GatedSpectrometer.cu 12.8 KB
Newer Older
1
2
3
4
5
#include "psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh"
#include "psrdada_cpp/common.hpp"
#include "psrdada_cpp/cuda_utils.hpp"
#include "psrdada_cpp/raw_bytes.hpp"
#include <cuda.h>
6
#include <cuda_profiler_api.h>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#include <iostream>

namespace psrdada_cpp {
namespace effelsberg {
namespace edd {


__global__ void gating(float *G0, float *G1, const int64_t *sideChannelData,
                       size_t N, size_t heapSize, int64_t bitpos,
                       int64_t noOfSideChannels, int64_t selectedSideChannel) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; (i < N);
       i += blockDim.x * gridDim.x) {
    const float w = G0[i];
    const int64_t sideChannelItem =
        sideChannelData[((i / heapSize) * (noOfSideChannels)) +
                        selectedSideChannel]; // Probably not optimal access as
                                              // same data is copied for several
                                              // threads, but maybe efficiently
                                              // handled by cache?

    const int bit_set = TEST_BIT(sideChannelItem, bitpos);
    G1[i] = w * bit_set;
    G0[i] = w * (!bit_set);
  }
}

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
__global__ void countBitSet(const int64_t *sideChannelData, size_t N, int64_t bitpos, int64_t noOfSideChannels, int64_t selectedSideChannel, int *nBitsSet)
{
	// really not optimized reduction, but here only trivial array sizes.
	int i = blockIdx.x*blockDim.x + threadIdx.x;
	__shared__ int x[256];
	if (i == 0)
		nBitsSet[0] = 0;
	if (i < N / noOfSideChannels)
		x[threadIdx.x] = TEST_BIT(sideChannelData[i * noOfSideChannels + selectedSideChannel], bitpos);
	else
		x[threadIdx.x] = 0;
	__syncthreads();

	for(int s = blockDim.x / 2; s > 0; s = s / 2)
	{
		if (threadIdx.x < s)
			x[threadIdx.x] += x[threadIdx.x + s];
		__syncthreads();
	}

	if(threadIdx.x == 0)
		atomicAdd(nBitsSet, x[threadIdx.x]);
}



60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

template <class HandlerType>
GatedSpectrometer<HandlerType>::GatedSpectrometer(
    std::size_t buffer_bytes, std::size_t nSideChannels,
    std::size_t selectedSideChannel, std::size_t selectedBit,
    std::size_t speadHeapSize, std::size_t fft_length, std::size_t naccumulate,
    std::size_t nbits, float input_level, float output_level,
    HandlerType &handler)
    : _buffer_bytes(buffer_bytes), _nSideChannels(nSideChannels),
      _selectedSideChannel(selectedSideChannel), _selectedBit(selectedBit),
      _speadHeapSize(speadHeapSize), _fft_length(fft_length),
      _naccumulate(naccumulate), _nbits(nbits), _handler(handler), _fft_plan(0),
      _call_count(0) {
  assert(((_nbits == 12) || (_nbits == 8)));
  assert(_naccumulate > 0); // Sanity check
  BOOST_LOG_TRIVIAL(debug)
      << "Creating new GatedSpectrometer instance with parameters: \n"
      << "  fft_length = " << _fft_length << "\n"
      << "  naccumulate = " << _naccumulate << "\n"
      << "  nSideChannels = " << _nSideChannels << "\n"
      << "  speadHeapSize = " << _speadHeapSize << " byte\n"
      << "  selectedSideChannel = " << _selectedSideChannel
      << "  selectedBit = " << _selectedBit;

  _sideChannelSize = nSideChannels * sizeof(int64_t);
  _totalHeapSize = _speadHeapSize + _sideChannelSize;
  _nHeaps = buffer_bytes / _totalHeapSize;
  _gapSize = (buffer_bytes - _nHeaps * _totalHeapSize);
  _dataBlockBytes = _nHeaps * _speadHeapSize;
  assert((nSideChannels == 0) ||
         (selectedSideChannel <
          nSideChannels));  // Sanity check of side channel value
  assert(selectedBit < 64); // Sanity check of selected bit
  BOOST_LOG_TRIVIAL(debug) << "Resulting memory configuration: \n"
                           << "  totalSizeOfHeap: " << _totalHeapSize
                           << " byte\n"
                           << "  number of heaps per buffer: " << _nHeaps
                           << "\n"
                           << "  resulting gap: " << _gapSize << " byte\n"
                           << "  datablock size in buffer: " << _dataBlockBytes
                           << " byte\n";

  std::size_t nsamps_per_buffer = _dataBlockBytes * 8 / nbits;
  std::size_t n64bit_words = _dataBlockBytes / sizeof(uint64_t);
  _nchans = _fft_length / 2 + 1;
  int batch = nsamps_per_buffer / _fft_length;
  float dof = 2 * _naccumulate;
  float scale =
      std::pow(input_level * std::sqrt(static_cast<float>(_nchans)), 2);
  float offset = scale * dof;
  float scaling = scale * std::sqrt(2 * dof) / output_level;
  BOOST_LOG_TRIVIAL(debug)
      << "Correction factors for 8-bit conversion: offset = " << offset
      << ", scaling = " << scaling;

  BOOST_LOG_TRIVIAL(debug) << "Generating FFT plan";
  int n[] = {static_cast<int>(_fft_length)};
  CUFFT_ERROR_CHECK(cufftPlanMany(&_fft_plan, 1, n, NULL, 1, _fft_length, NULL,
                                  1, _nchans, CUFFT_R2C, batch));
  cufftSetStream(_fft_plan, _proc_stream);

  BOOST_LOG_TRIVIAL(debug) << "Allocating memory";
  _raw_voltage_db.resize(n64bit_words);
  _sideChannelData_db.resize(_sideChannelSize * _nHeaps);
  BOOST_LOG_TRIVIAL(debug) << "  Input voltages size (in 64-bit words): "
                           << _raw_voltage_db.size();
  _unpacked_voltage_G0.resize(nsamps_per_buffer);
  _unpacked_voltage_G1.resize(nsamps_per_buffer);
  BOOST_LOG_TRIVIAL(debug) << "  Unpacked voltages size (in samples): "
                           << _unpacked_voltage_G0.size();
130
  _channelised_voltage.resize(_nchans * batch);
131
  BOOST_LOG_TRIVIAL(debug) << "  Channelised voltages size: "
132
                           << _channelised_voltage.size();
133
134
135
136
137
138
  _power_db_G0.resize(_nchans * batch / _naccumulate);
  _power_db_G1.resize(_nchans * batch / _naccumulate);
  BOOST_LOG_TRIVIAL(debug) << "  Powers size: " << _power_db_G0.size() << ", "
                           << _power_db_G1.size();
  // on the host both power are stored in the same data buffer
  _host_power_db.resize( _power_db_G0.size() + _power_db_G1 .size());
139
	_noOfBitSetsInSideChannel.resize(1);
140
141
142
143
144
145

  CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_d2h_stream));
  CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream));

Tobias Winchen's avatar
Tobias Winchen committed
146
147
148
149
150
151
	// Create and record process status events to signal that processing chain is clear
  CUDA_ERROR_CHECK(cudaEventCreateWithFlags(&_procA, cudaEventDisableTiming));
  CUDA_ERROR_CHECK(cudaEventRecord(_procA, _proc_stream));
  CUDA_ERROR_CHECK(cudaEventCreateWithFlags(&_procB, cudaEventDisableTiming));
  CUDA_ERROR_CHECK(cudaEventRecord(_procB, _proc_stream));

152
153
154
155
156
157
158
159
160
161
162
163
164
165
  _unpacker.reset(new Unpacker(_proc_stream));
  _detector.reset(new DetectorAccumulator(_nchans, _naccumulate, scaling,
                                          offset, _proc_stream));
} // constructor


template <class HandlerType>
GatedSpectrometer<HandlerType>::~GatedSpectrometer() {
  BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer";
  if (!_fft_plan)
    cufftDestroy(_fft_plan);
  cudaStreamDestroy(_h2d_stream);
  cudaStreamDestroy(_proc_stream);
  cudaStreamDestroy(_d2h_stream);
Tobias Winchen's avatar
Tobias Winchen committed
166
167
	cudaEventDestroy(_procA);
	cudaEventDestroy(_procB);
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
}


template <class HandlerType>
void GatedSpectrometer<HandlerType>::init(RawBytes &block) {
  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called";
  _handler.init(block);
}


template <class HandlerType>
void GatedSpectrometer<HandlerType>::process(
    thrust::device_vector<RawVoltageType> const &digitiser_raw,
    thrust::device_vector<RawVoltageType> const &sideChannelData,
    thrust::device_vector<IntegratedPowerType> &detected_G0,
183
    thrust::device_vector<IntegratedPowerType> &detected_G1, thrust::device_vector<int> &noOfBitSet) {
184
185
186
187
188
189
190
191
192
193
194
  BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages";
  switch (_nbits) {
  case 8:
    _unpacker->unpack<8>(digitiser_raw, _unpacked_voltage_G0);
    break;
  case 12:
    _unpacker->unpack<12>(digitiser_raw, _unpacked_voltage_G0);
    break;
  default:
    throw std::runtime_error("Unsupported number of bits");
  }
Tobias Winchen's avatar
Tobias Winchen committed
195
196
	// raw voltage buffer is free again
	CUDA_ERROR_CHECK(cudaEventRecord(_procB, _proc_stream));
197

198
  BOOST_LOG_TRIVIAL(debug) << "Perform gating";
199
200
201
202
203
204
205
  const int64_t *sideCD =
      (int64_t *)(thrust::raw_pointer_cast(sideChannelData.data()));
  gating<<<1024, 1024, 0, _proc_stream>>>(
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data()),
      thrust::raw_pointer_cast(_unpacked_voltage_G1.data()), sideCD,
      _unpacked_voltage_G0.size(), _speadHeapSize, _selectedBit, _nSideChannels,
      _selectedSideChannel);
206
207

	countBitSet<<<(sideChannelData.size()+255)/256, 256, 0,  _proc_stream>>>(sideCD, sideChannelData.size(), _selectedBit, _nSideChannels, _selectedBit, thrust::raw_pointer_cast(noOfBitSet.data()));
208
209
210
211
212

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1";
  UnpackedVoltageType *_unpacked_voltage_ptr =
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data());
  ChannelisedVoltageType *_channelised_voltage_ptr =
213
      thrust::raw_pointer_cast(_channelised_voltage.data());
214
215
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));
216
  _detector->detect(_channelised_voltage, detected_G0);
217
218
219
220
221
222
223

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2";
  _unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data());
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));

//  CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
224
  _detector->detect(_channelised_voltage, detected_G1);
Tobias Winchen's avatar
Tobias Winchen committed
225

226
227
228
229
230
231
232
233
234
235
236
237
} // process


template <class HandlerType>
bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
  ++_call_count;
  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
                           << _call_count << ")";
  if (block.used_bytes() != _buffer_bytes) { /* Unexpected buffer size */
    BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got "
                             << block.used_bytes() << " byte, expected "
                             << _buffer_bytes << " byte)";
238
		cudaDeviceSynchronize();
239
240
		cudaProfilerStop();
		return true;
241
242
243
244
245
  }

//  CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
  _raw_voltage_db.swap();
  _sideChannelData_db.swap();
Tobias Winchen's avatar
Tobias Winchen committed
246
	std::swap(_procA, _procB);
247
248
249

  BOOST_LOG_TRIVIAL(debug) << "   block.used_bytes() = " << block.used_bytes()
                           << ", dataBlockBytes = " << _dataBlockBytes << "\n";
Tobias Winchen's avatar
Tobias Winchen committed
250
251
252
253

	// If necessary wait until the raw data has been processed
	CUDA_ERROR_CHECK(cudaEventSynchronize(_procA));

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  CUDA_ERROR_CHECK(cudaMemcpyAsync(static_cast<void *>(_raw_voltage_db.a_ptr()),
                                   static_cast<void *>(block.ptr()),
                                   _dataBlockBytes, cudaMemcpyHostToDevice,
                                   _h2d_stream));
  CUDA_ERROR_CHECK(cudaMemcpyAsync(
      static_cast<void *>(_sideChannelData_db.a_ptr()),
      static_cast<void *>(block.ptr() + _dataBlockBytes + _gapSize),
      _sideChannelSize * _nHeaps, cudaMemcpyHostToDevice, _h2d_stream));

  if (_call_count == 1) {
    return false;
  }

  // Synchronize all streams
  _power_db_G0.swap();
  _power_db_G1.swap();
270
	_noOfBitSetsInSideChannel.swap();
271
272

  process(_raw_voltage_db.b(), _sideChannelData_db.b(), _power_db_G0.a(),
273
          _power_db_G1.a(), _noOfBitSetsInSideChannel.a());
274

Tobias Winchen's avatar
Tobias Winchen committed
275
276
277
	// signal that data block has been processed
  //CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  if (_call_count == 2) {
    return false;
  }

  //CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream));
  _host_power_db.swap();
  CUDA_ERROR_CHECK(
      cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr()),
                      static_cast<void *>(_power_db_G0.b_ptr()),
                      _power_db_G0.size() * sizeof(IntegratedPowerType),
                      cudaMemcpyDeviceToHost, _d2h_stream));
  CUDA_ERROR_CHECK(cudaMemcpyAsync(
      static_cast<void *>(_host_power_db.a_ptr() +
                          (_power_db_G0.size() * sizeof(IntegratedPowerType))),
      static_cast<void *>(_power_db_G1.b_ptr()),
      _power_db_G1.size() * sizeof(IntegratedPowerType), cudaMemcpyDeviceToHost,
      _d2h_stream));

296
297
298
299
300
301
302
	int R[1];
	CUDA_ERROR_CHECK(cudaMemcpyAsync(static_cast<void *>(R),
				static_cast<void *>(_noOfBitSetsInSideChannel.b_ptr()),
					1 * sizeof(int),cudaMemcpyDeviceToHost, _d2h_stream));

	BOOST_LOG_TRIVIAL(info) << "NOOF BIT SET IN SIDE CHANNEL: " << R[0] << std::endl;

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
  if (_call_count == 3) {
    return false;
  }

  // Wrap _detected_host_previous in a RawBytes object here;
  RawBytes bytes(reinterpret_cast<char *>(_host_power_db.b_ptr()),
                 _host_power_db.size() * sizeof(IntegratedPowerType),
                 _host_power_db.size() * sizeof(IntegratedPowerType));
  BOOST_LOG_TRIVIAL(debug) << "Calling handler";
  // The handler can't do anything asynchronously without a copy here
  // as it would be unsafe (given that it does not own the memory it
  // is being passed).
  return _handler(bytes);
} // operator ()

} // edd
} // effelsberg
} // psrdada_cpp