GatedSpectrometer.cu 24.7 KB
Newer Older
1
#include "psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh"
2
#include "psrdada_cpp/effelsberg/edd/Tools.cuh"
3
4
5
#include "psrdada_cpp/common.hpp"
#include "psrdada_cpp/cuda_utils.hpp"
#include "psrdada_cpp/raw_bytes.hpp"
6

7
#include <cuda.h>
8
#include <cuda_profiler_api.h>
9
#include <thrust/system/cuda/execution_policy.h>
10
11

#include <iostream>
12
#include <iomanip>
13
14
#include <cstring>
#include <sstream>
15
16
17
18
19

namespace psrdada_cpp {
namespace effelsberg {
namespace edd {

20
// Reduce thread local vatiable v in shared array x, so that x[0]
21
template<typename T>
22
__device__ void sum_reduce(T *x, const T &v)
23
24
25
26
27
28
29
30
31
{
  x[threadIdx.x] = v;
  __syncthreads();
  for(int s = blockDim.x / 2; s > 0; s = s / 2)
  {
    if (threadIdx.x < s)
      x[threadIdx.x] += x[threadIdx.x + s];
    __syncthreads();
  }
32
}
33
34


35
36
37
38
39
40
41
42
43
44
45
// If one of the side channel items is lsot, then both are considered as lost
// here
__global__ void mergeSideChannels(uint64_t* __restrict__ A, uint64_t* __restrict__ B, size_t N)
{
  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < N);
       i += blockDim.x * gridDim.x)
  {
    uint64_t v = A[i] || B[i];
    A[i] = v;
    B[i] = v;
  }
46
47
48
}


49
50
51
52
53
54
55
56
57
58
__global__ void gating(float* __restrict__ G0,
        float* __restrict__ G1,
        const uint64_t* __restrict__ sideChannelData,
        size_t N, size_t heapSize, size_t bitpos,
        size_t noOfSideChannels, size_t selectedSideChannel,
        const float  baseLineG0,
        const float  baseLineG1,
        float* __restrict__ baseLineNG0,
        float* __restrict__ baseLineNG1,
        uint64_cu* stats_G0, uint64_cu* stats_G1) {
59
  // statistics values for samopels to G0, G1
60
61
62
  uint32_t _G0stats = 0;
  uint32_t _G1stats = 0;

63
64
65
  float baselineUpdateG0 = 0;
  float baselineUpdateG1 = 0;

Tobias Winchen's avatar
Tobias Winchen committed
66
  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < N);
67
       i += blockDim.x * gridDim.x) {
68
69
    const float v = G0[i];

70
71
    const uint64_t sideChannelItem = sideChannelData[((i / heapSize) * (noOfSideChannels)) +
                        selectedSideChannel];
72

73
74
    const unsigned int bit_set = TEST_BIT(sideChannelItem, bitpos);
    const unsigned int heap_lost = TEST_BIT(sideChannelItem, 63);
75
76
77
    G1[i] = (v - baseLineG1) * bit_set * (!heap_lost) + baseLineG1;
    G0[i] = (v - baseLineG0) * (!bit_set) *(!heap_lost) + baseLineG0;

78
79
    _G0stats += (!bit_set) *(!heap_lost);
    _G1stats += bit_set * (!heap_lost);
80
81
82

    baselineUpdateG1 += v * bit_set * (!heap_lost);
    baselineUpdateG0 += v * (!bit_set) *(!heap_lost);
83
  }
84

85
86
87
  __shared__ uint32_t x[1024];

  // Reduce G0, G1
88
  sum_reduce<uint32_t>(x, _G0stats);
89
90
  if(threadIdx.x == 0)
    atomicAdd(stats_G0,  (uint64_cu) x[threadIdx.x]);
91
  __syncthreads();
92
93

  sum_reduce<uint32_t>(x, _G1stats);
94
  if(threadIdx.x == 0)
95
    atomicAdd(stats_G1,  (uint64_cu) x[threadIdx.x]);
96
  __syncthreads();
97

98
99
100
  //reuse shared array
  float *y = (float*) x;
  //update the baseline array
101
  sum_reduce<float>(y, baselineUpdateG0);
102
103
  if(threadIdx.x == 0)
    atomicAdd(baseLineNG0, y[threadIdx.x]);
Tobias Winchen's avatar
Tobias Winchen committed
104
  __syncthreads();
105
106

  sum_reduce<float>(y, baselineUpdateG1);
Tobias Winchen's avatar
Tobias Winchen committed
107
  if(threadIdx.x == 0)
108
    atomicAdd(baseLineNG1, y[threadIdx.x]);
109
  __syncthreads();
Tobias Winchen's avatar
Tobias Winchen committed
110
}
111

112

113

114
115
template <class HandlerType>
GatedSpectrometer<HandlerType>::GatedSpectrometer(
116
117
    const DadaBufferLayout &dadaBufferLayout,
    std::size_t selectedSideChannel, std::size_t selectedBit, std::size_t fft_length, std::size_t naccumulate,
118
    std::size_t nbits, float input_level, float output_level,
119
    HandlerType &handler) : _dadaBufferLayout(dadaBufferLayout),
120
      _selectedSideChannel(selectedSideChannel), _selectedBit(selectedBit),
121
      _fft_length(fft_length),
122
      _naccumulate(naccumulate), _nbits(nbits), _handler(handler), _fft_plan(0),
123
      _call_count(0), _nsamps_per_heap(4096), _processing_efficiency(0.){
124
125

  // Sanity checks
126
  assert(((_nbits == 12) || (_nbits == 8)));
127
128
129
130
131
  assert(_naccumulate > 0);

  // check for any device errors
  CUDA_ERROR_CHECK(cudaDeviceSynchronize());

132
  BOOST_LOG_TRIVIAL(info)
133
      << "Creating new GatedSpectrometer instance with parameters: \n"
134
135
      << "  fft_length           " << _fft_length << "\n"
      << "  naccumulate          " << _naccumulate << "\n"
136
137
      << "  nSideChannels        " << _dadaBufferLayout.getNSideChannels() << "\n"
      << "  speadHeapSize        " << _dadaBufferLayout.getHeapSize() << " byte\n"
138
139
140
      << "  selectedSideChannel  " << _selectedSideChannel << "\n"
      << "  selectedBit          " << _selectedBit << "\n"
      << "  output bit depth     " << sizeof(IntegratedPowerType) * 8;
141

142
143
  assert((_dadaBufferLayout.getNSideChannels() == 0) ||
         (selectedSideChannel < _dadaBufferLayout.getNSideChannels()));  // Sanity check of side channel value
144
145
  assert(selectedBit < 64); // Sanity check of selected bit

146
   _nsamps_per_buffer = _dadaBufferLayout.sizeOfData() * 8 / nbits;
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

  _nsamps_per_output_spectra = fft_length * naccumulate;
  int nBlocks;
  if (_nsamps_per_output_spectra <= _nsamps_per_buffer)
  { // one buffer block is used for one or multiple output spectra
    size_t N = _nsamps_per_buffer / _nsamps_per_output_spectra;
    // All data in one block has to be used
    assert(N * _nsamps_per_output_spectra == _nsamps_per_buffer);
    nBlocks = 1;
  }
  else
  { // multiple blocks are integrated intoone output
    size_t N =  _nsamps_per_output_spectra /  _nsamps_per_buffer;
    // All data in multiple blocks has to be used
    assert(N * _nsamps_per_buffer == _nsamps_per_output_spectra);
    nBlocks = N;
  }
  BOOST_LOG_TRIVIAL(debug) << "Integrating  " << _nsamps_per_output_spectra << " samples from " << nBlocks << " into one spectra.";

166
  _nchans = _fft_length / 2 + 1;
167
  int batch = _nsamps_per_buffer / _fft_length;
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
  float dof = 2 * _naccumulate;
  float scale =
      std::pow(input_level * std::sqrt(static_cast<float>(_nchans)), 2);
  float offset = scale * dof;
  float scaling = scale * std::sqrt(2 * dof) / output_level;
  BOOST_LOG_TRIVIAL(debug)
      << "Correction factors for 8-bit conversion: offset = " << offset
      << ", scaling = " << scaling;

  BOOST_LOG_TRIVIAL(debug) << "Generating FFT plan";
  int n[] = {static_cast<int>(_fft_length)};
  CUFFT_ERROR_CHECK(cufftPlanMany(&_fft_plan, 1, n, NULL, 1, _fft_length, NULL,
                                  1, _nchans, CUFFT_R2C, batch));
  cufftSetStream(_fft_plan, _proc_stream);

  BOOST_LOG_TRIVIAL(debug) << "Allocating memory";
184
185
186
187
  polarization0._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
  polarization1._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
  polarization0._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
  polarization1._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
188
  BOOST_LOG_TRIVIAL(debug) << "  Input voltages size (in 64-bit words): "
189
                           << polarization0._raw_voltage.size();
190
191
  _unpacked_voltage_G0.resize(_nsamps_per_buffer);
  _unpacked_voltage_G1.resize(_nsamps_per_buffer);
Tobias Winchen's avatar
Tobias Winchen committed
192

193
194
195
196
197
  polarization0._baseLineG0.resize(1);
  polarization0._baseLineG1.resize(1);
  polarization1._baseLineG0.resize(1);
  polarization1._baseLineG1.resize(1);

198
199
  BOOST_LOG_TRIVIAL(debug) << "  Unpacked voltages size (in samples): "
                           << _unpacked_voltage_G0.size();
200
201
202
203
  polarization0._channelised_voltage_G0.resize(_nchans * batch);
  polarization0._channelised_voltage_G1.resize(_nchans * batch);
  polarization1._channelised_voltage_G0.resize(_nchans * batch);
  polarization1._channelised_voltage_G1.resize(_nchans * batch);
204
  BOOST_LOG_TRIVIAL(debug) << "  Channelised voltages size: "
205
206
207
208
209
210
211
                           << polarization0._channelised_voltage_G0.size();

   stokes_G0.resize(_nchans, batch / (_naccumulate / nBlocks));
   stokes_G1.resize(_nchans, batch / (_naccumulate / nBlocks));

  // on the host full output is stored together with sci data in one buffer
  _host_power_db.resize( 8 * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)) * batch / (_naccumulate / nBlocks));
212
213
214
215
216
217
218
219
220
221

  CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream));
  CUDA_ERROR_CHECK(cudaStreamCreate(&_d2h_stream));
  CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream));

  _unpacker.reset(new Unpacker(_proc_stream));
} // constructor


222
223
224

template <class HandlerType>
GatedSpectrometer<HandlerType>::~GatedSpectrometer() {
225
226
227
228
229
230
231
232
233
  BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer";
  if (!_fft_plan)
    cufftDestroy(_fft_plan);
  cudaStreamDestroy(_h2d_stream);
  cudaStreamDestroy(_proc_stream);
  cudaStreamDestroy(_d2h_stream);
}


234
235
236

template <class HandlerType>
void GatedSpectrometer<HandlerType>::init(RawBytes &block) {
237
  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called";
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
  std::stringstream headerInfo;
  headerInfo << "\n"
      << "# Gated spectrometer parameters: \n"
      << "fft_length               " << _fft_length << "\n"
      << "nchannels                " << _fft_length << "\n"
      << "naccumulate              " << _naccumulate << "\n"
      << "selected_side_channel    " << _selectedSideChannel << "\n"
      << "selected_bit             " << _selectedBit << "\n"
      << "output_bit_depth         " << sizeof(IntegratedPowerType) * 8;

  size_t bEnd = std::strlen(block.ptr());
  if (bEnd + headerInfo.str().size() < block.total_bytes())
  {
    std::strcpy(block.ptr() + bEnd, headerInfo.str().c_str());
  }
  else
  {
    BOOST_LOG_TRIVIAL(warning) << "Header of size " << block.total_bytes()
      << " bytes already contains " << bEnd
      << "bytes. Cannot add gated spectrometer info of size "
      << headerInfo.str().size() << " bytes.";
  }

261
262
263
264
  _handler.init(block);
}


265
266
267
268
269
270
271
272
273

template <class HandlerType>
void GatedSpectrometer<HandlerType>::gated_fft(
        PolarizationData &thispol,
        PolarizationData &otherpol,
  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0,
  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1
        )
{
274
275
276
  BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages";
  switch (_nbits) {
  case 8:
277
    _unpacker->unpack<8>(data._raw_voltage.b(), _unpacked_voltage_G0);
278
279
    break;
  case 12:
280
    _unpacker->unpack<12>(data._raw_voltage.b(), _unpacked_voltage_G0);
281
282
283
284
    break;
  default:
    throw std::runtime_error("Unsupported number of bits");
  }
285

286
287
288
  // Get baseline from previous block
  float previous_baseLineG0 = data._baseLineG0[0];
  float previous_baseLineG1 = data._baseLineG1[0];
289

290
291
292
293
  uint64_t NG0 = 0;
  uint64_t NG1 = 0;

  // Loop over outputblocks, for case of multiple output blocks per input block
294
295
  int step = data._sideChannelData.size() / _noOfBitSetsIn_G0.size();
  for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
296
  { // ToDo: Should be in one kernel call
297
  gating<<<1024, 1024, 0, _proc_stream>>>(
298
299
300
301
302
303
304
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * step * _nsamps_per_heap),
      thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * step * _nsamps_per_heap),
      thrust::raw_pointer_cast(data._sideChannelData.b().data() + i * step),
      _unpacked_voltage_G0.size() / _noOfBitSetsIn_G0.size(),
      _dadaBufferLayout.getHeapSize(),
      _selectedBit,
      _dadaBufferLayout.getNSideChannels(),
305
      _selectedSideChannel,
306
307
308
309
310
      previous_baseLineG0, previous_baseLineG1,
      thrust::raw_pointer_cast(data._baseLineG0.data()),
      thrust::raw_pointer_cast(data._baseLineG1.data()),
      thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data() + i),
      thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data() + i)
311
      );
312
313
    NG0 += _noOfBitSetsIn_G0[i];
    NG1 += _noOfBitSetsIn_G1[i];
314
  }
315
316
317
  data._baseLineG0[0] /= NG0;
  data._baseLineG1[0] /= NG1;
  BOOST_LOG_TRIVIAL(debug) << "Updating Baselines\n G0: " << previous_baseLineG0 << " -> " << data._baseLineG0[0] << ", " << previous_baseLineG1 << " -> " << data._baseLineG1[0] ;
318

319
320
321
322
323

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1";
  UnpackedVoltageType *_unpacked_voltage_ptr =
      thrust::raw_pointer_cast(_unpacked_voltage_G0.data());
  ChannelisedVoltageType *_channelised_voltage_ptr =
324
      thrust::raw_pointer_cast(data._channelised_voltage_G0.data());
325
326
327
328
329
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));

  BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2";
  _unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data());
330
  _channelised_voltage_ptr = thrust::raw_pointer_cast(data._channelised_voltage_G1.data());
331
332
333
  CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                 (cufftComplex *)_channelised_voltage_ptr));

Tobias Winchen's avatar
Tobias Winchen committed
334
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
335
  BOOST_LOG_TRIVIAL(debug) << "Exit processing";
336
337
338
} // process


339
340
template <class HandlerType>
bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
341
342
343
  ++_call_count;
  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
                           << _call_count << ")";
344
  if (block.used_bytes() != _dadaBufferLayout.getBufferSize()) { /* Unexpected buffer size */
345
346
    BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got "
                             << block.used_bytes() << " byte, expected "
347
                             << _dadaBufferLayout.getBufferSize() << " byte)";
348
    CUDA_ERROR_CHECK(cudaDeviceSynchronize());
Tobias Winchen's avatar
Tobias Winchen committed
349
350
    cudaProfilerStop();
    return true;
351
352
  }

353
  // Copy data to device
354
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
355
356
 polarization0.swap();
 polarization1.swap();
357
358

  BOOST_LOG_TRIVIAL(debug) << "   block.used_bytes() = " << block.used_bytes()
359
                           << ", dataBlockBytes = " << _dadaBufferLayout.sizeOfData() << "\n";
Tobias Winchen's avatar
Tobias Winchen committed
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
  // Copy the data with stride to the GPU:
  // CPU: P1P2P1P2P1P2 ...
  // GPU: P1P1P1 ... P2P2P2 ...
  int heapsize_bytes = _nsamps_per_heap * _nbits / 8;
  CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
    static_cast<void *>(polarization0._raw_voltage.a_ptr()),
      heapsize_bytes,
      static_cast<void *>(block.ptr()),
      2 * heapsize_bytes,
      heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
      cudaMemcpyHostToDevice, _h2d_stream));

  CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
    static_cast<void *>(polarization1._raw_voltage.a_ptr()),
      heapsize_bytes,
      static_cast<void *>(block.ptr()) + heapsize_bytes,
      2 * heapsize_bytes,
      heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
      cudaMemcpyHostToDevice, _h2d_stream));

// ToDo: Strided copy of side channel data
//  CUDA_ERROR_CHECK(cudaMemcpyAsync(
//      static_cast<void *>(polarization0._sideChannelData.a_ptr()),
//      static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
//      _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream));
//
//  CUDA_ERROR_CHECK(cudaMemcpyAsync(
//      static_cast<void *>(polarization1._sideChannelData.a_ptr()),
//      static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
//      _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream));

392
393
394
395
396
  BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" <<   std::setw(16)
      << std::setfill('0') << std::hex <<
      (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData()
                                   + _dadaBufferLayout.sizeOfGap()))[0] <<
      std::dec;
397

398

399

400
401
402
  if (_call_count == 1) {
    return false;
  }
403
  // process data
404

405
406
407
408
409
  // only if  a newblock is started the output buffer is swapped. Otherwise the
  // new data is added to it
  bool newBlock = false;
  if (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0) // _call_count -1 because this is the block number on the device
  {
410
411
412
413
414
415
      BOOST_LOG_TRIVIAL(debug) << "Starting new output block.";
      newBlock = true;
      stokes_G0.swap();
      stokes_G1.swap();
      stokes_G0.reset(_proc_stream);
      stokes_G1.reset(_proc_stream);
416
  }
417

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

  mergeSideChannels<<<1024, 1024, 0, _proc_stream>>>(thrust::raw_pointer_cast(polarization0._sideChannelData.data()),
          thrust::raw_pointer_cast(polarization1._sideChannelData.data()), polarization1._sideChannelData.size());

  gated_fft(polarization0, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());
  gated_fft(polarization1, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());

  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
          thrust::raw_pointer_cast(polarization0._channelised_voltage_G0.data()),
          thrust::raw_pointer_cast(polarization1._channelised_voltage_G0.data()),
          thrust::raw_pointer_cast(stokes_G0.I.a().data()),
          thrust::raw_pointer_cast(stokes_G0.Q.a().data()),
          thrust::raw_pointer_cast(stokes_G0.U.a().data()),
          thrust::raw_pointer_cast(stokes_G0.V.a().data()),
          _nchans, _naccumulate
          );

  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
          thrust::raw_pointer_cast(polarization0._channelised_voltage_G1.data()),
          thrust::raw_pointer_cast(polarization1._channelised_voltage_G1.data()),
          thrust::raw_pointer_cast(stokes_G1.I.a().data()),
          thrust::raw_pointer_cast(stokes_G1.Q.a().data()),
          thrust::raw_pointer_cast(stokes_G1.U.a().data()),
          thrust::raw_pointer_cast(stokes_G1.V.a().data()),
          _nchans, _naccumulate
          );


446
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
Tobias Winchen's avatar
Tobias Winchen committed
447

448
  if ((_call_count == 2) || (!newBlock)) {
449
450
451
    return false;
  }

452
  // copy data to host if block is finished
453
  CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream));
454
  _host_power_db.swap();
455
456
  // OUTPUT MEMORY LAYOUT:
  // I G0, IG1,Q G0, QG1, U G0,UG1,V G0,VG1, 8xSCI, ...
457

458
  for (size_t i = 0; i < stokes_G0._noOfBitSets.size(); i++)
459
  {
460
461
462
    size_t memslicesize = (_nchans * sizeof(IntegratedPowerType));
    size_t memOffset = 8 * i * (memslicesize +  + sizeof(size_t));
    // Copy  II QQ UU VV
463
464
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset) ,
465
466
467
468
469
470
471
472
                        static_cast<void *>(stokes_G0.I.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 1 * memslicesize) ,
                        static_cast<void *>(stokes_G1.I.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
473
                        cudaMemcpyDeviceToHost, _d2h_stream));
474

475
    CUDA_ERROR_CHECK(
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * memslicesize) ,
                        static_cast<void *>(stokes_G0.Q.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 3 * memslicesize) ,
                        static_cast<void *>(stokes_G1.Q.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 4 * memslicesize) ,
                        static_cast<void *>(stokes_G0.U.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 5 * memslicesize) ,
                        static_cast<void *>(stokes_G1.U.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 6 * memslicesize) ,
                        static_cast<void *>(stokes_G0.V.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    CUDA_ERROR_CHECK(
        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 7 * memslicesize) ,
                        static_cast<void *>(stokes_G1.V.b_ptr() + i * memslicesize),
                        _nchans * sizeof(IntegratedPowerType),
                        cudaMemcpyDeviceToHost, _d2h_stream));

    // Copy SCI
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize),
          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 1 * sizeof(size_t)),
          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 2 * sizeof(size_t)),
          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
525
526
527
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
528
529
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 3 * sizeof(size_t)),
          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
530
531
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 4 * sizeof(size_t)),
          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 5 * sizeof(size_t)),
          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 6 * sizeof(size_t)),
          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));
    CUDA_ERROR_CHECK(
        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 7 * sizeof(size_t)),
          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
            1 * sizeof(size_t),
            cudaMemcpyDeviceToHost, _d2h_stream));

553
  }
554
555

  BOOST_LOG_TRIVIAL(debug) << "Copy Data back to host";
556

557
558
559
560
  if (_call_count == 3) {
    return false;
  }

561
  // calculate off value
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
  //BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:";
  //size_t total_samples_lost = 0;
  //for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
  //{
  //  size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));

  //  size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType));
  //  size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t));

  //  size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values);
  //  total_samples_lost += samples_lost;

  //  BOOST_LOG_TRIVIAL(info) << "    Heap " << i << ":\n"
  //    <<"                            Samples with  bit set  : " << *on_values << std::endl
  //    <<"                            Samples without bit set: " << *off_values << std::endl
  //    <<"                            Samples lost           : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl;
  //}
  //double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size());
  //double prev_average = _processing_efficiency / (_call_count- 3 - 1);
  //_processing_efficiency += efficiency;
  //double average = _processing_efficiency / (_call_count-3);
  //BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")";
584
585

  // Wrap in a RawBytes object here;
586
  RawBytes bytes(reinterpret_cast<char *>(_host_power_db.b_ptr()),
587
588
                 _host_power_db.size(),
                 _host_power_db.size());
589
590
591
592
  BOOST_LOG_TRIVIAL(debug) << "Calling handler";
  // The handler can't do anything asynchronously without a copy here
  // as it would be unsafe (given that it does not own the memory it
  // is being passed).
Tobias Winchen's avatar
Tobias Winchen committed
593
594
595

  _handler(bytes);
  return false; //
596
597
598
599
600
601
} // operator ()

} // edd
} // effelsberg
} // psrdada_cpp