diff --git a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh
index 02a64e6077c6ba054a833a7f94fe769f0f33923b..d716594d4f9b4ababaa23fa827ad6b038fc92663 100644
--- a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh
+++ b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh
@@ -26,105 +26,20 @@ namespace edd {
typedef unsigned long long int uint64_cu;
static_assert(sizeof(uint64_cu) == sizeof(uint64_t), "Long long int not of 64 bit! This is problematic for CUDA!");
-
-typedef uint64_t RawVoltageType;
-typedef float UnpackedVoltageType;
-typedef float2 ChannelisedVoltageType;
-
-typedef float IntegratedPowerType;
-//typedef int8_t IntegratedPowerType;
-
-/// Input data and intermediate processing data for one polarization
-struct PolarizationData
-{
- /// Raw ADC Voltage
- DoubleDeviceBuffer<RawVoltageType> _raw_voltage;
- /// Side channel data
- DoubleDeviceBuffer<uint64_t> _sideChannelData;
-
- /// Baseline in gate 0 state
- thrust::device_vector<UnpackedVoltageType> _baseLineG0;
- /// Baseline in gate 1 state
- thrust::device_vector<UnpackedVoltageType> _baseLineG1;
-
- /// Baseline in gate 0 state after update
- thrust::device_vector<UnpackedVoltageType> _baseLineG0_update;
- /// Baseline in gate 1 state after update
- thrust::device_vector<UnpackedVoltageType> _baseLineG1_update;
-
- /// Channelized voltage in gate 0 state
- thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G0;
- /// Channelized voltage in gate 1 state
- thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G1;
-
- /// Swaps input buffers
- void swap()
- {
- _raw_voltage.swap();
- _sideChannelData.swap();
- }
-};
-
-
-// Output data for one gate
-struct StokesOutput
-{
- /// Stokes parameters
- DoubleDeviceBuffer<IntegratedPowerType> I;
- DoubleDeviceBuffer<IntegratedPowerType> Q;
- DoubleDeviceBuffer<IntegratedPowerType> U;
- DoubleDeviceBuffer<IntegratedPowerType> V;
-
- /// Number of samples integrated in this output block
- DoubleDeviceBuffer<uint64_cu> _noOfBitSets;
-
- /// Reset outptu for new integration
- void reset(cudaStream_t &_proc_stream)
- {
- thrust::fill(thrust::cuda::par.on(_proc_stream),I.a().begin(), I.a().end(), 0.);
- thrust::fill(thrust::cuda::par.on(_proc_stream),Q.a().begin(), Q.a().end(), 0.);
- thrust::fill(thrust::cuda::par.on(_proc_stream),U.a().begin(), U.a().end(), 0.);
- thrust::fill(thrust::cuda::par.on(_proc_stream),V.a().begin(), V.a().end(), 0.);
- thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSets.a().begin(), _noOfBitSets.a().end(), 0L);
- }
-
- /// Swap output buffers
- void swap()
- {
- I.swap();
- Q.swap();
- U.swap();
- V.swap();
- _noOfBitSets.swap();
- }
-
- /// Resize all buffers
- void resize(size_t size, size_t blocks)
- {
- I.resize(size * blocks);
- Q.resize(size * blocks);
- U.resize(size * blocks);
- V.resize(size * blocks);
- _noOfBitSets.resize(blocks);
- }
-};
-
-
-
-
-
-
-
/**
@class GatedSpectrometer
@brief Split data into two streams and create integrated spectra depending on
bit set in side channel data.
*/
-template <class HandlerType> class GatedSpectrometer {
+template <class HandlerType, typename IntegratedPowerType> class GatedSpectrometer {
public:
+ typedef uint64_t RawVoltageType;
+ typedef float UnpackedVoltageType;
+ typedef float2 ChannelisedVoltageType;
-
+// typedef float IntegratedPowerType;
+ //typedef int8_t IntegratedPowerType;
public:
/**
@@ -175,10 +90,11 @@ public:
bool operator()(RawBytes &block);
private:
- // gate the data and fft data per gate
- void gated_fft(PolarizationData &data,
- thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0,
- thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1);
+ void process(thrust::device_vector<RawVoltageType> const &digitiser_raw,
+ thrust::device_vector<uint64_t> const &sideChannelData,
+ thrust::device_vector<IntegratedPowerType> &detected,
+ thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0,
+ thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1);
private:
DadaBufferLayout _dadaBufferLayout;
@@ -199,20 +115,26 @@ private:
double _processing_efficiency;
std::unique_ptr<Unpacker> _unpacker;
+ std::unique_ptr<DetectorAccumulator<IntegratedPowerType> > _detector;
- // Input data and per pol intermediate data
- PolarizationData polarization0, polarization1;
+ // Input data
+ DoubleDeviceBuffer<RawVoltageType> _raw_voltage_db;
+ DoubleDeviceBuffer<uint64_t> _sideChannelData_db;
// Output data
- StokesOutput stokes_G0, stokes_G1;
+ DoubleDeviceBuffer<IntegratedPowerType> _power_db;
+
+ DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G0;
+ DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G1;
DoublePinnedHostBuffer<char> _host_power_db;
- // Temporary processing block
- // ToDo: Use inplace FFT to avoid temporary coltage array
+ // Intermediate process steps
thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G0;
thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G1;
-
+ thrust::device_vector<ChannelisedVoltageType> _channelised_voltage;
+ thrust::device_vector<UnpackedVoltageType> _baseLineNG0;
+ thrust::device_vector<UnpackedVoltageType> _baseLineNG1;
cudaStream_t _h2d_stream;
cudaStream_t _proc_stream;
@@ -220,10 +142,11 @@ private:
};
+
/**
* @brief Splits the input data depending on a bit set into two arrays.
*
- * @detail The resulting gaps are filled with a given baseline value in the other stream.
+ * @detail The resulting gaps are filled with zeros in the other stream.
*
* @param GO Input data. Data is set to the baseline value if corresponding
* sideChannelData bit at bitpos os set.
@@ -247,63 +170,13 @@ private:
__global__ void gating(float *G0, float *G1, const int64_t *sideChannelData,
size_t N, size_t heapSize, size_t bitpos,
size_t noOfSideChannels, size_t selectedSideChannel,
- const float* __restrict__ _baseLineG0,
- const float* __restrict__ _baseLineG1,
+ const float baseLineG0,
+ const float baseLineG1,
float* __restrict__ baseLineNG0,
float* __restrict__ baseLineNG1,
uint64_cu* stats_G0,
uint64_cu* stats_G1);
-/**
- * @brief calculate stokes IQUV from two complex valuies for each polarization
- */
-//__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V);
-__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V)
-{
- I = fabs(p1.x*p1.x + p1.y * p1.y) + fabs(p2.x*p2.x + p2.y * p2.y);
- Q = fabs(p1.x*p1.x + p1.y * p1.y) - fabs(p2.x*p2.x + p2.y * p2.y);
- U = 2 * (p1.x*p2.x + p1.y * p2.y);
- V = -2 * (p1.y*p2.x - p1.x * p2.y);
-}
-
-
-
-
-/**
- * @brief calculate stokes IQUV spectra pol1, pol2 are arrays of naccumulate
- * complex spectra for individual polarizations
- */
-__global__ void stokes_accumulate(float2 const __restrict__ *pol1,
- float2 const __restrict__ *pol2, float *I, float* Q, float *U, float*V,
- int nchans, int naccumulate)
-{
-
- for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < nchans);
- i += blockDim.x * gridDim.x)
- {
- float rI = 0;
- float rQ = 0;
- float rU = 0;
- float rV = 0;
-
- for (int k=0; k < naccumulate; k++)
- {
- const float2 p1 = pol1[i + k * nchans];
- const float2 p2 = pol2[i + k * nchans];
-
- rI += fabs(p1.x * p1.x + p1.y * p1.y) + fabs(p2.x * p2.x + p2.y * p2.y);
- rQ += fabs(p1.x * p1.x + p1.y * p1.y) - fabs(p2.x * p2.x + p2.y * p2.y);
- rU += 2.f * (p1.x * p2.x + p1.y * p2.y);
- rV += -2.f * (p1.y * p2.x - p1.x * p2.y);
- }
- I[i] += rI;
- Q[i] += rQ;
- U[i] += rU;
- V[i] += rV;
- }
-
-}
-
diff --git a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu
index 679b7fc261a2674c37bac70cf723aafa30c40dad..bd33eaecc2b0be867a8fe7d6768abf1c329ffcc1 100644
--- a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu
+++ b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu
@@ -17,9 +17,8 @@ namespace psrdada_cpp {
namespace effelsberg {
namespace edd {
-// Reduce thread local vatiable v in shared array x, so that x[0]
template<typename T>
-__device__ void sum_reduce(T *x, const T &v)
+__device__ void reduce(T *x, const T &v)
{
x[threadIdx.x] = v;
__syncthreads();
@@ -29,40 +28,26 @@ __device__ void sum_reduce(T *x, const T &v)
x[threadIdx.x] += x[threadIdx.x + s];
__syncthreads();
}
-}
-// If one of the side channel items is lsot, then both are considered as lost
-// here
-__global__ void mergeSideChannels(uint64_t* __restrict__ A, uint64_t* __restrict__ B, size_t N)
-{
- for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < N);
- i += blockDim.x * gridDim.x)
- {
- uint64_t v = A[i] || B[i];
- A[i] = v;
- B[i] = v;
- }
}
-__global__ void gating(float* __restrict__ G0,
- float* __restrict__ G1,
- const uint64_t* __restrict__ sideChannelData,
- size_t N, size_t heapSize, size_t bitpos,
- size_t noOfSideChannels, size_t selectedSideChannel,
- const float* __restrict__ _baseLineG0,
- const float* __restrict__ _baseLineG1,
- float* __restrict__ baseLineNG0,
- float* __restrict__ baseLineNG1,
- uint64_cu* stats_G0, uint64_cu* stats_G1) {
+__global__ void gating(float* __restrict__ G0, float* __restrict__ G1, const uint64_t* __restrict__ sideChannelData,
+ size_t N, size_t heapSize, size_t bitpos,
+ size_t noOfSideChannels, size_t selectedSideChannel,
+ const float baseLineG0,
+ const float baseLineG1,
+ float* __restrict__ baseLineNG0,
+ float* __restrict__ baseLineNG1,
+ uint64_cu* stats_G0, uint64_cu* stats_G1) {
+// float baseLineG0 = (*_baseLineNG0) / N;
+ // float baseLineG1 = (*_baseLineNG1) / N;
+
// statistics values for samopels to G0, G1
uint32_t _G0stats = 0;
uint32_t _G1stats = 0;
- const float baseLineG0 = _baseLineG0[0];
- const float baseLineG1 = _baseLineG1[0];
-
float baselineUpdateG0 = 0;
float baselineUpdateG1 = 0;
@@ -70,8 +55,12 @@ __global__ void gating(float* __restrict__ G0,
i += blockDim.x * gridDim.x) {
const float v = G0[i];
- const uint64_t sideChannelItem = sideChannelData[((i / heapSize) * (noOfSideChannels)) +
- selectedSideChannel];
+ const uint64_t sideChannelItem =
+ sideChannelData[((i / heapSize) * (noOfSideChannels)) +
+ selectedSideChannel]; // Probably not optimal access as
+ // same data is copied for several
+ // threads, but maybe efficiently
+ // handled by cache?
const unsigned int bit_set = TEST_BIT(sideChannelItem, bitpos);
const unsigned int heap_lost = TEST_BIT(sideChannelItem, 63);
@@ -84,72 +73,36 @@ __global__ void gating(float* __restrict__ G0,
baselineUpdateG1 += v * bit_set * (!heap_lost);
baselineUpdateG0 += v * (!bit_set) *(!heap_lost);
}
-
__shared__ uint32_t x[1024];
// Reduce G0, G1
- sum_reduce<uint32_t>(x, _G0stats);
- if(threadIdx.x == 0) {
+ reduce<uint32_t>(x, _G0stats);
+ if(threadIdx.x == 0)
atomicAdd(stats_G0, (uint64_cu) x[threadIdx.x]);
- }
- __syncthreads();
- sum_reduce<uint32_t>(x, _G1stats);
- if(threadIdx.x == 0) {
- atomicAdd(stats_G1, (uint64_cu) x[threadIdx.x]);
- }
__syncthreads();
+ reduce<uint32_t>(x, _G1stats);
+ if(threadIdx.x == 0)
+ atomicAdd(stats_G1, (uint64_cu) x[threadIdx.x]);
//reuse shared array
float *y = (float*) x;
+
//update the baseline array
- sum_reduce<float>(y, baselineUpdateG0);
- if(threadIdx.x == 0) {
+ reduce<float>(y, baselineUpdateG0);
+ if(threadIdx.x == 0)
atomicAdd(baseLineNG0, y[threadIdx.x]);
- }
- __syncthreads();
- sum_reduce<float>(y, baselineUpdateG1);
- if(threadIdx.x == 0) {
- atomicAdd(baseLineNG1, y[threadIdx.x]);
- }
__syncthreads();
+ reduce<float>(y, baselineUpdateG1);
+ if(threadIdx.x == 0)
+ atomicAdd(baseLineNG1, y[threadIdx.x]);
}
-// Updates the baselines of the gates for the polarization set for the next
-// block
-// only few output blocks per input block thus execution on only one thread.
-// Important is that the execution is async on the GPU.
-__global__ void update_baselines(float* __restrict__ baseLineG0,
- float* __restrict__ baseLineG1,
- float* __restrict__ baseLineNG0,
- float* __restrict__ baseLineNG1,
- uint64_cu* stats_G0, uint64_cu* stats_G1,
- size_t N)
-{
- size_t NG0 = 0;
- size_t NG1 = 0;
-
- for (size_t i =0; i < N; i++)
- {
- NG0 += stats_G0[i];
- NG1 += stats_G1[i];
- }
-
- baseLineG0[0] = baseLineNG0[0] / NG0;
- baseLineG1[0] = baseLineNG1[0] / NG1;
- baseLineNG0[0] = 0;
- baseLineNG1[0] = 0;
-}
-
-
-
-
-
-template <class HandlerType>
-GatedSpectrometer<HandlerType>::GatedSpectrometer(
+template <class HandlerType, typename IntegratedPowerType>
+GatedSpectrometer<HandlerType, IntegratedPowerType>::GatedSpectrometer(
const DadaBufferLayout &dadaBufferLayout,
std::size_t selectedSideChannel, std::size_t selectedBit, std::size_t fft_length, std::size_t naccumulate,
std::size_t nbits, float input_level, float output_level,
@@ -218,38 +171,36 @@ GatedSpectrometer<HandlerType>::GatedSpectrometer(
cufftSetStream(_fft_plan, _proc_stream);
BOOST_LOG_TRIVIAL(debug) << "Allocating memory";
- polarization0._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
- polarization1._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
- polarization0._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
- polarization1._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
+ _raw_voltage_db.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
+ _sideChannelData_db.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
BOOST_LOG_TRIVIAL(debug) << " Input voltages size (in 64-bit words): "
- << polarization0._raw_voltage.size();
+ << _raw_voltage_db.size();
_unpacked_voltage_G0.resize(_nsamps_per_buffer);
_unpacked_voltage_G1.resize(_nsamps_per_buffer);
- polarization0._baseLineG0.resize(1);
- polarization0._baseLineG0_update.resize(1);
- polarization0._baseLineG1.resize(1);
- polarization0._baseLineG1_update.resize(1);
- polarization1._baseLineG0.resize(1);
- polarization1._baseLineG0_update.resize(1);
- polarization1._baseLineG1.resize(1);
- polarization1._baseLineG1_update.resize(1);
-
+ _baseLineNG0.resize(1);
+ _baseLineNG1.resize(1);
BOOST_LOG_TRIVIAL(debug) << " Unpacked voltages size (in samples): "
<< _unpacked_voltage_G0.size();
- polarization0._channelised_voltage_G0.resize(_nchans * batch);
- polarization0._channelised_voltage_G1.resize(_nchans * batch);
- polarization1._channelised_voltage_G0.resize(_nchans * batch);
- polarization1._channelised_voltage_G1.resize(_nchans * batch);
+ _channelised_voltage.resize(_nchans * batch);
BOOST_LOG_TRIVIAL(debug) << " Channelised voltages size: "
- << polarization0._channelised_voltage_G0.size();
-
- stokes_G0.resize(_nchans, batch / (_naccumulate / nBlocks));
- stokes_G1.resize(_nchans, batch / (_naccumulate / nBlocks));
-
- // on the host full output is stored together with sci data in one buffer
- _host_power_db.resize( 8 * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)) * batch / (_naccumulate / nBlocks));
+ << _channelised_voltage.size();
+ _power_db.resize(_nchans * batch / (_naccumulate / nBlocks) * 2); // hold on and off spectra to simplify output
+ thrust::fill(_power_db.a().begin(), _power_db.a().end(), 0.);
+ thrust::fill(_power_db.b().begin(), _power_db.b().end(), 0.);
+ BOOST_LOG_TRIVIAL(debug) << " Powers size: " << _power_db.size() / 2;
+
+ _noOfBitSetsIn_G0.resize( batch / (_naccumulate / nBlocks));
+ _noOfBitSetsIn_G1.resize( batch / (_naccumulate / nBlocks));
+ thrust::fill(_noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L);
+ thrust::fill(_noOfBitSetsIn_G0.b().begin(), _noOfBitSetsIn_G0.b().end(), 0L);
+ thrust::fill(_noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L);
+ thrust::fill(_noOfBitSetsIn_G1.b().begin(), _noOfBitSetsIn_G1.b().end(), 0L);
+ BOOST_LOG_TRIVIAL(debug) << " Bit set counter size: " << _noOfBitSetsIn_G0.size();
+
+ // on the host both power are stored in the same data buffer together with
+ // the number of bit sets
+ _host_power_db.resize( _power_db.size() * sizeof(IntegratedPowerType) + 2 * sizeof(size_t) * _noOfBitSetsIn_G0.size());
CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream));
CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream));
@@ -257,12 +208,13 @@ GatedSpectrometer<HandlerType>::GatedSpectrometer(
CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream));
_unpacker.reset(new Unpacker(_proc_stream));
+ _detector.reset(new DetectorAccumulator<IntegratedPowerType>(_nchans, _naccumulate / nBlocks, scaling,
+ offset, _proc_stream));
} // constructor
-
-template <class HandlerType>
-GatedSpectrometer<HandlerType>::~GatedSpectrometer() {
+template <class HandlerType, typename IntegratedPowerType>
+GatedSpectrometer<HandlerType, IntegratedPowerType>::~GatedSpectrometer() {
BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer";
if (!_fft_plan)
cufftDestroy(_fft_plan);
@@ -272,9 +224,8 @@ GatedSpectrometer<HandlerType>::~GatedSpectrometer() {
}
-
-template <class HandlerType>
-void GatedSpectrometer<HandlerType>::init(RawBytes &block) {
+template <class HandlerType, typename IntegratedPowerType>
+void GatedSpectrometer<HandlerType, IntegratedPowerType>::init(RawBytes &block) {
BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called";
std::stringstream headerInfo;
headerInfo << "\n"
@@ -303,195 +254,135 @@ void GatedSpectrometer<HandlerType>::init(RawBytes &block) {
}
-
-template <class HandlerType>
-void GatedSpectrometer<HandlerType>::gated_fft(
- PolarizationData &data,
- thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0,
- thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1
- )
-{
+template <class HandlerType, typename IntegratedPowerType>
+void GatedSpectrometer<HandlerType, IntegratedPowerType>::process(
+ thrust::device_vector<RawVoltageType> const &digitiser_raw,
+ thrust::device_vector<uint64_t> const &sideChannelData,
+ thrust::device_vector<IntegratedPowerType> &detected, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1) {
BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages";
switch (_nbits) {
case 8:
- _unpacker->unpack<8>(data._raw_voltage.b(), _unpacked_voltage_G0);
+ _unpacker->unpack<8>(digitiser_raw, _unpacked_voltage_G0);
break;
case 12:
- _unpacker->unpack<12>(data._raw_voltage.b(), _unpacked_voltage_G0);
+ _unpacker->unpack<12>(digitiser_raw, _unpacked_voltage_G0);
break;
default:
throw std::runtime_error("Unsupported number of bits");
}
+ BOOST_LOG_TRIVIAL(debug) << "Calculate baseline";
+ //calculate baseline from previos block
- // Loop over outputblocks, for case of multiple output blocks per input block
- int step = data._sideChannelData.b().size() / _noOfBitSetsIn_G0.size();
+ BOOST_LOG_TRIVIAL(debug) << "Perform gating";
- for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
+ float baseLineG0 = _baseLineNG0[0];
+ float baseLineG1 = _baseLineNG1[0];
+
+ uint64_t NG0 = 0;
+ uint64_t NG1 = 0;
+
+ // Loop over outputblocks, for case of multiple output blocks per input block
+ for (size_t i = 0; i < noOfBitSetsIn_G0.size(); i++)
{ // ToDo: Should be in one kernel call
gating<<<1024, 1024, 0, _proc_stream>>>(
- thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * step * _nsamps_per_heap),
- thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * step * _nsamps_per_heap),
- thrust::raw_pointer_cast(data._sideChannelData.b().data() + i * step),
- _unpacked_voltage_G0.size() / _noOfBitSetsIn_G0.size(),
- _dadaBufferLayout.getHeapSize(),
- _selectedBit,
- _dadaBufferLayout.getNSideChannels(),
+ thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()),
+ thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()),
+ thrust::raw_pointer_cast(sideChannelData.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()),
+ _unpacked_voltage_G0.size() / noOfBitSetsIn_G0.size(), _dadaBufferLayout.getHeapSize(), _selectedBit, _dadaBufferLayout.getNSideChannels(),
_selectedSideChannel,
- thrust::raw_pointer_cast(data._baseLineG0.data()),
- thrust::raw_pointer_cast(data._baseLineG1.data()),
- thrust::raw_pointer_cast(data._baseLineG0_update.data()),
- thrust::raw_pointer_cast(data._baseLineG1_update.data()),
- thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data() + i),
- thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data() + i)
+ baseLineG0, baseLineG1,
+ thrust::raw_pointer_cast(_baseLineNG0.data()),
+ thrust::raw_pointer_cast(_baseLineNG1.data()),
+ thrust::raw_pointer_cast(noOfBitSetsIn_G0.data() + i),
+ thrust::raw_pointer_cast(noOfBitSetsIn_G1.data() + i)
);
+ NG0 += noOfBitSetsIn_G0[i];
+ NG1 += noOfBitSetsIn_G1[i];
}
+ _baseLineNG0[0] /= NG0;
+ _baseLineNG1[0] /= NG1;
+ BOOST_LOG_TRIVIAL(debug) << "Updating Baselines\n G0: " << baseLineG0 << " -> " << _baseLineNG0[0] << ", " << baseLineG1 << " -> " << _baseLineNG1[0] ;
- // only few output blocks per input block thus execution on only one thread.
- // Important is that the execution is async on the GPU.
- update_baselines<<<1,1,0, _proc_stream>>>(
- thrust::raw_pointer_cast(data._baseLineG0.data()),
- thrust::raw_pointer_cast(data._baseLineG1.data()),
- thrust::raw_pointer_cast(data._baseLineG0_update.data()),
- thrust::raw_pointer_cast(data._baseLineG1_update.data()),
- thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data()),
- thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data()),
- _noOfBitSetsIn_G0.size()
- );
BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1";
UnpackedVoltageType *_unpacked_voltage_ptr =
thrust::raw_pointer_cast(_unpacked_voltage_G0.data());
ChannelisedVoltageType *_channelised_voltage_ptr =
- thrust::raw_pointer_cast(data._channelised_voltage_G0.data());
+ thrust::raw_pointer_cast(_channelised_voltage.data());
CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
(cufftComplex *)_channelised_voltage_ptr));
+ _detector->detect(_channelised_voltage, detected, 2, 0);
BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2";
_unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data());
- _channelised_voltage_ptr = thrust::raw_pointer_cast(data._channelised_voltage_G1.data());
CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
(cufftComplex *)_channelised_voltage_ptr));
+ _detector->detect(_channelised_voltage, detected, 2, 1);
CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
BOOST_LOG_TRIVIAL(debug) << "Exit processing";
} // process
-template <class HandlerType>
-bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
- ++_call_count;
- BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
- << _call_count << ")";
- if (block.used_bytes() != _dadaBufferLayout.getBufferSize()) {
- // Stop on unexpected buffer size
- BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got "
- << block.used_bytes() << " byte, expected "
- << _dadaBufferLayout.getBufferSize() << " byte)";
- CUDA_ERROR_CHECK(cudaDeviceSynchronize());
- cudaProfilerStop();
- return true;
- }
-
- // Copy data to device
- CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
- polarization0.swap();
- polarization1.swap();
-
- BOOST_LOG_TRIVIAL(debug) << " block.used_bytes() = " <<
- block.used_bytes() << ", dataBlockBytes = " <<
- _dadaBufferLayout.sizeOfData() << "\n";
-
- // Copy the data with stride to the GPU:
- // CPU: P1P2P1P2P1P2 ...
- // GPU: P1P1P1 ... P2P2P2 ...
- // If this is a bottleneck the gating kernel could sort the layout out
- // during copy
- int heapsize_bytes = _nsamps_per_heap * _nbits / 8;
- CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
- static_cast<void *>(polarization0._raw_voltage.a_ptr()),
- heapsize_bytes,
- static_cast<void *>(block.ptr()),
- 2 * heapsize_bytes,
- heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
- cudaMemcpyHostToDevice, _h2d_stream));
-
- CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
- static_cast<void *>(polarization1._raw_voltage.a_ptr()),
- heapsize_bytes,
- static_cast<void *>(block.ptr()) + heapsize_bytes,
- 2 * heapsize_bytes,
- heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
- cudaMemcpyHostToDevice, _h2d_stream));
-
- CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
- static_cast<void *>(polarization0._sideChannelData.a_ptr()),
- sizeof(uint64_t),
- static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
- 2 * sizeof(uint64_t),
- sizeof(uint64_t),
- _dadaBufferLayout.sizeOfSideChannelData() / 2 / sizeof(uint64_t),
- cudaMemcpyHostToDevice, _h2d_stream));
-
- CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
- static_cast<void *>(polarization1._sideChannelData.a_ptr()),
- sizeof(uint64_t),
- static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap() + sizeof(uint64_t)),
- 2 * sizeof(uint64_t),
- sizeof(uint64_t),
- _dadaBufferLayout.sizeOfSideChannelData() / 2 / sizeof(uint64_t), cudaMemcpyHostToDevice, _h2d_stream));
-
- BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" << std::setw(16)
- << std::setfill('0') << std::hex <<
- (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData()
- + _dadaBufferLayout.sizeOfGap()))[0] << std::dec;
+template <class HandlerType, typename IntegratedPowerType>
+bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &block) {
+ ++_call_count;
+ BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
+ << _call_count << ")";
+ if (block.used_bytes() != _dadaBufferLayout.getBufferSize()) { /* Unexpected buffer size */
+ BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got "
+ << block.used_bytes() << " byte, expected "
+ << _dadaBufferLayout.getBufferSize() << " byte)";
+ CUDA_ERROR_CHECK(cudaDeviceSynchronize());
+ cudaProfilerStop();
+ return true;
+ }
+
+ // Copy data to device
+ CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
+ _raw_voltage_db.swap();
+ _sideChannelData_db.swap();
+
+ BOOST_LOG_TRIVIAL(debug) << " block.used_bytes() = " << block.used_bytes()
+ << ", dataBlockBytes = " << _dadaBufferLayout.sizeOfData() << "\n";
+
+ CUDA_ERROR_CHECK(cudaMemcpyAsync(static_cast<void *>(_raw_voltage_db.a_ptr()),
+ static_cast<void *>(block.ptr()),
+ _dadaBufferLayout.sizeOfData() , cudaMemcpyHostToDevice,
+ _h2d_stream));
+ CUDA_ERROR_CHECK(cudaMemcpyAsync(
+ static_cast<void *>(_sideChannelData_db.a_ptr()),
+ static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
+ _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream));
+ BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" << std::setw(16)
+ << std::setfill('0') << std::hex <<
+ (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData()
+ + _dadaBufferLayout.sizeOfGap()))[0] <<
+ std::dec;
if (_call_count == 1) {
return false;
}
-
// process data
- // check if new outblock is started: _call_count -1 because this is the block number on the device
- bool newBlock = (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0);
// only if a newblock is started the output buffer is swapped. Otherwise the
// new data is added to it
- if (newBlock)
+ bool newBlock = false;
+ if (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0) // _call_count -1 because this is the block number on the device
{
- BOOST_LOG_TRIVIAL(debug) << "Starting new output block.";
- stokes_G0.swap();
- stokes_G1.swap();
- stokes_G0.reset(_proc_stream);
- stokes_G1.reset(_proc_stream);
+ BOOST_LOG_TRIVIAL(debug) << "Starting new output block.";
+ newBlock = true;
+ _power_db.swap();
+ _noOfBitSetsIn_G0.swap();
+ _noOfBitSetsIn_G1.swap();
+ // move to specific stream!
+ thrust::fill(thrust::cuda::par.on(_proc_stream),_power_db.a().begin(), _power_db.a().end(), 0.);
+ thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L);
+ thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L);
}
- mergeSideChannels<<<1024, 1024, 0, _proc_stream>>>(thrust::raw_pointer_cast(polarization0._sideChannelData.a().data()),
- thrust::raw_pointer_cast(polarization1._sideChannelData.a().data()), polarization1._sideChannelData.a().size());
-
- gated_fft(polarization0, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());
- gated_fft(polarization1, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());
-
- stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
- thrust::raw_pointer_cast(polarization0._channelised_voltage_G0.data()),
- thrust::raw_pointer_cast(polarization1._channelised_voltage_G0.data()),
- thrust::raw_pointer_cast(stokes_G0.I.a().data()),
- thrust::raw_pointer_cast(stokes_G0.Q.a().data()),
- thrust::raw_pointer_cast(stokes_G0.U.a().data()),
- thrust::raw_pointer_cast(stokes_G0.V.a().data()),
- _nchans, _naccumulate
- );
-
- stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
- thrust::raw_pointer_cast(polarization0._channelised_voltage_G1.data()),
- thrust::raw_pointer_cast(polarization1._channelised_voltage_G1.data()),
- thrust::raw_pointer_cast(stokes_G1.I.a().data()),
- thrust::raw_pointer_cast(stokes_G1.Q.a().data()),
- thrust::raw_pointer_cast(stokes_G1.U.a().data()),
- thrust::raw_pointer_cast(stokes_G1.V.a().data()),
- _nchans, _naccumulate
- );
-
-
+ process(_raw_voltage_db.b(), _sideChannelData_db.b(), _power_db.a(), _noOfBitSetsIn_G0.a(), _noOfBitSetsIn_G1.a());
CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
if ((_call_count == 2) || (!newBlock)) {
@@ -501,104 +392,29 @@ bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
// copy data to host if block is finished
CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream));
_host_power_db.swap();
- // OUTPUT MEMORY LAYOUT:
- // I G0, IG1,Q G0, QG1, U G0,UG1,V G0,VG1, 8xSCI, ...
- for (size_t i = 0; i < stokes_G0._noOfBitSets.size(); i++)
+ for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
{
- size_t memslicesize = (_nchans * sizeof(IntegratedPowerType));
- size_t memOffset = 8 * i * (memslicesize + + sizeof(size_t));
- // Copy II QQ UU VV
+ size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
+ // copy 2x channel data
CUDA_ERROR_CHECK(
cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset) ,
- static_cast<void *>(stokes_G0.I.b_ptr() + i * memslicesize),
- _nchans * sizeof(IntegratedPowerType),
+ static_cast<void *>(_power_db.b_ptr() + 2 * i * _nchans),
+ 2 * _nchans * sizeof(IntegratedPowerType),
cudaMemcpyDeviceToHost, _d2h_stream));
+ // copy noOf bit set data
CUDA_ERROR_CHECK(
- cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 1 * memslicesize) ,
- static_cast<void *>(stokes_G1.I.b_ptr() + i * memslicesize),
- _nchans * sizeof(IntegratedPowerType),
- cudaMemcpyDeviceToHost, _d2h_stream));
-
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * memslicesize) ,
- static_cast<void *>(stokes_G0.Q.b_ptr() + i * memslicesize),
- _nchans * sizeof(IntegratedPowerType),
- cudaMemcpyDeviceToHost, _d2h_stream));
-
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 3 * memslicesize) ,
- static_cast<void *>(stokes_G1.Q.b_ptr() + i * memslicesize),
- _nchans * sizeof(IntegratedPowerType),
- cudaMemcpyDeviceToHost, _d2h_stream));
-
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 4 * memslicesize) ,
- static_cast<void *>(stokes_G0.U.b_ptr() + i * memslicesize),
- _nchans * sizeof(IntegratedPowerType),
- cudaMemcpyDeviceToHost, _d2h_stream));
-
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 5 * memslicesize) ,
- static_cast<void *>(stokes_G1.U.b_ptr() + i * memslicesize),
- _nchans * sizeof(IntegratedPowerType),
- cudaMemcpyDeviceToHost, _d2h_stream));
-
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 6 * memslicesize) ,
- static_cast<void *>(stokes_G0.V.b_ptr() + i * memslicesize),
- _nchans * sizeof(IntegratedPowerType),
- cudaMemcpyDeviceToHost, _d2h_stream));
-
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 7 * memslicesize) ,
- static_cast<void *>(stokes_G1.V.b_ptr() + i * memslicesize),
- _nchans * sizeof(IntegratedPowerType),
- cudaMemcpyDeviceToHost, _d2h_stream));
-
- // Copy SCI
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize),
- static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
- 1 * sizeof(size_t),
- cudaMemcpyDeviceToHost, _d2h_stream));
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 1 * sizeof(size_t)),
- static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
- 1 * sizeof(size_t),
- cudaMemcpyDeviceToHost, _d2h_stream));
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 2 * sizeof(size_t)),
- static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
- 1 * sizeof(size_t),
- cudaMemcpyDeviceToHost, _d2h_stream));
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 3 * sizeof(size_t)),
- static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
- 1 * sizeof(size_t),
- cudaMemcpyDeviceToHost, _d2h_stream));
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 4 * sizeof(size_t)),
- static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
- 1 * sizeof(size_t),
- cudaMemcpyDeviceToHost, _d2h_stream));
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 5 * sizeof(size_t)),
- static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
- 1 * sizeof(size_t),
- cudaMemcpyDeviceToHost, _d2h_stream));
- CUDA_ERROR_CHECK(
- cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 6 * sizeof(size_t)),
- static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
+ cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType)),
+ static_cast<void *>(_noOfBitSetsIn_G0.b_ptr() + i ),
1 * sizeof(size_t),
cudaMemcpyDeviceToHost, _d2h_stream));
+
CUDA_ERROR_CHECK(
- cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 7 * sizeof(size_t)),
- static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
+ cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t)),
+ static_cast<void *>(_noOfBitSetsIn_G1.b_ptr() + i ),
1 * sizeof(size_t),
cudaMemcpyDeviceToHost, _d2h_stream));
-
}
BOOST_LOG_TRIVIAL(debug) << "Copy Data back to host";
@@ -608,28 +424,28 @@ bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
}
// calculate off value
- //BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:";
- //size_t total_samples_lost = 0;
- //for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
- //{
- // size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
-
- // size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType));
- // size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
-
- // size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values);
- // total_samples_lost += samples_lost;
-
- // BOOST_LOG_TRIVIAL(info) << " Heap " << i << ":\n"
- // <<" Samples with bit set : " << *on_values << std::endl
- // <<" Samples without bit set: " << *off_values << std::endl
- // <<" Samples lost : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl;
- //}
- //double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size());
- //double prev_average = _processing_efficiency / (_call_count- 3 - 1);
- //_processing_efficiency += efficiency;
- //double average = _processing_efficiency / (_call_count-3);
- //BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")";
+ BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:";
+ size_t total_samples_lost = 0;
+ for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
+ {
+ size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
+
+ size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType));
+ size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
+
+ size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values);
+ total_samples_lost += samples_lost;
+
+ BOOST_LOG_TRIVIAL(info) << " Heap " << i << ":\n"
+ <<" Samples with bit set : " << *on_values << std::endl
+ <<" Samples without bit set: " << *off_values << std::endl
+ <<" Samples lost : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl;
+ }
+ double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size());
+ double prev_average = _processing_efficiency / (_call_count- 3 - 1);
+ _processing_efficiency += efficiency;
+ double average = _processing_efficiency / (_call_count-3);
+ BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")";
// Wrap in a RawBytes object here;
RawBytes bytes(reinterpret_cast<char *>(_host_power_db.b_ptr()),
diff --git a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu
index 08ec6a447407ba271374f859d079566779670c8d..bb1f876e0f22c0f1abb34f28b19e271607d560f6 100644
--- a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu
+++ b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu
@@ -25,7 +25,12 @@ const size_t ERROR_UNHANDLED_EXCEPTION = 2;
template<typename T>
-void launchSpectrometer(const effelsberg::edd::DadaBufferLayout &dadaBufferLayout, const std::string &output_type, const std::string &filename, size_t selectedSideChannel, size_t selectedBit, size_t fft_length, size_t naccumulate, unsigned int nbits, float input_level, float output_level)
+void launchSpectrometer(const effelsberg::edd::DadaBufferLayout
+ &dadaBufferLayout, const std::string &output_type,
+ const std::string &filename,
+ size_t selectedSideChannel, size_t selectedBit,
+ size_t fft_length, size_t naccumulate, unsigned int nbits,
+ float input_level, float output_level)
{
MultiLog log("DadaBufferLayout");
diff --git a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu
index 495375dde5c707fcedd7b30d3a1fdf7b7973d6bc..163e8e9fba27da62bac0eee7654316ddbe61fee4 100644
--- a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu
+++ b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu
@@ -7,6 +7,7 @@
#include "thrust/device_vector.h"
#include "thrust/extrema.h"
+namespace {
TEST(GatedSpectrometer, BitManipulationMacros) {
for (int i = 0; i < 64; i++) {
@@ -22,121 +23,31 @@ TEST(GatedSpectrometer, BitManipulationMacros) {
}
}
-
-TEST(GatedSpectrometer, stokes_IQUV)
-{
- float I,Q,U,V;
- // No field
- psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V);
- EXPECT_FLOAT_EQ(I, 0);
- EXPECT_FLOAT_EQ(Q, 0);
- EXPECT_FLOAT_EQ(U, 0);
- EXPECT_FLOAT_EQ(V, 0);
-
- // For p1 = Ex, p2 = Ey
- // horizontal polarized
- psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V);
- EXPECT_FLOAT_EQ(I, 1);
- EXPECT_FLOAT_EQ(Q, 1);
- EXPECT_FLOAT_EQ(U, 0);
- EXPECT_FLOAT_EQ(V, 0);
-
- // vertical polarized
- psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){1.0f,0.0f}, I, Q, U, V);
- EXPECT_FLOAT_EQ(I, 1);
- EXPECT_FLOAT_EQ(Q, -1);
- EXPECT_FLOAT_EQ(U, 0);
- EXPECT_FLOAT_EQ(V, 0);
-
- //linear +45 deg.
- psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V);
- EXPECT_FLOAT_EQ(I, 1);
- EXPECT_FLOAT_EQ(Q, 0);
- EXPECT_FLOAT_EQ(U, 1);
- EXPECT_FLOAT_EQ(V, 0);
-
- //linear -45 deg.
- psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){-1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V);
- EXPECT_FLOAT_EQ(I, 1);
- EXPECT_FLOAT_EQ(Q, 0);
- EXPECT_FLOAT_EQ(U, -1);
- EXPECT_FLOAT_EQ(V, 0);
-
- //left circular
- psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V);
- EXPECT_FLOAT_EQ(I, 1);
- EXPECT_FLOAT_EQ(Q, 0);
- EXPECT_FLOAT_EQ(U, 0);
- EXPECT_FLOAT_EQ(V, -1);
-
- // right circular
- psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,-1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V);
- EXPECT_FLOAT_EQ(I, 1);
- EXPECT_FLOAT_EQ(Q, 0);
- EXPECT_FLOAT_EQ(U, 0);
- EXPECT_FLOAT_EQ(V, 1);
-}
-
-
-TEST(GatedSpectrometer, stokes_accumulate)
-{
- CUDA_ERROR_CHECK(cudaDeviceSynchronize());
- size_t nchans = 8 * 1024 * 1024 + 1;
- size_t naccumulate = 5;
-
- thrust::device_vector<float2> P0(nchans * naccumulate);
- thrust::device_vector<float2> P1(nchans * naccumulate);
- thrust::fill(P0.begin(), P0.end(), (float2){0, 0});
- thrust::fill(P1.begin(), P1.end(), (float2){0, 0});
- thrust::device_vector<float> I(nchans);
- thrust::device_vector<float> Q(nchans);
- thrust::device_vector<float> U(nchans);
- thrust::device_vector<float> V(nchans);
- thrust::fill(I.begin(), I.end(), 0);
- thrust::fill(Q.begin(), Q.end(), 0);
- thrust::fill(U.begin(), U.end(), 0);
- thrust::fill(V.begin(), V.end(), 0);
-
- // This channel should be left circular polarized
- size_t idx0 = 23;
- for (int k = 0; k< naccumulate; k++)
- {
- size_t idx = idx0 + k * nchans;
- P0[idx] = (float2){0.0f, 1.0f/std::sqrt(2)};
- P1[idx] = (float2){1.0f/std::sqrt(2),0.0f};
- }
-
- psrdada_cpp::effelsberg::edd::stokes_accumulate<<<1024, 1024>>>(
- thrust::raw_pointer_cast(P0.data()),
- thrust::raw_pointer_cast(P1.data()),
- thrust::raw_pointer_cast(I.data()),
- thrust::raw_pointer_cast(Q.data()),
- thrust::raw_pointer_cast(U.data()),
- thrust::raw_pointer_cast(V.data()),
- nchans,
- naccumulate
- );
-
- CUDA_ERROR_CHECK(cudaDeviceSynchronize());
- thrust::pair<thrust::device_vector<float>::iterator, thrust::device_vector<float>::iterator> minmax;
-
- minmax = thrust::minmax_element(I.begin(), I.end());
- EXPECT_FLOAT_EQ(*minmax.first, 0);
- EXPECT_FLOAT_EQ(*minmax.second, naccumulate);
-
- minmax = thrust::minmax_element(Q.begin(), Q.end());
- EXPECT_FLOAT_EQ(*minmax.first, 0);
- EXPECT_FLOAT_EQ(*minmax.second, 0);
-
- minmax = thrust::minmax_element(U.begin(), U.end());
- EXPECT_FLOAT_EQ(*minmax.first, 0);
- EXPECT_FLOAT_EQ(*minmax.second, 0);
-
- minmax = thrust::minmax_element(V.begin(), V.end());
- EXPECT_FLOAT_EQ(*minmax.first, -1. * naccumulate);
- EXPECT_FLOAT_EQ(*minmax.second, 0);
-}
-
+//
+//TEST(GatedSpectrometer, ParameterSanity) {
+// ::testing::FLAGS_gtest_death_test_style = "threadsafe";
+// psrdada_cpp::NullSink sink;
+//
+// // 8 or 12 bit sampling
+// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 0, 0, 0, sink),
+// "_nbits == 8");
+// // naccumulate > 0
+// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 8, 0, 0, sink),
+// "_naccumulate");
+//
+// // selected side channel
+// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 1, 2, 0, 4096, 0, 1, 8, 0, 0, sink),
+// "nSideChannels");
+//
+// // selected bit
+// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 2, 1, 65, 4096, 0, 1, 8, 0, 0, sink),
+// "selectedBit");
+//
+// // valid construction
+// psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink), int8_t> a(
+// 4096 * 4096, 2, 1, 63, 4096, 1024, 1, 8, 100., 100., sink);
+//}
+} // namespace
TEST(GatedSpectrometer, GatingKernel)
@@ -152,8 +63,6 @@ TEST(GatedSpectrometer, GatingKernel)
thrust::device_vector<float> baseLineG0(1);
thrust::device_vector<float> baseLineG1(1);
- thrust::device_vector<float> baseLineG0_update(1);
- thrust::device_vector<float> baseLineG1_update(1);
thrust::fill(G0.begin(), G0.end(), 42);
thrust::fill(G1.begin(), G1.end(), 23);
thrust::fill(_sideChannelData.begin(), _sideChannelData.end(), 0);
@@ -162,22 +71,18 @@ TEST(GatedSpectrometer, GatingKernel)
{
thrust::fill(_nG0.begin(), _nG0.end(), 0);
thrust::fill(_nG1.begin(), _nG1.end(), 0);
- baseLineG0[0] = -3;
- baseLineG1[0] = -4;
- baseLineG0_update[0] = 0;
- baseLineG1_update[0] = 0;
-
+ baseLineG0[0] = 0.;
+ baseLineG1[0] = 0.;
const uint64_t *sideCD =
(uint64_t *)(thrust::raw_pointer_cast(_sideChannelData.data()));
psrdada_cpp::effelsberg::edd::gating<<<1024 , 1024>>>(
thrust::raw_pointer_cast(G0.data()),
thrust::raw_pointer_cast(G1.data()), sideCD,
- G0.size(), blockSize, 0, 1,
+ G0.size(), G0.size(), 0, 1,
0,
+ -3., -4,
thrust::raw_pointer_cast(baseLineG0.data()),
thrust::raw_pointer_cast(baseLineG1.data()),
- thrust::raw_pointer_cast(baseLineG0_update.data()),
- thrust::raw_pointer_cast(baseLineG1_update.data()),
thrust::raw_pointer_cast(_nG0.data()),
thrust::raw_pointer_cast(_nG1.data())
);
@@ -194,31 +99,27 @@ TEST(GatedSpectrometer, GatingKernel)
EXPECT_EQ(_nG0[0], G0.size());
EXPECT_EQ(_nG1[0], 0u);
- EXPECT_FLOAT_EQ(42.f, baseLineG0_update[0] / (_nG0[0] + 1E-121));
- EXPECT_FLOAT_EQ(0.f, baseLineG1_update[0] / (_nG1[0] + 1E-121));
+ EXPECT_FLOAT_EQ(baseLineG0[0] / (_nG0[0] + 1E-127), 42.f);
+ EXPECT_FLOAT_EQ(baseLineG1[0] / (_nG1[0] + 1E-127), 0.f);
}
// everything to G1 // with baseline -5
{
thrust::fill(_nG0.begin(), _nG0.end(), 0);
thrust::fill(_nG1.begin(), _nG1.end(), 0);
- baseLineG0[0] = 5.;
- baseLineG1[0] = -2;
- baseLineG0_update[0] = 0;
- baseLineG1_update[0] = 0;
-
+ baseLineG0[0] = 0.;
+ baseLineG1[0] = 0.;
thrust::fill(_sideChannelData.begin(), _sideChannelData.end(), 1L);
const uint64_t *sideCD =
(uint64_t *)(thrust::raw_pointer_cast(_sideChannelData.data()));
psrdada_cpp::effelsberg::edd::gating<<<1024, 1024>>>(
thrust::raw_pointer_cast(G0.data()),
thrust::raw_pointer_cast(G1.data()), sideCD,
- G0.size(), blockSize, 0, 1,
+ G0.size(), G0.size(), 0, 1,
0,
+ 5., -2.,
thrust::raw_pointer_cast(baseLineG0.data()),
thrust::raw_pointer_cast(baseLineG1.data()),
- thrust::raw_pointer_cast(baseLineG0_update.data()),
- thrust::raw_pointer_cast(baseLineG1_update.data()),
thrust::raw_pointer_cast(_nG0.data()),
thrust::raw_pointer_cast(_nG1.data())
);
@@ -233,12 +134,13 @@ TEST(GatedSpectrometer, GatingKernel)
EXPECT_EQ(_nG0[0], 0u);
EXPECT_EQ(_nG1[0], G1.size());
-
- EXPECT_FLOAT_EQ(0.f, baseLineG0_update[0] / (_nG0[0] + 1E-121));
- EXPECT_FLOAT_EQ(42.f, baseLineG1_update[0] / (_nG1[0] + 1E-121));
+ EXPECT_FLOAT_EQ(baseLineG0[0] / (_nG0[0] + 1E-127), 0.);
+ EXPECT_FLOAT_EQ(baseLineG1[0] / (_nG1[0] + 1E-127), 42.);
}
}
+
+
TEST(GatedSpectrometer, array_sum) {
const size_t NBLOCKS = 16 * 32;
@@ -261,3 +163,10 @@ TEST(GatedSpectrometer, array_sum) {
EXPECT_EQ(size_t(blr[0]), inputLength);
}
+
+int main(int argc, char **argv) {
+ ::testing::InitGoogleTest(&argc, argv);
+
+ return RUN_ALL_TESTS();
+}
+