[st][ana.split('/')[0]][authors[i]]['gender'] = gender[i]
                      
            
            df = pd.DataFrame()
            with open(path+ana+str(st)+'/'+datafolder+filebeg+str(st)+'_bigram_vocab.json', 'r', encoding='utf-8') as f:
                vocab = json.load(f)
                
                res_dic[st][ana.split('/')[0]]['vocab'] = vocab
                res_dic[st][ana.split('/')[0]]['vocab_inverse'] = {v:k for k,v in vocab.items()}
            ##update  "vocab" to include the tweet length as feature to display
            if len(vocab) not in res_dic[st][ana.split('/')[0]]['vocab_inverse']:
                leng = len(vocab)
                res_dic[st][ana.split('/')[0]]['vocab']['§LENGTH§'] = leng
                res_dic[st][ana.split('/')[0]]['vocab_inverse'][leng] = '§LENGTH§'
            else:
                print('error; key already exists')
                print(res_dic[st][ana.split('/')[0]]['vocab_inverse'][len(vocab)])
                sys.exit(1)
            
            
            for label in labels:
                
                res_dic[st][ana.split('/')[0]][label] = {}
                
                enc = load(path+ana+str(st)+'/'+ml_results+filebeg+label+'_'+str(st)+'_encoder.jlib')
                res_dic[st][ana.split('/')[0]][label]['label_encoder'] = enc          
                
                for clf in classifiers:
                    
                    clf_l = load(path+ana+str(st)+'/'+ml_results+filebeg+clf+'_'+label+'_'+str(st)+'_svm_out_count.jlib')
                    
                    with open(path+ana+str(st)+'/'+datafolder+filebeg+str(st)+'_'+label+'_test.json') as f:
                        lab = json.load(f)
                        df[ana.split('/')[0]+'_'+str(st)+'_'+clf+'_'+label] = lab
                        print(str(st)+'_'+ana+'_'+label+'_'+clf)
                        if label == 'age':
                            phase = []
                            for el in lab:
                                age = 2019 - el
                                if age <22:
                                    lifePhase = 'child_21'
                                elif age <36:
                                    lifePhase = 'young_adult_35'
                                elif age < 51:
                                    lifePhase = 'adult_50'
                                elif age <66:
                                    lifePhase = 'old_adult_65'
                                else:
                                    lifePhase = 'retiree'
                                phase.append(lifePhase)
                            df[ana.split('/')[0]+'_'+str(st)+'_life_phase'] = phase
                            
                        
                        
                        #print(len(json.load(f)))
                    
                    res_dic[st][ana.split('/')[0]][label][clf] = clf_l.coef_
       
                    
                    
                    df[ana.split('/')[0]+'_'+str(st)+'_'+clf+'_'+label+'_pred_enc'] = list(load(path+ana+str(st)+'/'+ml_results+filebeg+clf+'_'+label+'_'+str(st)+'_predictions_count.jlib'))
                    rev_enc = list(enc.inverse_transform(load(path+ana+str(st)+'/'+ml_results+filebeg+clf+'_'+label+'_'+str(st)+'_predictions_count.jlib')))
                    df[ana.split('/')[0]+'_'+str(st)+'_'+clf+'_'+label+'_pred'] = rev_enc
                    if label == 'age':
                        phase = []
                        for el in rev_enc:
                            age = 2019 - el
                            if age <22:
                                lifePhase = 'child_21'
                            elif age <36:
                                lifePhase = 'young_adult_35'
                            elif age < 51:
                                lifePhase = 'adult_50'
                            elif age <66:
                                lifePhase = 'old_adult_65'
                            else:
                                lifePhase = 'retiree'
                            phase.append(lifePhase)
                                
                        df[ana.split('/')[0]+'_'+str(st)+'_life_phase_pred'] = phase
                        
                        
                    res_dic[st][ana.split('/')[0]][label]['labels'] = {}
                    for l in lab:
                        res_dic[st][ana.split('/')[0]][label]['labels'][l] = {}
                    
                    
                    
            df_dic[st][ana.split('/')[0]]['df'] = df


    # In[ ]:





    # In[ ]:





    # In[ ]:


    for st in subsets:
        for ana in subana:
            an = ana.split('/')[0]
            for label in labels:
                
                enc = res_dic[st][an][label]['label_encoder']
                coef = res_dic[st][an][label]['SVM']
                key_len = len(res_dic[st][an][label]['labels'].keys())
                df = df_dic[st][an]['df']
                res_dic[st][an][label]['acc'] = accuracy_score(df[an+'_'+str(st)+'_SVM_'+label], df[an+'_'+str(st)+'_SVM_'+label+'_pred']).round(3)
                res_dic[st][an][label]['prec'] = precision_score(df[an+'_'+str(st)+'_SVM_'+label], df[an+'_'+str(st)+'_SVM_'+label+'_pred'], average='weighted').round(3)
                res_dic[st][an][label]['rec'] = recall_score(df[an+'_'+str(st)+'_SVM_'+label], df[an+'_'+str(st)+'_SVM_'+label+'_pred'], average='weighted').round(3)
                res_dic[st][an][label]['f1'] = f1_score(df[an+'_'+str(st)+'_SVM_'+label], df[an+'_'+str(st)+'_SVM_'+label+'_pred'], average='weighted').round(3)
                
                for key in res_dic[st][an][label]['labels'].keys():
                    key_enc = enc.transform([key])[0]
        
                    subDf = df.loc[df[an+'_'+str(st)+'_SVM_'+label] == key]
                    if label == 'author':
                        row = df.loc[df[an+'_'+str(st)+'_'+'SVM'+'_'+'author'] == key].iloc[0]
                        res_dic[st][an][label]['labels'][key]['gender'] = row[an+'_'+str(st)+'_'+'SVM'+'_'+'gender']
                        res_dic[st][an][label]['labels'][key]['age'] = row[an+'_'+str(st)+'_'+'SVM'+'_'+'age']
                        res_dic[st][an][label]['labels'][key]['life_phase'] = row[an+'_'+str(st)+'_'+'life_phase']
                    elif label == 'age':
                        age = 2019 -key
                        if age <22:
                            lifePhase = 'child_21'
                        elif age <36:
                            lifePhase = 'young_adult_35'
                        elif age < 51:
                            lifePhase = 'adult_50'
                        elif age <66:
                            lifePhase = 'old_adult_65'
                        else:
                            lifePhase = 'retiree'

                            
                        res_dic[st][an][label]['labels'][key]['life_phase'] = lifePhase
                        
                        
                    res_dic[st][an][label]['labels'][key]['acc'] = accuracy_score(subDf[an+'_'+str(st)+'_SVM_'+label], subDf[an+'_'+str(st)+'_SVM_'+label+'_pred']).round(3)
                    ##no second category for subanalysis: prec = 1
                    #res_dic[st][an][label]['labels'][key]['prec'] = precision_score(subDf[an+'_'+str(st)+'_SVM_'+label], subDf[an+'_'+str(st)+'_SVM_'+label+'_pred'], average='weighted').round(3)
                    ## precision always equals recall in subanalyis
                    #res_dic[st][an][label]['labels'][key]['rec'] = recall_score(subDf[an+'_'+str(st)+'_SVM_'+label], subDf[an+'_'+str(st)+'_SVM_'+label+'_pred'], average='weighted').round(3)
                    ##f1 score is ill defined
                    #res_dic[st][an][label]['labels'][key]['f1'] = f1_score(subDf[an+'_'+str(st)+'_SVM_'+label], subDf[an+'_'+str(st)+'_SVM_'+label+'_pred'], average='weighted').round(3)

                    if key_len > 2:
                        res_dic[st][an][label]['labels'][key]['feature_vec'] = coef[key_enc]
                    
                    elif key_enc > 0:
                        res_dic[st][an][label]['labels'][key]['feature_vec'] = coef[0]
                        



    ###save top 25 most predictive labels for each set and each subset in groups


    most_pred = {}


    for st in subsets:
        most_pred[st] = {}
        for ana in subana:
            an = ana.split('/')[0]
            most_pred[st][an] = {}
            for label in labels:
                most_pred[st][an][label] = {'feature_vecs':[]}
                for ph in phases:
                    most_pred[st][an][label][ph] = {'feature_vecs_pos': [], 'feature_vecs_neg': [], 'val_array': []}
                    if label in ['author']:
                        for sex in ['male', 'female']:
                            most_pred[st][an][label][ph][sex] = {'feature_vecs_pos':[], 'feature_vecs_neg':[],
                                                                    'val_array': []}
                            most_pred[st][an][label][sex] = {'feature_vecs_pos':[], 'feature_vecs_neg':[],
                                                             'val_array': []}

                with open(path+ana+str(st)+'/'+datafolder+filebeg+str(st)+'_bigram_vocab.json' , 'r', encoding = 'utf-8') as f:
                    most_pred[st][an]['vocab'] = json.load(f) 
                ##author and age to have different depth than gender and can be used for life phases
                if label in ['age']:
                    for key in res_dic[st][an][label]['labels'].keys():
                        ph = res_dic[st][an][label]['labels'][key]['life_phase']
                        sort = list(np.argsort(res_dic[st][an][label]['labels'][key]['feature_vec']))
                        array = res_dic[st][an][label]['labels'][key]['feature_vec']
                        most_pred[st][an][label][ph]['feature_vecs_pos'].append([i for i in sort if array[i] > 0 ])

                        most_pred[st][an][label][ph]['feature_vecs_neg'].append([i for i in sort if array[i] < 0 ])
                        if type(most_pred[st][an][label][ph]['val_array']) != type([]):
                            A = most_pred[st][an][label][ph]['val_array']
                            most_pred[st][an][label][ph]['val_array'] = np.vstack((A, array))
                        
                        else:
                            most_pred[st][an][label][ph]['val_array'] = array
                    for ph in phases:
                        most_pred[st][an][label][ph]['min_array'] = np.amin(most_pred[st][an][label][ph]['val_array'], axis=0)
                        most_pred[st][an][label][ph]['max_array'] = np.amax(most_pred[st][an][label][ph]['val_array'], axis=0)
                        most_pred[st][an][label][ph]['number'] = most_pred[st][an][label][ph]['val_array'].shape[0]
                        most_pred[st][an][label][ph]['val_array'] = np.mean(most_pred[st][an][label][ph]['val_array'], axis = 0)
      
                            
                elif label in ['author']:
                    for key in res_dic[st][an][label]['labels'].keys():
                        ph = res_dic[st][an][label]['labels'][key]['life_phase']
                        sex = res_dic[st][an][label]['labels'][key]['gender']
                        sort = list(np.argsort(res_dic[st][an][label]['labels'][key]['feature_vec']))
                        array = res_dic[st][an][label]['labels'][key]['feature_vec']
                        m_pred_pos = [i for i in sort if array[i] > 0 ]
                        m_pred_neg = [i for i in sort if array[i] < 0 ]
                        most_pred[st][an][label][ph]['feature_vecs_pos'].append(m_pred_pos)
                        most_pred[st][an][label][sex]['feature_vecs_pos'].append(m_pred_pos)
                        most_pred[st][an][label][ph][sex]['feature_vecs_pos'].append(m_pred_pos)
                        most_pred[st][an][label][ph]['feature_vecs_neg'].append(m_pred_neg)
                        most_pred[st][an][label][sex]['feature_vecs_neg'].append(m_pred_neg)
                        most_pred[st][an][label][ph][sex]['feature_vecs_neg'].append(m_pred_neg)
                        
                        if type(most_pred[st][an][label][ph]['val_array']) != type([]):
                            A = most_pred[st][an][label][ph]['val_array']
                            most_pred[st][an][label][ph]['val_array'] = np.vstack((A, array))
                        
                        else:
                            most_pred[st][an][label][ph]['val_array'] = array
                            
                        if type(most_pred[st][an][label][sex]['val_array']) != type([]):
                            A = most_pred[st][an][label][sex]['val_array']
                            most_pred[st][an][label][sex]['val_array'] = np.vstack((A, array))
                        
                        else:

                            most_pred[st][an][label][sex]['val_array'] = array
                            
                        if type(most_pred[st][an][label][ph][sex]['val_array']) != type([]):
                            A = most_pred[st][an][label][ph][sex]['val_array']
                            most_pred[st][an][label][ph][sex]['val_array'] = np.vstack((A, array))
                        
                        else:
                            most_pred[st][an][label][ph][sex]['val_array'] = array
                            
                            
                    check = True
                    for ph in phases:        
                        most_pred[st][an][label][ph]['min_array'] = np.amin(most_pred[st][an][label][ph]['val_array'], axis = 0)
                        most_pred[st][an][label][ph]['max_array'] = np.amax(most_pred[st][an][label][ph]['val_array'], axis = 0)
                        most_pred[st][an][label][ph]['number'] = most_pred[st][an][label][ph]['val_array'].shape[0]
                        most_pred[st][an][label][ph]['val_array'] = np.mean(most_pred[st][an][label][ph]['val_array'], axis = 0)
                        for sex in ['female', 'male']:
                            if check:
                                #print(sex)
                                #print(most_pred[st][an][label][sex]['val_array'])
                                most_pred[st][an][label][sex]['min_array'] = np.amin(most_pred[st][an][label][sex]['val_array'], axis = 0)
                                most_pred[st][an][label][sex]['max_array'] = np.amax(most_pred[st][an][label][sex]['val_array'], axis = 0)
                                most_pred[st][an][label][sex]['number'] = most_pred[st][an][label][sex]['val_array'].shape[0]
                                most_pred[st][an][label][sex]['val_array'] = np.mean(most_pred[st][an][label][sex]['val_array'], axis = 0)
                                #print(most_pred[st][an][label][sex]['val_array'])
                                #print(most_pred[st][an][label][sex]['min_array'])
                                #print(most_pred[st][an][label][sex]['max_array'])
        
                            most_pred[st][an][label][ph][sex]['min_array']= np.amin(most_pred[st][an][label][ph][sex]['val_array'], axis = 0)
                            most_pred[st][an][label][ph][sex]['max_array'] =np.amax(most_pred[st][an][label][ph][sex]['val_array'], axis = 0)
                            most_pred[st][an][label][ph][sex]['number'] = most_pred[st][an][label][ph][sex]['val_array'].shape[0]
                            most_pred[st][an][label][ph][sex]['val_array'] = np.mean(most_pred[st][an][label][ph][sex]['val_array'], axis = 0)
                        check = False
                         
                
                else:
                    
                    most_pred[st][an][label]['feature_vecs'].append(list(np.argsort(res_dic[st][an][label]['labels']['male']['feature_vec'])))


    #sys.exit(1)                
    for st in subsets:
        for ana in subana:
            an = ana.split('/')[0]
            for label in labels:
                if label == 'age':
                    for ph in phases:

                        c = collections.Counter()
                        for vec in most_pred[st][an][label][ph]['feature_vecs_pos']:
                            c.update(list(vec))
                        most_pred[st][an][label][ph]['count_tot_pos'] = c.most_common()
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][ph]['feature_vecs_pos']:
                            c.update(list(vec[-25:]))
                        most_pred[st][an][label][ph]['count_top25_pos'] = c.most_common()
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][ph]['feature_vecs_neg']:
                            c.update(list(vec))
                        most_pred[st][an][label][ph]['count_tot_neg'] = c.most_common()
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][ph]['feature_vecs_neg']:
                            c.update(list(vec[-25:]))
                        most_pred[st][an][label][ph]['count_top25_neg'] = c.most_common()
          
                if label == 'author':
                    for ph in phases:
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][ph]['feature_vecs_pos']:
                            c.update(list(vec))
                        most_pred[st][an][label][ph]['count_tot_pos'] = c.most_common()
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][ph]['feature_vecs_pos']:
                            c.update(list(vec[-25:]))
                        most_pred[st][an][label][ph]['count_top25_pos'] = c.most_common()
                        for sex in ['male', 'female']:
                            c = collections.Counter()
                            for vec in most_pred[st][an][label][ph][sex]['feature_vecs_pos']:
                                c.update(list(vec))
                            most_pred[st][an][label][ph][sex]['count_tot_pos'] = c.most_common()
                            c = collections.Counter()
                            for vec in most_pred[st][an][label][ph][sex]['feature_vecs_pos']:
                                c.update(list(vec[-25:]))
                            most_pred[st][an][label][ph][sex]['count_top25_pos'] = c.most_common()
                            
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][ph]['feature_vecs_neg']:
                            c.update(list(vec))
                        most_pred[st][an][label][ph]['count_tot_neg'] = c.most_common()
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][ph]['feature_vecs_neg']:
                            c.update(list(vec[-25:]))
                        most_pred[st][an][label][ph]['count_top25_neg'] = c.most_common()
                        for sex in ['male', 'female']:
                            c = collections.Counter()
                            for vec in most_pred[st][an][label][ph][sex]['feature_vecs_neg']:
                                c.update(list(vec))
                            most_pred[st][an][label][ph][sex]['count_tot_neg'] = c.most_common()
                            c = collections.Counter()
                            for vec in most_pred[st][an][label][ph][sex]['feature_vecs_neg']:
                                c.update(list(vec[-25:]))
                            most_pred[st][an][label][ph][sex]['count_top25_neg'] = c.most_common()                        
                    for sex in ['male', 'female']:
                        
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][sex]['feature_vecs_pos']:
                            c.update(list(vec))
                        most_pred[st][an][label][sex]['count_tot_pos'] = c.most_common()
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][sex]['feature_vecs_pos']:
                            c.update(list(vec[-25:]))
                        most_pred[st][an][label][sex]['count_top25_pos'] = c.most_common()                       
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][sex]['feature_vecs_neg']:
                            c.update(list(vec))
                        most_pred[st][an][label][sex]['count_tot_neg'] = c.most_common()
                        c = collections.Counter()
                        for vec in most_pred[st][an][label][sex]['feature_vecs_neg']:
                            c.update(list(vec[-25:]))
                        most_pred[st][an][label][sex]['count_top25_neg'] = c.most_common()                           
              
                    










Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
559

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583


    for st in subsets:
        for ana in subana:
            an = ana.split('/')[0]
            tmp = []
            index = []
            for label in labels:
                comp = {'accuracy': accuracy_score(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_'+label],
                                              df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_'+label+'_pred']).round(3),
                        'precision': precision_score(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_'+label],
                                              df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_'+label+'_pred'],
                                                 average='weighted').round(3),
                        'recall': recall_score(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_'+label],
                                              df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_'+label+'_pred'],
                                                 average='weighted').round(3),
                        'f1-score': f1_score(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_'+label],
                                              df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_'+label+'_pred'],
                                                 average='weighted').round(3),
                       }
                tmp.append(comp)
                index.append(label)
                
                if label == 'age':
584
585
                    tmp_sub = []
                    ind_sub = []
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
586
587
588
589
590
591
592
593
594
595
596
597
598
                    
                    comp = {'accuracy': accuracy_score(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                              df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase_pred']).round(3),
                        'precision': precision_score(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                              df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase_pred'],
                                                 average='weighted').round(3),
                        'recall': recall_score(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                              df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase_pred'],
                                                 average='weighted').round(3),
                        'f1-score': f1_score(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                              df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase_pred'],
                                                 average='weighted').round(3)
                           }
599
600
601
602
                    for ph in phases:
                        df = df_dic[st][an]['df']
                        comp_sub = {'accuracy': accuracy_score(df.loc[df[an+'_'+str(st)+'_life_phase'] == ph][an+'_'+str(st)+'_life_phase'],
                                                  df.loc[df[an+'_'+str(st)+'_life_phase'] == ph][an+'_'+str(st)+'_life_phase_pred']).round(3),
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
603
                            'precision': precision_score(df[an+'_'+str(st)+'_life_phase'],
604
605
606
607
608
609
610
611
612
613
614
615
616
617
                                                  df[an+'_'+str(st)+'_life_phase_pred'], labels = [ph],
                                                     average='weighted').round(3),
                            'recall': recall_score(df[an+'_'+str(st)+'_life_phase'],
                                                  df[an+'_'+str(st)+'_life_phase_pred'],labels = [ph],
                                                     average='weighted').round(3),
                            'f1-score': f1_score(df[an+'_'+str(st)+'_life_phase'],
                                                  df[an+'_'+str(st)+'_life_phase_pred'],labels = [ph],
                                                     average='weighted').round(3)}

                        tmp_sub.append(comp_sub)
                        ind_sub.append('age phase {}'.format(ph))    



Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
618
                    f= plt.figure(figsize=(5,10))
619
                    tmp_df =pd.DataFrame(tmp_sub, index = ind_sub)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
620
621
622
623
624
625
                    tmp_df.plot(kind='bar', colormap = cmap, ax=f.gca())
                    plt.legend(loc='upper right') #legend outside box
                    plt.xlabel(xlabel='Evaluation Measures for Different Groups',fontsize ='large', fontweight='roman')
                    plt.setp(ax.get_xticklabels(), rotation=45, ha="right",rotation_mode="anchor")
                    plt.grid(True, axis ='y')
                    plt.ylim((0,0.6))
626
627
628
629
                    plt.tight_layout()
                    plt.savefig(savedir+'barplots/age_scores_{}_{}.pdf'.format(st, an))
                    plt.savefig(savedir+'barplots/age_scores_{}_{}.png'.format(st, an))                                          

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
630
631
632
633
634
635
636
637
638
                    tmp.append(comp)
                    index.append('age by life_phase')
                    
                    np.set_printoptions(precision=2)
                    cnf_matrix = confusion_matrix(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                                 df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase_pred'],
                                                 labels=phases)
                    f = plt.figure()
                    ax = f.subplots()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
639
                    plot_confusion_matrix(cnf_matrix, classes=phases,title=None, ax=ax)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
640
641
                    plt.tight_layout()
                    #plt.show()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
642
                    #f.savefig('../Data/results/heatmaps/test.png')
643
644
645
646
                    f.savefig(savedir+ 'heatmaps/cm_{st}_{an}_{label}_{group}.pdf'.format(st = st,
                                                                                                  an=an,
                                                                                                  label=label,
                                                                                                  group='life_phase'))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
647
                    f.savefig(savedir+ 'heatmaps/cm_{st}_{an}_{label}_{group}.png'.format(st = st,
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
648
649
650
                                                                                                  an=an,
                                                                                                  label=label,
                                                                                                  group='life_phase'))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
651
                    
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
652
653
654
655
                    
                    
                        
                if label == 'author':
656
657
658
659
                    tmp_sub = []
                    ind_sub = []


Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
660
661
662
663
664
665
666
667
668
669
670
                    gen_pred_auth = []
                    life_ph_pred_auth = []
                    gen_pred_auth_wrong = []
                    life_ph_pred_auth_wrong = []
                    auth = list(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_author_pred'])
                    sub_wrong = df_dic[st][an]['df'].loc[df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_author_pred'] != df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_author']]                
                    auth_sub_wrong = list(sub_wrong[an+'_'+str(st)+'_SVM_author_pred'])
                    
                    for au in auth:
                        gen_pred_auth.append(author_dic[st][an][au]['gender'])
                        life_ph_pred_auth.append(author_dic[st][an][au]['life_phase'])
671

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
672
673
                    df_dic[st][an]['df'][an+'_'+str(st)+'_gender_pred_auth'] = gen_pred_auth
                    df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase_pred_auth'] = life_ph_pred_auth
674

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
                        
                    for au in auth_sub_wrong:
                        gen_pred_auth_wrong.append(author_dic[st][an][au]['gender'])
                        life_ph_pred_auth_wrong.append(author_dic[st][an][au]['life_phase']) 
                        
                        
                    comp = {'accuracy': accuracy_score(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                              life_ph_pred_auth).round(3),
                        'precision': precision_score(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                              life_ph_pred_auth,
                                                 average='weighted').round(3),
                        'recall': recall_score(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                              life_ph_pred_auth,
                                                 average='weighted').round(3),
                        'f1-score': f1_score(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                              life_ph_pred_auth,
                                                 average='weighted').round(3)
                           }
693
694
695
696
                    for ph in phases:
                        df = df_dic[st][an]['df']
                        comp_sub = {'accuracy': accuracy_score(df.loc[df[an+'_'+str(st)+'_life_phase'] == ph][an+'_'+str(st)+'_life_phase'],
                                                  df.loc[df[an+'_'+str(st)+'_life_phase'] == ph][an+'_'+str(st)+'_life_phase_pred_auth']).round(3),
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
697
                            'precision': precision_score(df[an+'_'+str(st)+'_life_phase'],
698
699
700
701
702
703
704
705
706
707
                                                  df[an+'_'+str(st)+'_life_phase_pred_auth'], labels = [ph],
                                                     average='weighted').round(3),
                            'recall': recall_score(df[an+'_'+str(st)+'_life_phase'],
                                                  df[an+'_'+str(st)+'_life_phase_pred_auth'],labels = [ph],
                                                     average='weighted').round(3),
                            'f1-score': f1_score(df[an+'_'+str(st)+'_life_phase'],
                                                  df[an+'_'+str(st)+'_life_phase_pred_auth'],labels = [ph],
                                                     average='weighted').round(3)}

                        tmp_sub.append(comp_sub)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
708
709
710
                        ind_sub.append('age phase {}'.format(ph))


711
712
713



Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
714
                    f= plt.figure(figsize=(5, 10))
715
                    tmp_df =pd.DataFrame(tmp_sub, index = ind_sub)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
716
717
718
719
720
721
                    tmp_df.plot(kind='bar', colormap = cmap, ax=f.gca())
                    plt.legend(loc='upper right')
                    plt.xlabel(xlabel='Evaluation Measures for Different Groups',fontsize ='large', fontweight='roman')
                    plt.setp(ax.get_xticklabels(), rotation=45, ha="right",rotation_mode="anchor")
                    plt.grid(True, axis ='y')
                    plt.ylim((0,0.6))
722
723
724
725
                    plt.tight_layout()
                    plt.savefig(savedir+'barplots/author_scores_{}_{}.pdf'.format(st, an))
                    plt.savefig(savedir+'barplots/author_scores_{}_{}.png'.format(st, an)) 

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
726
727
728
729
730
731
                    tmp.append(comp)
                    index.append('author by life_phase')
                    
                    cnf_matrix = confusion_matrix(df_dic[st][an]['df'][an+'_'+str(st)+'_life_phase'],
                                                 life_ph_pred_auth,
                                                 labels=phases)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
732

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
733
                    f = plt.figure()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
734
                    ax = f.subplots()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
735
                    plot_confusion_matrix(cnf_matrix, classes=phases,title=None, ax=ax)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
736
                    plt.show()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
737
                    plt.tight_layout()
738
739
740
                    f.savefig(savedir+'heatmaps/cm_{st}_{an}_{label}_{group}.pdf'.format(st = st, an=an,
                                                                                                  label=label,
                                                                                                  group='life_phase'))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
                    f.savefig(savedir+'heatmaps/cm_{st}_{an}_{label}_{group}.png'.format(st = st, an=an,
                                                                                                  label=label,
                                                                                                  group='life_phase'))
                    
                    comp = {'accuracy': accuracy_score(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_gender'],
                                              gen_pred_auth).round(3),
                        'precision': precision_score(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_gender'],
                                              gen_pred_auth,
                                                 average='weighted').round(3),
                        'recall': recall_score(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_gender'],
                                              gen_pred_auth,
                                                 average='weighted').round(3),
                        'f1-score': f1_score(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_gender'],
                                              gen_pred_auth,
                                                 average='weighted').round(3)
                           }
                        
                    tmp.append(comp)
                    index.append('author by gender')
                        
                    cnf_matrix = confusion_matrix(df_dic[st][an]['df'][an+'_'+str(st)+'_SVM_gender'],
                                                 gen_pred_auth,
                                                 labels=['female', 'male'])
                    f = plt.figure()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
765
                    ax = f.subplots()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
766
                    plot_confusion_matrix(cnf_matrix, classes=['female', 'male'],title=None, ax=ax)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
767
                    plt.tight_layout()
768
769
770
                    f.savefig(savedir+'heatmaps/cm_{st}_{an}_{label}_{group}.pdf'.format(st = st, an=an,
                                                                                                  label=label,
                                                                                                  group='gender'))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
771
772
773
774
775
776
777
778
779
780
                    f.savefig(savedir+'heatmaps/cm_{st}_{an}_{label}_{group}.png'.format(st = st, an=an,
                                                                                                  label=label,
                                                                                                  group='gender'))
                    
                    ###make author cmap showing whether the author missclassified
                    ##were confused with authors of similar gender or life_phase
                    cnf_matrix = confusion_matrix(sub_wrong[an+'_'+str(st)+'_life_phase'],
                                                 life_ph_pred_auth_wrong,
                                                 labels=phases)
                    f = plt.figure()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
781
                    ax = f.subplots()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
782
                    plot_confusion_matrix(cnf_matrix, classes=phases,title=None, ax=ax)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
783
                    plt.tight_layout()
784
785
786
                    f.savefig(savedir+'heatmaps/cm_{st}_{an}_{label}_{group}_false.pdf'.format(st = st, an=an,
                                                                                                  label=label,
                                                                                                  group='life_phase')) 
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
787
788
789
790
791
792
793
794
795
                    f.savefig(savedir+'heatmaps/cm_{st}_{an}_{label}_{group}_false.png'.format(st = st, an=an,
                                                                                                  label=label,
                                                                                                  group='life_phase'))                
                    
                    
                    cnf_matrix = confusion_matrix(sub_wrong[an+'_'+str(st)+'_SVM_gender'],
                                                 gen_pred_auth_wrong,
                                                 labels=['female', 'male'])
                    f = plt.figure()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
796
                    ax = f.subplots()
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
797
                    plot_confusion_matrix(cnf_matrix, classes=['female', 'male'],title=None, ax=ax)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
798
                    plt.tight_layout()
799
800
801
                    f.savefig(savedir+'heatmaps/cm_{st}_{an}_{label}_{group}_false.pdf'.format(st = st, an=an,
                                                                                                  label=label,
                                                                                                  group='gender'))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
802
803
804
805
806
807
808
809
810
                    f.savefig(savedir+'heatmaps/cm_{st}_{an}_{label}_{group}_false.png'.format(st = st, an=an,
                                                                                                  label=label,
                                                                                                  group='gender'))                
                                    
                    
                    
                    
                    
                    
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
811
            f= plt.figure(figsize=(5,10))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
812
            tmp_df =pd.DataFrame(tmp, index = index)
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
813
814
            tmp_df.plot(kind='bar', colormap = cmap, ax=f.gca())
            #plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5)) #legend outside box
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
815
            plt.legend(loc='upper left')
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
816
            plt.xlabel(xlabel='Evaluation Measures for Different Subsets',fontsize ='large', fontweight='roman')
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
817
818
819
            plt.setp(ax.get_xticklabels(), rotation=45, ha="right",rotation_mode="anchor")
            plt.grid(True, axis ='y')
            plt.ylim((0,0.7))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
820
            plt.tight_layout()
821
            plt.savefig(savedir+'barplots/overall_scores_{}_{}.pdf'.format(st, an))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
822
            plt.savefig(savedir+'barplots/overall_scores_{}_{}.png'.format(st, an))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
823
824
825
826
827
828
829
830
831
832
833
                


    # Make plots with most predicitve features

    # In[ ]:


    #import matplotlib as mpl
    #mpl.rcParams['font.sans-serif'] = ['Segoe UI Emoji']
    #mpl.rcParams['font.serif'] = ['Segoe UI Emoji']
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
834

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
    #sns.set_style({"font.sans-serif":['Segoe UI Emoji']}) 
    for st in subsets:
        for ana in subana:
            an = ana.split('/')[0]
            vocab = res_dic[st][an]['vocab_inverse']
            for label in labels:
                dic = {}
                ind_pos = []
                ind_neg = []
                if label == 'age':
                    phase_key = []
                    for ph in phases:
                        
                        leng = most_pred[st][an][label][ph]['number']
                        arr = most_pred[st][an][label][ph]['val_array']
                        maxi = most_pred[st][an][label][ph]['max_array']
                        mini = most_pred[st][an][label][ph]['min_array']
                        ##make it so that the values of heat are relatively to the min and max values of the feature
                        dic[ph+'\n({})'.format(leng)] = {el[0]:(arr[el[0]]/maxi[el[0]]).round(3) for el in most_pred[st][an][label][ph]['count_tot_pos'] if (el[1]/leng) >= .95}
                        dic[ph+'\n({})'.format(leng)].update({el[0]:-(abs(arr[el[0]])/abs(mini[el[0]])).round(3) for el in most_pred[st][an][label][ph]['count_tot_neg'] if (el[1]/leng) >= .95})        
                        ind_pos.extend([el[0] for el in most_pred[st][an][label][ph]['count_tot_pos'] if (el[1]/leng) >= .95])
                        ind_neg.extend([el[0] for el in most_pred[st][an][label][ph]['count_tot_neg'] if (el[1]/leng) >= .95]) 
                        phase_key.append(ph+'\n({})'.format(leng))
                    ind_pos = list(np.unique(ind_pos))
                    ind_neg = list(np.unique(ind_neg))
                        
                    tmp = {}
                    for ph in phase_key:
                        tmp_l = []
                        for el in ind_pos+ind_neg:
                            try:
                                tmp_l.append(dic[ph][el])
                            except:
                                tmp_l.append(0)
                        tmp[ph] = tmp_l
                    
                    #print([vocab[el] for el in ind_pos + ind_neg])
872
873
874
875
876
877
878
879
880
881
882
883
884
                    ind = [vocab[el].replace('§', '') for el in ind_pos+ind_neg]
                    ind = [re.sub(r'\s', 'BLANK', el) for el in ind]
                    ind = [el.replace('$', r'\$') for el in ind]
                    ind = [el.replace('\n', 'BREAK') for el in ind]
                    #print(ind)
                    for i in range(0, len(ind)):
                        try:
                            ind[i].encode('ascii')
                        except:
                            ind[i] = ind[i].encode('unicode-escape')
                    
                        
                    df = pd.DataFrame(tmp , index = ind)
885
886
887
888
                    ##select only informative features (i.e. those which are 0 across less than all columns of type)
                    mask = (df == 0.0).T
                    ls = []
                    for col in mask.columns:
889
                        if collections.Counter(mask[col])[True] < 1:
890
891
                            ls.append(col)
                    df.drop(ls, inplace = True)
892
                    f,ax = plt.subplots(figsize=(18, len(ind)/6))
893
                    sns.heatmap(df, fmt= '.1f',ax=ax, center = 0, yticklabels = True)
894
                    f.savefig(savedir+'featureplots/features_heat_{}_{}_{}_phases.pdf'.format(st, an, label))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
895
                    f.savefig(savedir+'featureplots/features_heat_{}_{}_{}_phases.png'.format(st, an, label))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
                    
                elif label == 'author':
                    sex_key = []
                    phase_key = []
                    for sex in ['male', 'female']:
                        leng = most_pred[st][an][label][sex]['number']
                        arr = most_pred[st][an][label][sex]['val_array']
                        maxi = most_pred[st][an][label][sex]['max_array']
                        mini = most_pred[st][an][label][sex]['min_array']
                        ##make it so that the values of heat are relatively to the min and max values of the feature
                        dic[sex+'\n({})'.format(leng)] = {el[0]:(arr[el[0]]/maxi[el[0]]).round(3) for el in most_pred[st][an][label][sex]['count_tot_pos'] if (el[1]/leng) >= .95}
                        dic[sex+'\n({})'.format(leng)].update({el[0]:-(abs(arr[el[0]])/abs(mini[el[0]])).round(3) for el in most_pred[st][an][label][sex]['count_tot_neg'] if (el[1]/leng) >= .95})        
                        ind_pos.extend([el[0] for el in most_pred[st][an][label][sex]['count_tot_pos'] if (el[1]/leng) >= .95])
                        ind_neg.extend([el[0] for el in most_pred[st][an][label][sex]['count_tot_neg'] if (el[1]/leng) >= .95]) 
                        sex_key.append(sex+'\n({})'.format(leng))

                    for ph in phases:
                        leng = most_pred[st][an][label][ph]['number']
                        arr = most_pred[st][an][label][ph]['val_array']
                        maxi = most_pred[st][an][label][ph]['max_array']
                        mini = most_pred[st][an][label][ph]['min_array']
                        ##make it so that the values of heat are relatively to the min and max values of the feature
                        dic[ph+'\n({})'.format(leng)] = {el[0]:(arr[el[0]]/maxi[el[0]]).round(3) for el in most_pred[st][an][label][ph]['count_tot_pos'] if (el[1]/leng) >= 0.95}
                        dic[ph+'\n({})'.format(leng)].update({el[0]:-(abs(arr[el[0]])/abs(mini[el[0]])).round(3) for el in most_pred[st][an][label][ph]['count_tot_neg'] if (el[1]/leng) >= .95})        
                        ind_pos.extend([el[0] for el in most_pred[st][an][label][ph]['count_tot_pos'] if (el[1]/leng) >= .95])
                        ind_neg.extend([el[0] for el in most_pred[st][an][label][ph]['count_tot_neg'] if (el[1]/leng) >= .95]) 
                        phase_key.append(ph+'\n({})'.format(leng))
                    ind_pos = list(np.unique(ind_pos))
                    ind_neg = list(np.unique(ind_neg))
                    
                    tmp = {}
                    for ph in phase_key+sex_key:
                        tmp_l = []
                        for el in ind_pos+ind_neg:
                            try:
                                tmp_l.append(dic[ph][el])
                            except:
                                tmp_l.append(0)
                        tmp[ph] = tmp_l
                                          
936

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
937
                    #print([vocab[el] for el in ind_pos + ind_neg])
938
939
940
941
942
943
944
945
946
947
948
949
                    ind = [vocab[el].replace('§', '') for el in ind_pos+ind_neg]
                    ind = [re.sub(r'\s', 'BLANK', el) for el in ind]       
                    ind = [el.replace('$', r'\$') for el in ind]
                    ind = [el.replace('\n', 'BREAK') for el in ind]
                    #print(ind)
                    for i in range(0, len(ind)):
                        try:
                            ind[i].encode('ascii')
                        except:
                            ind[i] = ind[i].encode('unicode-escape')
                    #print([vocab[el] for el in ind_pos + ind_neg])
                    df = pd.DataFrame(tmp, index = ind)
950
951
952
953
954

                    ##select only informative features (i.e. those which are 0 across less than all columns of type)
                    mask = (df == 0.0).T
                    ls = []
                    for col in mask.columns:
955
                        if collections.Counter(mask[col])[True] < 1:
956
957
958
959
                            ls.append(col)
                    df.drop(ls, inplace = True)   


Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
960
                    f,ax = plt.subplots(figsize=(18, len(ind_pos+ind_neg)/6))
961
                    sns.heatmap(df, fmt= '.1f',ax=ax, center = 0, yticklabels = True)
962
                    f.savefig(savedir+'featureplots/features_heat_{}_{}_{}_phases.pdf'.format(st, an, label))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
963
                    f.savefig(savedir+'featureplots/features_heat_{}_{}_{}_phases.png'.format(st, an, label))
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
                    
                    dic = {}
                    ind_pos = []
                    ind_neg = []
                    phase_key = []
                    for ph in phases:
                        for sex in ['female', 'male']:
                            leng = most_pred[st][an][label][ph][sex]['number']
                            arr = most_pred[st][an][label][ph][sex]['val_array']
                            maxi = most_pred[st][an][label][ph][sex]['max_array']
                            mini = most_pred[st][an][label][ph][sex]['min_array']
                            ##make it so that the values of heat are relatively to the min and max values of the feature
                            dic[sex+'_'+ph+'\n({})'.format(leng)] = {el[0]:(arr[el[0]]/maxi[el[0]]).round(3) for el in most_pred[st][an][label][ph][sex]['count_tot_pos'] if (el[1]/leng) >= 0.95}
                            dic[sex+'_'+ph+'\n({})'.format(leng)].update({el[0]:-(abs(arr[el[0]])/abs(mini[el[0]])).round(3) for el in most_pred[st][an][label][ph][sex]['count_tot_neg'] if (el[1]/leng) >= .95})        
                            ind_pos.extend([el[0] for el in most_pred[st][an][label][ph][sex]['count_tot_pos'] if (el[1]/leng) >= .95])
                            ind_neg.extend([el[0] for el in most_pred[st][an][label][ph][sex]['count_tot_neg'] if (el[1]/leng) >= .95])                
                            phase_key.append(sex+'_'+ph+'\n({})'.format(leng))
                    ind_pos = list(np.unique(ind_pos))
                    ind_neg = list(np.unique(ind_neg))
                    
                    tmp = {}
                    for ph in phase_key:
                        tmp_l = []
                        for el in ind_pos+ind_neg:
                            try:
                                tmp_l.append(dic[ph][el])
                            except:
                                tmp_l.append(0)
                        tmp[ph] = tmp_l                                    
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
                    #print([vocab[el] for el in ind_pos + ind_neg])
                    ind = [vocab[el].replace('§', '') for el in ind_pos+ind_neg]
                    ind = [re.sub(r'\s', 'BLANK', el) for el in ind]
                    ind = [el.replace('$', r'\$') for el in ind]
                    ind = [el.replace('\n', 'BREAK') for el in ind]
                    #print(ind)
                    for i in range(0, len(ind)):
                        try:
                            ind[i].encode('ascii')
                        except:
                            ind[i] = ind[i].encode('unicode-escape')
                    df = pd.DataFrame(tmp, index = ind)
1005
1006
1007
1008
1009

                    ##select only informative features (i.e. those which are 0 across less than all columns of type)
                    mask = (df == 0.0).T
                    ls = []
                    for col in mask.columns:
1010
                        if collections.Counter(mask[col])[True] < 1:
1011
1012
1013
                            ls.append(col)
                    df.drop(ls, inplace = True)

Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
1014
                    f,ax = plt.subplots(figsize=(18, len(ind_pos+ind_neg)/6))
1015
                    sns.heatmap(df, fmt= '.1f',ax=ax, center = 0, yticklabels = True)
1016
                    f.savefig(savedir+'featureplots/features_heat_{}_{}_{}_gender_phases.pdf'.format(st, an, label)) 
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
1017
                    f.savefig(savedir+'featureplots/features_heat_{}_{}_{}_gender_phases.png'.format(st, an, label))                      
1018
                                               
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
1019
    return 1
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032


def main():
                        
    cpus = mp.cpu_count()
    pool = mp.Pool(cpus)
    #fire off workers
    jobs = []
    #create jobs
    print('make job queue...')
    sys.stdout.flush()
    print('enter cycle...')
    for subsets in subsets_l:
Marcel Henrik Schubert's avatar
Marcel Henrik Schubert committed
1033
1034
1035
        for subana in subana_l:
            job = pool.apply_async(plotter,([subsets], [subana], phases_l, labels_l))
            jobs.append(job)
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

    print('collect results from jobs...')
    sys.stdout.flush()
    # collect results from the workers through the pool result queue
    for j in range(0, len(jobs)):
        tmp = jobs.pop(0)
        tmp = tmp.get()
        del tmp

    print('kill all remaining workers...')
    sys.stdout.flush()
    print('closing down the pool')
    sys.stdout.flush()
    pool.close()   
    pool.join()
    print('done and exit :)')
    sys.stdout.flush()




if __name__ == "__main__":
    main()