GatedSpectrometer.cu 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include "psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh"
#include "psrdada_cpp/common.hpp"
#include "psrdada_cpp/cuda_utils.hpp"
#include "psrdada_cpp/raw_bytes.hpp"
#include <cuda.h>

#include <iostream>

namespace psrdada_cpp {
namespace effelsberg {
namespace edd {


__global__ void gating(float *G0, float *G1, const int64_t *sideChannelData,
                       size_t N, size_t heapSize, int64_t bitpos,
                       int64_t noOfSideChannels, int64_t selectedSideChannel) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; (i < N);
       i += blockDim.x * gridDim.x) {
    const float w = G0[i];
    const int64_t sideChannelItem =
        sideChannelData[((i / heapSize) * (noOfSideChannels)) +
                        selectedSideChannel]; // Probably not optimal access as
                                              // same data is copied for several
                                              // threads, but maybe efficiently
                                              // handled by cache?

    const int bit_set = TEST_BIT(sideChannelItem, bitpos);
    G1[i] = w * bit_set;
    G0[i] = w * (!bit_set);
  }
}


template <class HandlerType>
GatedSpectrometer<HandlerType>::GatedSpectrometer(
    std::size_t buffer_bytes, std::size_t nSideChannels,
    std::size_t selectedSideChannel, std::size_t selectedBit,
    std::size_t speadHeapSize, std::size_t fft_length, std::size_t naccumulate,
    std::size_t nbits, float input_level, float output_level,
    HandlerType &handler)
    : _buffer_bytes(buffer_bytes), _nSideChannels(nSideChannels),
      _selectedSideChannel(selectedSideChannel), _selectedBit(selectedBit),
      _speadHeapSize(speadHeapSize), _fft_length(fft_length),
      _naccumulate(naccumulate), _nbits(nbits), _handler(handler), _fft_plan(0),
      _call_count(0) {
  assert(((_nbits == 12) || (_nbits == 8)));
  assert(_naccumulate > 0); // Sanity check
  BOOST_LOG_TRIVIAL(debug)
      << "Creating new GatedSpectrometer instance with parameters: \n"
      << "  fft_length = " << _fft_length << "\n"
      << "  naccumulate = " << _naccumulate << "\n"
      << "  nSideChannels = " << _nSideChannels << "\n"
      << "  speadHeapSize = " << _speadHeapSize << " byte\n"
      << "  selectedSideChannel = " << _selectedSideChannel
      << "  selectedBit = " << _selectedBit;

  _sideChannelSize = nSideChannels * sizeof(int64_t);
  _totalHeapSize = _speadHeapSize + _sideChannelSize;
  _nHeaps = buffer_bytes / _totalHeapSize;
  _gapSize = (buffer_bytes - _nHeaps * _totalHeapSize);
  _dataBlockBytes = _nHeaps * _speadHeapSize;
  assert((nSideChannels == 0) ||
         (selectedSideChannel <
          nSideChannels));  // Sanity check of side channel value
  assert(selectedBit < 64); // Sanity check of selected bit
  BOOST_LOG_TRIVIAL(debug) << "Resulting memory configuration: \n"
                           << "  totalSizeOfHeap: " << _totalHeapSize
                           << " byte\n"
                           << "  number of heaps per buffer: " << _nHeaps
                           << "\n"
                           << "  resulting gap: " << _gapSize << " byte\n"
                           << "  datablock size in buffer: " << _dataBlockBytes
                           << " byte\n";

  std::size_t nsamps_per_buffer = _dataBlockBytes * 8 / nbits;
  std::size_t n64bit_words = _dataBlockBytes / sizeof(uint64_t);
  _nchans = _fft_length / 2 + 1;
  int batch = nsamps_per_buffer / _fft_length;
  float dof = 2 * _naccumulate;
  float scale =
      std::pow(input_level * std::sqrt(static_cast<float>(_nchans)), 2);
  float offset = scale * dof;
  float scaling = scale * std::sqrt(2 * dof) / output_level;
  BOOST_LOG_TRIVIAL(debug)
      << "Correction factors for 8-bit conversion: offset = " << offset
      << ", scaling = " << scaling;

  BOOST_LOG_TRIVIAL(debug) << "Generating FFT plan";
  int n[] = {static_cast<int>(_fft_length)};
  CUFFT_ERROR_CHECK(cufftPlanMany(&_fft_plan, 1, n, NULL, 1, _fft_length, NULL,
                                  1, _nchans, CUFFT_R2C, batch));
  cufftSetStream(_fft_plan, _proc_stream);

  BOOST_LOG_TRIVIAL(debug) << "Allocating memory";
  _raw_voltage_db.resize(n64bit_words);
  _sideChannelData_db.resize(_sideChannelSize * _nHeaps);
  BOOST_LOG_TRIVIAL(debug) << "  Input voltages size (in 64-bit words): "
                           << _raw_voltage_db.size();
  _unpacked_voltage_G0.resize(nsamps_per_buffer);
  _unpacked_voltage_G1.resize(nsamps_per_buffer);
  BOOST_LOG_TRIVIAL(debug) << "  Unpacked voltages size (in samples): "
                           << _unpacked_voltage_G0.size();
103
  _channelised_voltage.resize(_nchans * batch);
104
  BOOST_LOG_TRIVIAL(debug) << "  Channelised voltages size: "
105
                           << _channelised_voltage.size();
106
107
108
109
110
111
112
113
114
115
116
117
  _power_db_G0.resize(_nchans * batch / _naccumulate);
  _power_db_G1.resize(_nchans * batch / _naccumulate);
  BOOST_LOG_TRIVIAL(debug) << "  Powers size: " << _power_db_G0.size() << ", "
                           << _power_db_G1.size();
  // on the host both power are stored in the same data buffer
  _host_power_db.resize( _power_db_G0.size() + _power_db_G1 .size());

  CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_d2h_stream));
  CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream));

Tobias Winchen's avatar
Tobias Winchen committed
118
119
120
121
122
123
	// Create and record process status events to signal that processing chain is clear
  CUDA_ERROR_CHECK(cudaEventCreateWithFlags(&_procA, cudaEventDisableTiming));
  CUDA_ERROR_CHECK(cudaEventRecord(_procA, _proc_stream));
  CUDA_ERROR_CHECK(cudaEventCreateWithFlags(&_procB, cudaEventDisableTiming));
  CUDA_ERROR_CHECK(cudaEventRecord(_procB, _proc_stream));

124
125
126
127
128
129
130
131
132
133
134
135
136
137
  _unpacker.reset(new Unpacker(_proc_stream));
  _detector.reset(new DetectorAccumulator(_nchans, _naccumulate, scaling,
                                          offset, _proc_stream));
} // constructor


template <class HandlerType>
GatedSpectrometer<HandlerType>::~GatedSpectrometer() {
  BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer";
  if (!_fft_plan)
    cufftDestroy(_fft_plan);
  cudaStreamDestroy(_h2d_stream);
  cudaStreamDestroy(_proc_stream);
  cudaStreamDestroy(_d2h_stream);
Tobias Winchen's avatar
Tobias Winchen committed
138
139
	cudaEventDestroy(_procA);
	cudaEventDestroy(_procB);
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
}


template <class HandlerType>
void GatedSpectrometer<HandlerType>::init(RawBytes &block) {
  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called";
  _handler.init(block);
}


template <class HandlerType>
void GatedSpectrometer<HandlerType>::process(
    thrust::device_vector<RawVoltageType> const &digitiser_raw,
    thrust::device_vector<RawVoltageType> const &sideChannelData,
    thrust::device_vector<IntegratedPowerType> &detected_G0,
    thrust::device_vector<IntegratedPowerType> &detected_G1) {
  BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages";
  switch (_nbits) {
  case 8:
    _unpacker->unpack<8>(digitiser_raw, _unpacked_voltage_G0);
    break;
  case 12:
    _unpacker->unpack<12>(digitiser_raw, _unpacked_voltage_G0);
    break;
  default:
    throw std::runtime_error("Unsupported number of bits");
  }
Tobias Winchen's avatar
Tobias Winchen committed
167
168
	// raw voltage buffer is free again
	CUDA_ERROR_CHECK(cudaEventRecord(_procB, _proc_stream));
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

  BOOST_LOG_TRIVIAL(debug) << "Perfore gating";
  const int64_t *sideCD =
      (int64_t *)(thrust::raw_pointer_cast(sideChannelData.data()));
  gating<<<1024, 1024, 0, _proc_stream>>>(
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data()),
      thrust::raw_pointer_cast(_unpacked_voltage_G1.data()), sideCD,
      _unpacked_voltage_G0.size(), _speadHeapSize, _selectedBit, _nSideChannels,
      _selectedSideChannel);
//  CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1";
  UnpackedVoltageType *_unpacked_voltage_ptr =
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data());
  ChannelisedVoltageType *_channelised_voltage_ptr =
184
      thrust::raw_pointer_cast(_channelised_voltage.data());
185
186
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));
187
  _detector->detect(_channelised_voltage, detected_G0);
188
189
190
191
192
193
194

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2";
  _unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data());
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));

//  CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
195
  _detector->detect(_channelised_voltage, detected_G1);
Tobias Winchen's avatar
Tobias Winchen committed
196

197
198
199
200
201
202
203
204
205
206
207
208
} // process


template <class HandlerType>
bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
  ++_call_count;
  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
                           << _call_count << ")";
  if (block.used_bytes() != _buffer_bytes) { /* Unexpected buffer size */
    BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got "
                             << block.used_bytes() << " byte, expected "
                             << _buffer_bytes << " byte)";
209
210
		cudaDeviceSynchronize();
		return true; 
211
212
213
214
215
  }

//  CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
  _raw_voltage_db.swap();
  _sideChannelData_db.swap();
Tobias Winchen's avatar
Tobias Winchen committed
216
	std::swap(_procA, _procB);
217
218
219

  BOOST_LOG_TRIVIAL(debug) << "   block.used_bytes() = " << block.used_bytes()
                           << ", dataBlockBytes = " << _dataBlockBytes << "\n";
Tobias Winchen's avatar
Tobias Winchen committed
220
221
222
223

	// If necessary wait until the raw data has been processed
	CUDA_ERROR_CHECK(cudaEventSynchronize(_procA));

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
  CUDA_ERROR_CHECK(cudaMemcpyAsync(static_cast<void *>(_raw_voltage_db.a_ptr()),
                                   static_cast<void *>(block.ptr()),
                                   _dataBlockBytes, cudaMemcpyHostToDevice,
                                   _h2d_stream));
  CUDA_ERROR_CHECK(cudaMemcpyAsync(
      static_cast<void *>(_sideChannelData_db.a_ptr()),
      static_cast<void *>(block.ptr() + _dataBlockBytes + _gapSize),
      _sideChannelSize * _nHeaps, cudaMemcpyHostToDevice, _h2d_stream));

  if (_call_count == 1) {
    return false;
  }

  // Synchronize all streams
  _power_db_G0.swap();
  _power_db_G1.swap();

  process(_raw_voltage_db.b(), _sideChannelData_db.b(), _power_db_G0.a(),
          _power_db_G1.a());

Tobias Winchen's avatar
Tobias Winchen committed
244
245
246
	// signal that data block has been processed
  //CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
  if (_call_count == 2) {
    return false;
  }

  //CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream));
  _host_power_db.swap();
  CUDA_ERROR_CHECK(
      cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr()),
                      static_cast<void *>(_power_db_G0.b_ptr()),
                      _power_db_G0.size() * sizeof(IntegratedPowerType),
                      cudaMemcpyDeviceToHost, _d2h_stream));
  CUDA_ERROR_CHECK(cudaMemcpyAsync(
      static_cast<void *>(_host_power_db.a_ptr() +
                          (_power_db_G0.size() * sizeof(IntegratedPowerType))),
      static_cast<void *>(_power_db_G1.b_ptr()),
      _power_db_G1.size() * sizeof(IntegratedPowerType), cudaMemcpyDeviceToHost,
      _d2h_stream));

  if (_call_count == 3) {
    return false;
  }

  // Wrap _detected_host_previous in a RawBytes object here;
  RawBytes bytes(reinterpret_cast<char *>(_host_power_db.b_ptr()),
                 _host_power_db.size() * sizeof(IntegratedPowerType),
                 _host_power_db.size() * sizeof(IntegratedPowerType));
  BOOST_LOG_TRIVIAL(debug) << "Calling handler";
  // The handler can't do anything asynchronously without a copy here
  // as it would be unsafe (given that it does not own the memory it
  // is being passed).
  return _handler(bytes);
} // operator ()

} // edd
} // effelsberg
} // psrdada_cpp