GatedSpectrometer.cu 17.6 KB
Newer Older
1
#include "psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh"
2
#include "psrdada_cpp/effelsberg/edd/Tools.cuh"
3
4
5
#include "psrdada_cpp/common.hpp"
#include "psrdada_cpp/cuda_utils.hpp"
#include "psrdada_cpp/raw_bytes.hpp"
6

7
#include <cuda.h>
8
#include <cuda_profiler_api.h>
9
#include <thrust/system/cuda/execution_policy.h>
10
11

#include <iostream>
12
#include <iomanip>
13
14
#include <cstring>
#include <sstream>
15
#include <typeinfo>
16
17
18
19
20

namespace psrdada_cpp {
namespace effelsberg {
namespace edd {

21
// Reduce thread local vatiable v in shared array x, so that x[0] contains sum
22
template<typename T>
23
__device__ void sum_reduce(T *x, const T &v)
24
25
26
27
28
29
30
31
32
{
  x[threadIdx.x] = v;
  __syncthreads();
  for(int s = blockDim.x / 2; s > 0; s = s / 2)
  {
    if (threadIdx.x < s)
      x[threadIdx.x] += x[threadIdx.x + s];
    __syncthreads();
  }
33
}
34
35


36
// If one of the side channel items is lost, then both are considered as lost
37
// here
38
__global__ void mergeSideChannels(uint64_t* __restrict__ A, uint64_t*
39
        __restrict__ B, size_t N);
40
41


42
43
44
45
46
47
48
49
50
__global__ void gating(float* __restrict__ G0,
        float* __restrict__ G1,
        const uint64_t* __restrict__ sideChannelData,
        size_t N, size_t heapSize, size_t bitpos,
        size_t noOfSideChannels, size_t selectedSideChannel,
        const float*  __restrict__ _baseLineG0,
        const float*  __restrict__ _baseLineG1,
        float* __restrict__ baseLineNG0,
        float* __restrict__ baseLineNG1,
51
        uint64_cu* stats_G0, uint64_cu* stats_G1);
52
53
54
55
56
57
58
59
60
61
62


// Updates the baselines of the gates for the polarization set for the next
// block
// only few output blocks per input block thus execution on only one thread.
// Important is that the execution is async on the GPU.
__global__ void update_baselines(float*  __restrict__ baseLineG0,
        float*  __restrict__ baseLineG1,
        float* __restrict__ baseLineNG0,
        float* __restrict__ baseLineNG1,
        uint64_cu* stats_G0, uint64_cu* stats_G1,
63
        size_t N);
64

65

66
67
68
69
70
71
72
template <class HandlerType, class InputType, class OutputType>
GatedSpectrometer<HandlerType, InputType, OutputType>::GatedSpectrometer(
    const DadaBufferLayout &dadaBufferLayout, std::size_t selectedSideChannel,
    std::size_t selectedBit, std::size_t fft_length, std::size_t naccumulate,
    std::size_t nbits, float input_level, float output_level, HandlerType
    &handler) : _dadaBufferLayout(dadaBufferLayout),
    _selectedSideChannel(selectedSideChannel), _selectedBit(selectedBit),
73
    _fft_length(fft_length), _naccumulate(naccumulate),
74
75
    _handler(handler), _fft_plan(0), _call_count(0), _nsamps_per_heap(4096)
{
76
77

  // Sanity checks
78
  assert(((nbits == 12) || (nbits == 8)));
79
80
81
82
83
  assert(_naccumulate > 0);

  // check for any device errors
  CUDA_ERROR_CHECK(cudaDeviceSynchronize());

84
  BOOST_LOG_TRIVIAL(info)
85
      << "Creating new GatedSpectrometer instance with parameters: \n"
86
87
      << "  fft_length           " << _fft_length << "\n"
      << "  naccumulate          " << _naccumulate << "\n"
88
89
      << "  nSideChannels        " << _dadaBufferLayout.getNSideChannels() << "\n"
      << "  speadHeapSize        " << _dadaBufferLayout.getHeapSize() << " byte\n"
90
91
92
      << "  selectedSideChannel  " << _selectedSideChannel << "\n"
      << "  selectedBit          " << _selectedBit << "\n"
      << "  output bit depth     " << sizeof(IntegratedPowerType) * 8;
93

94
95
  assert((_dadaBufferLayout.getNSideChannels() == 0) ||
         (selectedSideChannel < _dadaBufferLayout.getNSideChannels()));  // Sanity check of side channel value
96
97
  assert(selectedBit < 64); // Sanity check of selected bit

98

99
  _nchans = _fft_length / 2 + 1;
100

101
  // Calculate the scaling parameters for 8 bit output
102
103
104
105
106
107
108
109
110
  float dof = 2 * _naccumulate;
  float scale =
      std::pow(input_level * std::sqrt(static_cast<float>(_nchans)), 2);
  float offset = scale * dof;
  float scaling = scale * std::sqrt(2 * dof) / output_level;
  BOOST_LOG_TRIVIAL(debug)
      << "Correction factors for 8-bit conversion: offset = " << offset
      << ", scaling = " << scaling;

111
112
113
  // plan the FFT
  size_t nsamps_per_buffer = _dadaBufferLayout.sizeOfData() * 8 / nbits;
  int batch = nsamps_per_buffer / _fft_length;
114
  int n[] = {static_cast<int>(_fft_length)};
115
116
117
118
119
  BOOST_LOG_TRIVIAL(debug) << "Generating FFT plan: \n"
      << "   fft_length = " << _fft_length << "\n"
      << "   n[0] = " << n[0] << "\n"
      << "   _nchans = " << _nchans << "\n"
      << "   batch = " << batch << "\n";
120
121
122
  CUFFT_ERROR_CHECK(cufftPlanMany(&_fft_plan, 1, n, NULL, 1, _fft_length, NULL,
                                  1, _nchans, CUFFT_R2C, batch));

123
  inputDataStream = new InputType(fft_length, batch, nbits, _dadaBufferLayout);
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  //How many output spectra per input block?
  size_t nsamps_per_output_spectra = fft_length * naccumulate;

  size_t nsamps_per_pol = inputDataStream->getSamplesPerInputPolarization();
  if (nsamps_per_output_spectra <= nsamps_per_pol)
  { // one buffer block is used for one or multiple output spectra
    size_t N = nsamps_per_pol / nsamps_per_output_spectra;
    // All data in one block has to be used
    assert(N * nsamps_per_output_spectra == nsamps_per_pol);
    _nBlocks = 1;
  }
  else
  { // multiple blocks are integrated intoone output
    size_t N =  nsamps_per_output_spectra /  nsamps_per_pol;
    // All data in multiple blocks has to be used
    assert(N * nsamps_per_pol == nsamps_per_output_spectra);
    _nBlocks = N;
  }
  BOOST_LOG_TRIVIAL(debug) << "Integrating  " << nsamps_per_output_spectra <<
      " samples from " << _nBlocks << "blocks into one output spectrum.";
145

146
147
148
149
  // We unpack one pol at a time
  _unpacked_voltage_G0.resize(nsamps_per_pol);
  _unpacked_voltage_G1.resize(nsamps_per_pol);
  BOOST_LOG_TRIVIAL(debug) << "  Unpacked voltages size (in samples): " << _unpacked_voltage_G0.size();
150

151
  outputDataStream = new OutputType(_nchans, batch / (_naccumulate / _nBlocks));
152
153
154
155
156
157
158
159
160
161

  CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_d2h_stream));
  CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream));

  _unpacker.reset(new Unpacker(_proc_stream));
} // constructor


162
163
template <class HandlerType, class InputType, class OutputType>
GatedSpectrometer<HandlerType, InputType, OutputType>::~GatedSpectrometer() {
164
  BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer";
165
  if (_fft_plan)
166
    cufftDestroy(_fft_plan);
167
168
169
170

  delete inputDataStream;
  delete outputDataStream;

171
172
173
174
175
176
  cudaStreamDestroy(_h2d_stream);
  cudaStreamDestroy(_proc_stream);
  cudaStreamDestroy(_d2h_stream);
}


177
178
template <class HandlerType, class InputType, class OutputType>
void GatedSpectrometer<HandlerType, InputType, OutputType>::init(RawBytes &block) {
179
  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called";
180
181
182
183
  std::stringstream headerInfo;
  headerInfo << "\n"
      << "# Gated spectrometer parameters: \n"
      << "fft_length               " << _fft_length << "\n"
184
      << "nchannels                " << _nchans << "\n"
185
186
187
      << "naccumulate              " << _naccumulate << "\n"
      << "selected_side_channel    " << _selectedSideChannel << "\n"
      << "selected_bit             " << _selectedBit << "\n"
188
189
190
191
192
193
194
195
196
197
      << "output_bit_depth         " << sizeof(IntegratedPowerType) * 8 << "\n"
      << "full_stokes_output       ";
  if (typeid(OutputType) == typeid(GatedFullStokesOutput))
  {
          headerInfo << "yes\n";
  }
  else
  {
          headerInfo << "no\n";
  }
198
199
200
201
202
203
204
205
206
207
208
209
210
211

  size_t bEnd = std::strlen(block.ptr());
  if (bEnd + headerInfo.str().size() < block.total_bytes())
  {
    std::strcpy(block.ptr() + bEnd, headerInfo.str().c_str());
  }
  else
  {
    BOOST_LOG_TRIVIAL(warning) << "Header of size " << block.total_bytes()
      << " bytes already contains " << bEnd
      << "bytes. Cannot add gated spectrometer info of size "
      << headerInfo.str().size() << " bytes.";
  }

212
213
214
215
  _handler.init(block);
}


216

217
218
template <class HandlerType, class InputType, class OutputType>
void GatedSpectrometer<HandlerType, InputType, OutputType>::gated_fft(
219
220
221
222
223
  PolarizationData &data,
  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0,
  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1
        )
{
224
  BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages";
225
  switch (data._nbits) {
226
  case 8:
227
    _unpacker->unpack<8>(data._raw_voltage.b(), _unpacked_voltage_G0);
228
229
    break;
  case 12:
230
    _unpacker->unpack<12>(data._raw_voltage.b(), _unpacked_voltage_G0);
231
232
233
234
    break;
  default:
    throw std::runtime_error("Unsupported number of bits");
  }
Tobias Winchen's avatar
Tobias Winchen committed
235
236

  // Loop over outputblocks, for case of multiple output blocks per input block
237
238
239
  int step = data._sideChannelData.b().size() / _noOfBitSetsIn_G0.size();

  for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
240
  { // ToDo: Should be in one kernel call
241
  gating<<<1024, 1024, 0, _proc_stream>>>(
242
243
244
245
246
247
248
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * step * _nsamps_per_heap),
      thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * step * _nsamps_per_heap),
      thrust::raw_pointer_cast(data._sideChannelData.b().data() + i * step),
      _unpacked_voltage_G0.size() / _noOfBitSetsIn_G0.size(),
      _dadaBufferLayout.getHeapSize(),
      _selectedBit,
      _dadaBufferLayout.getNSideChannels(),
249
      _selectedSideChannel,
250
251
252
253
254
255
      thrust::raw_pointer_cast(data._baseLineG0.data()),
      thrust::raw_pointer_cast(data._baseLineG1.data()),
      thrust::raw_pointer_cast(data._baseLineG0_update.data()),
      thrust::raw_pointer_cast(data._baseLineG1_update.data()),
      thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data() + i),
      thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data() + i)
256
      );
257
  }
258

259
260
261
262
263
264
265
266
267
268
269
    // only few output blocks per input block thus execution on only one thread.
    // Important is that the execution is async on the GPU.
    update_baselines<<<1,1,0, _proc_stream>>>(
        thrust::raw_pointer_cast(data._baseLineG0.data()),
        thrust::raw_pointer_cast(data._baseLineG1.data()),
        thrust::raw_pointer_cast(data._baseLineG0_update.data()),
        thrust::raw_pointer_cast(data._baseLineG1_update.data()),
        thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data()),
        thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data()),
        _noOfBitSetsIn_G0.size()
            );
270
271

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1";
272
  BOOST_LOG_TRIVIAL(debug) << "Accessing unpacked voltage";
273
274
  UnpackedVoltageType *_unpacked_voltage_ptr =
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data());
275
  BOOST_LOG_TRIVIAL(debug) << "Accessing channelized voltage";
276
  ChannelisedVoltageType *_channelised_voltage_ptr =
277
      thrust::raw_pointer_cast(data._channelised_voltage_G0.data());
278

279
280
281
282
283
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2";
  _unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data());
284
  _channelised_voltage_ptr = thrust::raw_pointer_cast(data._channelised_voltage_G1.data());
285
286
287
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));

Tobias Winchen's avatar
Tobias Winchen committed
288
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
289
  BOOST_LOG_TRIVIAL(debug) << "Exit processing";
290
291
292
} // process


293
294
295
296




297
298
template <class HandlerType, class InputType, class OutputType>
bool GatedSpectrometer<HandlerType, InputType, OutputType>::operator()(RawBytes &block) {
Tobias Winchen's avatar
Tobias Winchen committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
  ++_call_count;
  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
                           << _call_count << ")";
  if (block.used_bytes() != _dadaBufferLayout.getBufferSize()) { /* Unexpected buffer size */
    BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got "
                             << block.used_bytes() << " byte, expected "
                             << _dadaBufferLayout.getBufferSize() << " byte)";
    CUDA_ERROR_CHECK(cudaDeviceSynchronize());
    cudaProfilerStop();
    return true;
  }

  // Copy data to device
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
313
  inputDataStream->swap();
314
  inputDataStream->getFromBlock(block, _h2d_stream);
315

316

317
318
319
  if (_call_count == 1) {
    return false;
  }
320
  // process data
321

322
  // check if new outblock is started:  _call_count -1 because this is the block number on the device
323
  bool newBlock = ((((_call_count-1) * inputDataStream->getSamplesPerInputPolarization()) % (_fft_length * _naccumulate) ) == 0);
324

325
326
  // only if  a newblock is started the output buffer is swapped. Otherwise the
  // new data is added to it
327
  if (newBlock)
328
  {
Tobias Winchen's avatar
Tobias Winchen committed
329
    BOOST_LOG_TRIVIAL(debug) << "Starting new output block.";
330
    CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream));
331
332
    outputDataStream->swap();
    outputDataStream->reset(_proc_stream);
333
  }
334

335
336
  BOOST_LOG_TRIVIAL(debug) << "Processing block.";
  process(inputDataStream, outputDataStream);
337
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
338
  BOOST_LOG_TRIVIAL(debug) << "Processing block finished.";
339
340
341
342
  /// For one pol input and power out
  /// ToDo: For two pol input and power out
  /// ToDo: For two pol input and stokes out

Tobias Winchen's avatar
Tobias Winchen committed
343

344
  if ((_call_count == 2) || (!newBlock)) {
345
346
347
    return false;
  }

348
  outputDataStream->data2Host(_d2h_stream);
349
350
351
352
  if (_call_count == 3) {
    return false;
  }

353
  // Wrap in a RawBytes object here;
354
355
356
  RawBytes bytes(reinterpret_cast<char *>(outputDataStream->_host_power.b_ptr()),
                 outputDataStream->_host_power.size(),
                 outputDataStream->_host_power.size());
357
358
359
360
  BOOST_LOG_TRIVIAL(debug) << "Calling handler";
  // The handler can't do anything asynchronously without a copy here
  // as it would be unsafe (given that it does not own the memory it
  // is being passed).
Tobias Winchen's avatar
Tobias Winchen committed
361
362
363

  _handler(bytes);
  return false; //
364
365
} // operator ()

366
367
368


template <class HandlerType, class InputType, class OutputType>
369
void GatedSpectrometer<HandlerType, InputType, OutputType>::process(SinglePolarizationInput *inputDataStream, GatedPowerSpectrumOutput *outputDataStream)
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
{
  gated_fft(*inputDataStream, outputDataStream->G0._noOfBitSets.a(), outputDataStream->G1._noOfBitSets.a());

  kernels::detect_and_accumulate<IntegratedPowerType> <<<1024, 1024, 0, _proc_stream>>>(
            thrust::raw_pointer_cast(inputDataStream->_channelised_voltage_G0.data()),
            thrust::raw_pointer_cast(outputDataStream->G0.data.a().data()),
            _nchans,
            inputDataStream->_channelised_voltage_G0.size() / _nchans,
            _naccumulate / _nBlocks,
            1, 0., 1, 0);

  kernels::detect_and_accumulate<IntegratedPowerType> <<<1024, 1024, 0, _proc_stream>>>(
            thrust::raw_pointer_cast(inputDataStream->_channelised_voltage_G1.data()),
            thrust::raw_pointer_cast(outputDataStream->G1.data.a().data()),
            _nchans,
            inputDataStream->_channelised_voltage_G1.size() / _nchans,
            _naccumulate / _nBlocks,
            1, 0., 1, 0);

}


392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
template <class HandlerType, class InputType, class OutputType>
void GatedSpectrometer<HandlerType, InputType, OutputType>::process(DualPolarizationInput *inputDataStream, GatedFullStokesOutput *outputDataStream)
{
  mergeSideChannels<<<1024, 1024, 0, _proc_stream>>>(thrust::raw_pointer_cast(inputDataStream->polarization0._sideChannelData.a().data()),
          thrust::raw_pointer_cast(inputDataStream->polarization1._sideChannelData.a().data()), inputDataStream->polarization1._sideChannelData.a().size());

  gated_fft(inputDataStream->polarization0, outputDataStream->G0._noOfBitSets.a(), outputDataStream->G1._noOfBitSets.a());
  gated_fft(inputDataStream->polarization1, outputDataStream->G0._noOfBitSets.a(), outputDataStream->G1._noOfBitSets.a());

  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
          thrust::raw_pointer_cast(inputDataStream->polarization0._channelised_voltage_G0.data()),
          thrust::raw_pointer_cast(inputDataStream->polarization1._channelised_voltage_G0.data()),
          thrust::raw_pointer_cast(outputDataStream->G0.I.a().data()),
          thrust::raw_pointer_cast(outputDataStream->G0.Q.a().data()),
          thrust::raw_pointer_cast(outputDataStream->G0.U.a().data()),
          thrust::raw_pointer_cast(outputDataStream->G0.V.a().data()),
          _nchans, _naccumulate
          );

  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
          thrust::raw_pointer_cast(inputDataStream->polarization0._channelised_voltage_G1.data()),
          thrust::raw_pointer_cast(inputDataStream->polarization1._channelised_voltage_G1.data()),
          thrust::raw_pointer_cast(outputDataStream->G1.I.a().data()),
          thrust::raw_pointer_cast(outputDataStream->G1.Q.a().data()),
          thrust::raw_pointer_cast(outputDataStream->G1.U.a().data()),
          thrust::raw_pointer_cast(outputDataStream->G1.V.a().data()),
          _nchans, _naccumulate
          );

  //thrust::fill(thrust::cuda::par.on(_proc_stream),outputDataStream->G0.I.a().begin(), outputDataStream->G0.I.a().end(), _call_count);
  //thrust::fill(thrust::cuda::par.on(_proc_stream),outputDataStream->G0.Q.a().begin(), outputDataStream->G0.Q.a().end(), _call_count);
  //thrust::fill(thrust::cuda::par.on(_proc_stream),outputDataStream->G0.U.a().begin(), outputDataStream->G0.U.a().end(), _call_count);
  //thrust::fill(thrust::cuda::par.on(_proc_stream),outputDataStream->G0.V.a().begin(), outputDataStream->G0.V.a().end(), _call_count);


 // thrust::fill(thrust::cuda::par.on(_proc_stream),outputDataStream->G1.I.a().begin(), outputDataStream->G1.I.a().end(), _call_count);
  //thrust::fill(thrust::cuda::par.on(_proc_stream),outputDataStream->G1.Q.a().begin(), outputDataStream->G1.Q.a().end(), _call_count);
  //thrust::fill(thrust::cuda::par.on(_proc_stream),outputDataStream->G1.U.a().begin(), outputDataStream->G1.U.a().end(), _call_count);
  //thrust::fill(thrust::cuda::par.on(_proc_stream),outputDataStream->G1.V.a().begin(), outputDataStream->G1.V.a().end(), _call_count);

    cudaDeviceSynchronize();
}
434

435
436
437
438
} // edd
} // effelsberg
} // psrdada_cpp