GatedSpectrometer.cu 25 KB
Newer Older
1
#include "psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh"
2
#include "psrdada_cpp/effelsberg/edd/Tools.cuh"
3
4
5
#include "psrdada_cpp/common.hpp"
#include "psrdada_cpp/cuda_utils.hpp"
#include "psrdada_cpp/raw_bytes.hpp"
6

7
#include <cuda.h>
8
#include <cuda_profiler_api.h>
9
#include <thrust/system/cuda/execution_policy.h>
10
11

#include <iostream>
12
#include <iomanip>
13
14
#include <cstring>
#include <sstream>
15
16
17
18
19

namespace psrdada_cpp {
namespace effelsberg {
namespace edd {

20
// Reduce thread local vatiable v in shared array x, so that x[0]
21
template<typename T>
22
__device__ void sum_reduce(T *x, const T &v)
23
24
25
26
27
28
29
30
31
{
  x[threadIdx.x] = v;
  __syncthreads();
  for(int s = blockDim.x / 2; s > 0; s = s / 2)
  {
    if (threadIdx.x < s)
      x[threadIdx.x] += x[threadIdx.x + s];
    __syncthreads();
  }
32
}
33
34


35
36
37
38
39
40
41
42
43
44
45
// If one of the side channel items is lsot, then both are considered as lost
// here
__global__ void mergeSideChannels(uint64_t* __restrict__ A, uint64_t* __restrict__ B, size_t N)
{
  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < N);
       i += blockDim.x * gridDim.x)
  {
    uint64_t v = A[i] || B[i];
    A[i] = v;
    B[i] = v;
  }
46
47
48
}


49
50
51
52
53
54
55
56
57
58
__global__ void gating(float* __restrict__ G0,
        float* __restrict__ G1,
        const uint64_t* __restrict__ sideChannelData,
        size_t N, size_t heapSize, size_t bitpos,
        size_t noOfSideChannels, size_t selectedSideChannel,
        const float  baseLineG0,
        const float  baseLineG1,
        float* __restrict__ baseLineNG0,
        float* __restrict__ baseLineNG1,
        uint64_cu* stats_G0, uint64_cu* stats_G1) {
59
  // statistics values for samopels to G0, G1
60
61
62
  uint32_t _G0stats = 0;
  uint32_t _G1stats = 0;

63
64
65
  float baselineUpdateG0 = 0;
  float baselineUpdateG1 = 0;

Tobias Winchen's avatar
Tobias Winchen committed
66
  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < N);
67
       i += blockDim.x * gridDim.x) {
68
69
    const float v = G0[i];

70
71
    const uint64_t sideChannelItem = sideChannelData[((i / heapSize) * (noOfSideChannels)) +
                        selectedSideChannel];
72

73
74
    const unsigned int bit_set = TEST_BIT(sideChannelItem, bitpos);
    const unsigned int heap_lost = TEST_BIT(sideChannelItem, 63);
75
76
77
    G1[i] = (v - baseLineG1) * bit_set * (!heap_lost) + baseLineG1;
    G0[i] = (v - baseLineG0) * (!bit_set) *(!heap_lost) + baseLineG0;

78
79
    _G0stats += (!bit_set) *(!heap_lost);
    _G1stats += bit_set * (!heap_lost);
80
81
82

    baselineUpdateG1 += v * bit_set * (!heap_lost);
    baselineUpdateG0 += v * (!bit_set) *(!heap_lost);
83
  }
84

85
86
87
  __shared__ uint32_t x[1024];

  // Reduce G0, G1
88
  sum_reduce<uint32_t>(x, _G0stats);
89
90
  if(threadIdx.x == 0)
    atomicAdd(stats_G0,  (uint64_cu) x[threadIdx.x]);
91
  __syncthreads();
92
93

  sum_reduce<uint32_t>(x, _G1stats);
94
  if(threadIdx.x == 0)
95
    atomicAdd(stats_G1,  (uint64_cu) x[threadIdx.x]);
96
  __syncthreads();
97

98
99
100
  //reuse shared array
  float *y = (float*) x;
  //update the baseline array
101
  sum_reduce<float>(y, baselineUpdateG0);
102
103
  if(threadIdx.x == 0)
    atomicAdd(baseLineNG0, y[threadIdx.x]);
Tobias Winchen's avatar
Tobias Winchen committed
104
  __syncthreads();
105
106

  sum_reduce<float>(y, baselineUpdateG1);
Tobias Winchen's avatar
Tobias Winchen committed
107
  if(threadIdx.x == 0)
108
    atomicAdd(baseLineNG1, y[threadIdx.x]);
109
  __syncthreads();
Tobias Winchen's avatar
Tobias Winchen committed
110
}
111

112

113

114
115
template <class HandlerType>
GatedSpectrometer<HandlerType>::GatedSpectrometer(
116
117
    const DadaBufferLayout &dadaBufferLayout,
    std::size_t selectedSideChannel, std::size_t selectedBit, std::size_t fft_length, std::size_t naccumulate,
118
    std::size_t nbits, float input_level, float output_level,
119
    HandlerType &handler) : _dadaBufferLayout(dadaBufferLayout),
120
      _selectedSideChannel(selectedSideChannel), _selectedBit(selectedBit),
121
      _fft_length(fft_length),
122
      _naccumulate(naccumulate), _nbits(nbits), _handler(handler), _fft_plan(0),
123
      _call_count(0), _nsamps_per_heap(4096), _processing_efficiency(0.){
124
125

  // Sanity checks
126
  assert(((_nbits == 12) || (_nbits == 8)));
127
128
129
130
131
  assert(_naccumulate > 0);

  // check for any device errors
  CUDA_ERROR_CHECK(cudaDeviceSynchronize());

132
  BOOST_LOG_TRIVIAL(info)
133
      << "Creating new GatedSpectrometer instance with parameters: \n"
134
135
      << "  fft_length           " << _fft_length << "\n"
      << "  naccumulate          " << _naccumulate << "\n"
136
137
      << "  nSideChannels        " << _dadaBufferLayout.getNSideChannels() << "\n"
      << "  speadHeapSize        " << _dadaBufferLayout.getHeapSize() << " byte\n"
138
139
140
      << "  selectedSideChannel  " << _selectedSideChannel << "\n"
      << "  selectedBit          " << _selectedBit << "\n"
      << "  output bit depth     " << sizeof(IntegratedPowerType) * 8;
141

142
143
  assert((_dadaBufferLayout.getNSideChannels() == 0) ||
         (selectedSideChannel < _dadaBufferLayout.getNSideChannels()));  // Sanity check of side channel value
144
145
  assert(selectedBit < 64); // Sanity check of selected bit

146
   _nsamps_per_buffer = _dadaBufferLayout.sizeOfData() * 8 / nbits;
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

  _nsamps_per_output_spectra = fft_length * naccumulate;
  int nBlocks;
  if (_nsamps_per_output_spectra <= _nsamps_per_buffer)
  { // one buffer block is used for one or multiple output spectra
    size_t N = _nsamps_per_buffer / _nsamps_per_output_spectra;
    // All data in one block has to be used
    assert(N * _nsamps_per_output_spectra == _nsamps_per_buffer);
    nBlocks = 1;
  }
  else
  { // multiple blocks are integrated intoone output
    size_t N =  _nsamps_per_output_spectra /  _nsamps_per_buffer;
    // All data in multiple blocks has to be used
    assert(N * _nsamps_per_buffer == _nsamps_per_output_spectra);
    nBlocks = N;
  }
  BOOST_LOG_TRIVIAL(debug) << "Integrating  " << _nsamps_per_output_spectra << " samples from " << nBlocks << " into one spectra.";

166
  _nchans = _fft_length / 2 + 1;
167
  int batch = _nsamps_per_buffer / _fft_length;
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
  float dof = 2 * _naccumulate;
  float scale =
      std::pow(input_level * std::sqrt(static_cast<float>(_nchans)), 2);
  float offset = scale * dof;
  float scaling = scale * std::sqrt(2 * dof) / output_level;
  BOOST_LOG_TRIVIAL(debug)
      << "Correction factors for 8-bit conversion: offset = " << offset
      << ", scaling = " << scaling;

  BOOST_LOG_TRIVIAL(debug) << "Generating FFT plan";
  int n[] = {static_cast<int>(_fft_length)};
  CUFFT_ERROR_CHECK(cufftPlanMany(&_fft_plan, 1, n, NULL, 1, _fft_length, NULL,
                                  1, _nchans, CUFFT_R2C, batch));
  cufftSetStream(_fft_plan, _proc_stream);

  BOOST_LOG_TRIVIAL(debug) << "Allocating memory";
184
185
186
187
  polarization0._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
  polarization1._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
  polarization0._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
  polarization1._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
188
  BOOST_LOG_TRIVIAL(debug) << "  Input voltages size (in 64-bit words): "
189
                           << polarization0._raw_voltage.size();
190
191
  _unpacked_voltage_G0.resize(_nsamps_per_buffer);
  _unpacked_voltage_G1.resize(_nsamps_per_buffer);
Tobias Winchen's avatar
Tobias Winchen committed
192

193
194
195
196
197
  polarization0._baseLineG0.resize(1);
  polarization0._baseLineG1.resize(1);
  polarization1._baseLineG0.resize(1);
  polarization1._baseLineG1.resize(1);

198
199
  BOOST_LOG_TRIVIAL(debug) << "  Unpacked voltages size (in samples): "
                           << _unpacked_voltage_G0.size();
200
201
202
203
  polarization0._channelised_voltage_G0.resize(_nchans * batch);
  polarization0._channelised_voltage_G1.resize(_nchans * batch);
  polarization1._channelised_voltage_G0.resize(_nchans * batch);
  polarization1._channelised_voltage_G1.resize(_nchans * batch);
204
  BOOST_LOG_TRIVIAL(debug) << "  Channelised voltages size: "
205
206
207
208
209
210
211
                           << polarization0._channelised_voltage_G0.size();

   stokes_G0.resize(_nchans, batch / (_naccumulate / nBlocks));
   stokes_G1.resize(_nchans, batch / (_naccumulate / nBlocks));

  // on the host full output is stored together with sci data in one buffer
  _host_power_db.resize( 8 * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)) * batch / (_naccumulate / nBlocks));
212
213
214
215
216
217
218
219
220
221

  CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_d2h_stream));
  CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream));

  _unpacker.reset(new Unpacker(_proc_stream));
} // constructor


222
223
224

template <class HandlerType>
GatedSpectrometer<HandlerType>::~GatedSpectrometer() {
225
226
227
228
229
230
231
232
233
  BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer";
  if (!_fft_plan)
    cufftDestroy(_fft_plan);
  cudaStreamDestroy(_h2d_stream);
  cudaStreamDestroy(_proc_stream);
  cudaStreamDestroy(_d2h_stream);
}


234
235
236

template <class HandlerType>
void GatedSpectrometer<HandlerType>::init(RawBytes &block) {
237
  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called";
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
  std::stringstream headerInfo;
  headerInfo << "\n"
      << "# Gated spectrometer parameters: \n"
      << "fft_length               " << _fft_length << "\n"
      << "nchannels                " << _fft_length << "\n"
      << "naccumulate              " << _naccumulate << "\n"
      << "selected_side_channel    " << _selectedSideChannel << "\n"
      << "selected_bit             " << _selectedBit << "\n"
      << "output_bit_depth         " << sizeof(IntegratedPowerType) * 8;

  size_t bEnd = std::strlen(block.ptr());
  if (bEnd + headerInfo.str().size() < block.total_bytes())
  {
    std::strcpy(block.ptr() + bEnd, headerInfo.str().c_str());
  }
  else
  {
    BOOST_LOG_TRIVIAL(warning) << "Header of size " << block.total_bytes()
      << " bytes already contains " << bEnd
      << "bytes. Cannot add gated spectrometer info of size "
      << headerInfo.str().size() << " bytes.";
  }

261
262
263
264
  _handler.init(block);
}


265
266
267

template <class HandlerType>
void GatedSpectrometer<HandlerType>::gated_fft(
268
        PolarizationData &data,
269
270
271
272
  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0,
  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1
        )
{
273
274
275
  BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages";
  switch (_nbits) {
  case 8:
276
    _unpacker->unpack<8>(data._raw_voltage.b(), _unpacked_voltage_G0);
277
278
    break;
  case 12:
279
    _unpacker->unpack<12>(data._raw_voltage.b(), _unpacked_voltage_G0);
280
281
282
283
    break;
  default:
    throw std::runtime_error("Unsupported number of bits");
  }
284

285
286
287
  // Get baseline from previous block
  float previous_baseLineG0 = data._baseLineG0[0];
  float previous_baseLineG1 = data._baseLineG1[0];
288

289
290
291
292
  uint64_t NG0 = 0;
  uint64_t NG1 = 0;

  // Loop over outputblocks, for case of multiple output blocks per input block
293
  int step = data._sideChannelData.b().size() / _noOfBitSetsIn_G0.size();
294
  for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
295
  { // ToDo: Should be in one kernel call
296
  gating<<<1024, 1024, 0, _proc_stream>>>(
297
298
299
300
301
302
303
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * step * _nsamps_per_heap),
      thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * step * _nsamps_per_heap),
      thrust::raw_pointer_cast(data._sideChannelData.b().data() + i * step),
      _unpacked_voltage_G0.size() / _noOfBitSetsIn_G0.size(),
      _dadaBufferLayout.getHeapSize(),
      _selectedBit,
      _dadaBufferLayout.getNSideChannels(),
304
      _selectedSideChannel,
305
306
307
308
309
      previous_baseLineG0, previous_baseLineG1,
      thrust::raw_pointer_cast(data._baseLineG0.data()),
      thrust::raw_pointer_cast(data._baseLineG1.data()),
      thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data() + i),
      thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data() + i)
310
      );
311
312
    NG0 += _noOfBitSetsIn_G0[i];
    NG1 += _noOfBitSetsIn_G1[i];
313
  }
314
315
316
  data._baseLineG0[0] /= NG0;
  data._baseLineG1[0] /= NG1;
  BOOST_LOG_TRIVIAL(debug) << "Updating Baselines\n G0: " << previous_baseLineG0 << " -> " << data._baseLineG0[0] << ", " << previous_baseLineG1 << " -> " << data._baseLineG1[0] ;
317

318
319
320
321
322

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1";
  UnpackedVoltageType *_unpacked_voltage_ptr =
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data());
  ChannelisedVoltageType *_channelised_voltage_ptr =
323
      thrust::raw_pointer_cast(data._channelised_voltage_G0.data());
324
325
326
327
328
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2";
  _unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data());
329
  _channelised_voltage_ptr = thrust::raw_pointer_cast(data._channelised_voltage_G1.data());
330
331
332
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));

Tobias Winchen's avatar
Tobias Winchen committed
333
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
334
  BOOST_LOG_TRIVIAL(debug) << "Exit processing";
335
336
337
} // process


338
339
template <class HandlerType>
bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    ++_call_count;
    BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
                             << _call_count << ")";
    if (block.used_bytes() != _dadaBufferLayout.getBufferSize()) {
      // Stop on unexpected buffer size
      BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got "
                               << block.used_bytes() << " byte, expected "
                               << _dadaBufferLayout.getBufferSize() << " byte)";
      CUDA_ERROR_CHECK(cudaDeviceSynchronize());
      cudaProfilerStop();
      return true;
    }

    // Copy data to device
    CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
    polarization0.swap();
    polarization1.swap();

    BOOST_LOG_TRIVIAL(debug) << "   block.used_bytes() = " <<
        block.used_bytes() << ", dataBlockBytes = " <<
        _dadaBufferLayout.sizeOfData() << "\n";

    // Copy the data with stride to the GPU:
    // CPU: P1P2P1P2P1P2 ...
    // GPU: P1P1P1 ... P2P2P2 ...
    // If this is a bottleneck the gating kernel could sort the layout out
    // during copy
    int heapsize_bytes = _nsamps_per_heap * _nbits / 8;
    CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
      static_cast<void *>(polarization0._raw_voltage.a_ptr()),
        heapsize_bytes,
        static_cast<void *>(block.ptr()),
        2 * heapsize_bytes,
        heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
        cudaMemcpyHostToDevice, _h2d_stream));

    CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
      static_cast<void *>(polarization1._raw_voltage.a_ptr()),
        heapsize_bytes,
        static_cast<void *>(block.ptr()) + heapsize_bytes,
        2 * heapsize_bytes,
        heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
        cudaMemcpyHostToDevice, _h2d_stream));

    CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
        static_cast<void *>(polarization0._sideChannelData.a_ptr()),
        sizeof(uint64_t),
        static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
        2 * sizeof(uint64_t),
        sizeof(uint64_t),
        _dadaBufferLayout.sizeOfSideChannelData() / 2 / sizeof(uint64_t),
        cudaMemcpyHostToDevice, _h2d_stream));

    CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
        static_cast<void *>(polarization1._sideChannelData.a_ptr()),
        sizeof(uint64_t),
        static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap() + sizeof(uint64_t)),
        2 * sizeof(uint64_t),
        sizeof(uint64_t),
        _dadaBufferLayout.sizeOfSideChannelData() / 2 / sizeof(uint64_t), cudaMemcpyHostToDevice, _h2d_stream));

    BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" <<   std::setw(16)
        << std::setfill('0') << std::hex <<
        (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData()
                                     + _dadaBufferLayout.sizeOfGap()))[0] << std::dec;
405

406

407
408
409
  if (_call_count == 1) {
    return false;
  }
410

411
  // process data
412
413
  // check if new outblock is started:  _call_count -1 because this is the block number on the device
  bool newBlock = (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0);
414

415
416
  // only if  a newblock is started the output buffer is swapped. Otherwise the
  // new data is added to it
417
  if (newBlock)
418
  {
419
420
421
422
423
      BOOST_LOG_TRIVIAL(debug) << "Starting new output block.";
      stokes_G0.swap();
      stokes_G1.swap();
      stokes_G0.reset(_proc_stream);
      stokes_G1.reset(_proc_stream);
424
  }
425

426
427
  mergeSideChannels<<<1024, 1024, 0, _proc_stream>>>(thrust::raw_pointer_cast(polarization0._sideChannelData.a().data()),
          thrust::raw_pointer_cast(polarization1._sideChannelData.a().data()), polarization1._sideChannelData.a().size());
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

  gated_fft(polarization0, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());
  gated_fft(polarization1, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());

  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
          thrust::raw_pointer_cast(polarization0._channelised_voltage_G0.data()),
          thrust::raw_pointer_cast(polarization1._channelised_voltage_G0.data()),
          thrust::raw_pointer_cast(stokes_G0.I.a().data()),
          thrust::raw_pointer_cast(stokes_G0.Q.a().data()),
          thrust::raw_pointer_cast(stokes_G0.U.a().data()),
          thrust::raw_pointer_cast(stokes_G0.V.a().data()),
          _nchans, _naccumulate
          );

  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
          thrust::raw_pointer_cast(polarization0._channelised_voltage_G1.data()),
          thrust::raw_pointer_cast(polarization1._channelised_voltage_G1.data()),
          thrust::raw_pointer_cast(stokes_G1.I.a().data()),
          thrust::raw_pointer_cast(stokes_G1.Q.a().data()),
          thrust::raw_pointer_cast(stokes_G1.U.a().data()),
          thrust::raw_pointer_cast(stokes_G1.V.a().data()),
          _nchans, _naccumulate
          );


453
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
Tobias Winchen's avatar
Tobias Winchen committed
454

455
  if ((_call_count == 2) || (!newBlock)) {
456
457
458
    return false;
  }

459
  // copy data to host if block is finished
460
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream));
461
  _host_power_db.swap();
462
463
  // OUTPUT MEMORY LAYOUT:
  // I G0, IG1,Q G0, QG1, U G0,UG1,V G0,VG1, 8xSCI, ...
464

465
  for (size_t i = 0; i < stokes_G0._noOfBitSets.size(); i++)
466
  {
467
468
469
    size_t memslicesize = (_nchans * sizeof(IntegratedPowerType));
    size_t memOffset = 8 * i * (memslicesize +  + sizeof(size_t));
    // Copy  II QQ UU VV
470
471
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset) ,
472
473
474
475
476
477
478
479
                        static_cast<void *>(stokes_G0.I.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 1 * memslicesize) ,
                        static_cast<void *>(stokes_G1.I.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
480
                        cudaMemcpyDeviceToHost, _d2h_stream));
481

482
    CUDA_ERROR_CHECK(
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * memslicesize) ,
                        static_cast<void *>(stokes_G0.Q.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 3 * memslicesize) ,
                        static_cast<void *>(stokes_G1.Q.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 4 * memslicesize) ,
                        static_cast<void *>(stokes_G0.U.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 5 * memslicesize) ,
                        static_cast<void *>(stokes_G1.U.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 6 * memslicesize) ,
                        static_cast<void *>(stokes_G0.V.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 7 * memslicesize) ,
                        static_cast<void *>(stokes_G1.V.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    // Copy SCI
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize),
          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 1 * sizeof(size_t)),
          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 2 * sizeof(size_t)),
          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
532
533
534
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
535
536
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 3 * sizeof(size_t)),
          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
537
538
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 4 * sizeof(size_t)),
          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 5 * sizeof(size_t)),
          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 6 * sizeof(size_t)),
          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 7 * sizeof(size_t)),
          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));

560
  }
561
562

  BOOST_LOG_TRIVIAL(debug) << "Copy Data back to host";
563

564
565
566
567
  if (_call_count == 3) {
    return false;
  }

568
  // calculate off value
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
  //BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:";
  //size_t total_samples_lost = 0;
  //for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
  //{
  //  size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));

  //  size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType));
  //  size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t));

  //  size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values);
  //  total_samples_lost += samples_lost;

  //  BOOST_LOG_TRIVIAL(info) << "    Heap " << i << ":\n"
  //    <<"                            Samples with  bit set  : " << *on_values << std::endl
  //    <<"                            Samples without bit set: " << *off_values << std::endl
  //    <<"                            Samples lost           : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl;
  //}
  //double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size());
  //double prev_average = _processing_efficiency / (_call_count- 3 - 1);
  //_processing_efficiency += efficiency;
  //double average = _processing_efficiency / (_call_count-3);
  //BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")";
591
592

  // Wrap in a RawBytes object here;
593
  RawBytes bytes(reinterpret_cast<char *>(_host_power_db.b_ptr()),
594
595
                 _host_power_db.size(),
                 _host_power_db.size());
596
597
598
599
  BOOST_LOG_TRIVIAL(debug) << "Calling handler";
  // The handler can't do anything asynchronously without a copy here
  // as it would be unsafe (given that it does not own the memory it
  // is being passed).
Tobias Winchen's avatar
Tobias Winchen committed
600
601
602

  _handler(bytes);
  return false; //
603
604
605
606
607
608
} // operator ()

} // edd
} // effelsberg
} // psrdada_cpp