# @author lucasmiranda42 # encoding: utf-8 # module deepof """ Simple utility functions used in deepof example scripts. These are not part of the main package """ import json import os from datetime import date, datetime from typing import Tuple, Union, Any, List import numpy as np import tensorflow as tf from kerastuner import BayesianOptimization, Hyperband from kerastuner_tensorboard_logger import TensorBoardLogger from sklearn.metrics import roc_auc_score from tensorboard.plugins.hparams import api as hp import deepof.hypermodels import deepof.model_utils # Ignore warning with no downstream effect tf.get_logger().setLevel("ERROR") tf.autograph.set_verbosity(0) class CustomStopper(tf.keras.callbacks.EarlyStopping): """ Custom early stopping callback. Prevents the model from stopping before warmup is over """ def __init__(self, start_epoch, *args, **kwargs): super(CustomStopper, self).__init__(*args, **kwargs) self.start_epoch = start_epoch def get_config(self): # pragma: no cover """Updates callback metadata""" config = super().get_config().copy() config.update({"start_epoch": self.start_epoch}) return config def on_epoch_end(self, epoch, logs=None): if epoch > self.start_epoch: super().on_epoch_end(epoch, logs) def load_treatments(train_path): """Loads a dictionary containing the treatments per individual, to be loaded as metadata in the coordinates class""" try: with open( os.path.join( train_path, [i for i in os.listdir(train_path) if i.endswith(".json")][0], ), "r", ) as handle: treatment_dict = json.load(handle) except IndexError: treatment_dict = None return treatment_dict def get_callbacks( X_train: np.array, batch_size: int, variational: bool, phenotype_prediction: float, next_sequence_prediction: float, rule_based_prediction: float, loss: str, X_val: np.array = None, cp: bool = False, reg_cat_clusters: bool = False, reg_cluster_variance: bool = False, entropy_samples: int = 15000, entropy_knn: int = 100, logparam: dict = None, outpath: str = ".", run: int = False, ) -> List[Union[Any]]: """Generates callbacks for model training, including: - run_ID: run name, with coarse parameter details; - tensorboard_callback: for real-time visualization; - cp_callback: for checkpoint saving, - onecycle: for learning rate scheduling""" latreg = "none" if reg_cat_clusters and not reg_cluster_variance: latreg = "categorical" elif reg_cluster_variance and not reg_cat_clusters: latreg = "variance" elif reg_cat_clusters and reg_cluster_variance: latreg = "categorical+variance" run_ID = "{}{}{}{}{}{}{}_{}".format( ("GMVAE" if variational else "AE"), ("_NextSeqPred={}".format(next_sequence_prediction) if variational else ""), ("_PhenoPred={}".format(phenotype_prediction) if variational else ""), ("_RuleBasedPred={}".format(rule_based_prediction) if variational else ""), ("_loss={}".format(loss) if variational else ""), ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""), ("_k={}".format(logparam["k"]) if logparam is not None else ""), ("_latreg={}".format(latreg)), ("_entknn={}".format(entropy_knn)), ("_run={}".format(run) if run else ""), ("_{}".format(datetime.now().strftime("%Y%m%d-%H%M%S")) if not run else ""), ) log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID)) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=log_dir, histogram_freq=1, profile_batch=2, ) entropy = deepof.model_utils.neighbor_latent_entropy( encoding_dim=logparam["encoding"], k=entropy_knn, samples=entropy_samples, validation_data=X_val, log_dir=os.path.join(outpath, "metrics", run_ID), variational=variational, ) onecycle = deepof.model_utils.one_cycle_scheduler( X_train.shape[0] // batch_size * 250, max_rate=0.005, log_dir=os.path.join(outpath, "metrics", run_ID), ) callbacks = [run_ID, tensorboard_callback, entropy, onecycle] if cp: cp_callback = tf.keras.callbacks.ModelCheckpoint( os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"), verbose=1, save_best_only=False, save_weights_only=True, save_freq="epoch", ) callbacks.append(cp_callback) return callbacks def log_hyperparameters(phenotype_class: float, rec: str): """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning""" logparams = [ hp.HParam( "encoding", hp.Discrete([2, 4, 6, 8, 12, 16]), display_name="encoding", description="encoding size dimensionality", ), hp.HParam( "k", hp.IntInterval(min_value=1, max_value=25), display_name="k", description="cluster_number", ), hp.HParam( "loss", hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]), display_name="loss function", description="loss function", ), ] metrics = [ hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)), hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)), ] if phenotype_class: logparams.append( hp.HParam( "pheno_weight", hp.RealInterval(min_value=0.0, max_value=1000.0), display_name="pheno weight", description="weight applied to phenotypic classifier from the latent space", ) ) metrics += [ hp.Metric( "phenotype_prediction_accuracy", display_name="phenotype_prediction_accuracy", ), hp.Metric( "phenotype_prediction_auc", display_name="phenotype_prediction_auc", ), ] return logparams, metrics # noinspection PyUnboundLocalVariable def tensorboard_metric_logging( run_dir: str, hpms: Any, ae: Any, X_val: np.ndarray, y_val: np.ndarray, next_sequence_prediction: float, phenotype_prediction: float, rule_based_prediction: float, rec: str, ): """Autoencoder metric logging in tensorboard""" outputs = ae.predict(X_val) idx_generator = (idx for idx in range(len(outputs))) with tf.summary.create_file_writer(run_dir).as_default(): hp.hparams(hpms) # record the values used in this trial idx = next(idx_generator) val_mae = tf.reduce_mean( tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx]) ) val_mse = tf.reduce_mean( tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx]) ) tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1) tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1) if next_sequence_prediction: idx = next(idx_generator) pred_mae = tf.reduce_mean( tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx]) ) pred_mse = tf.reduce_mean( tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx]) ) tf.summary.scalar( "val_next_sequence_prediction_mae".format(rec), pred_mae, step=1 ) tf.summary.scalar( "val_next_sequence_prediction_mse".format(rec), pred_mse, step=1 ) if phenotype_prediction: idx = next(idx_generator) pheno_acc = tf.keras.metrics.binary_accuracy( y_val[idx], tf.squeeze(outputs[idx]) ) pheno_auc = tf.keras.metrics.AUC() pheno_auc.update_state(y_val[idx], outputs[idx]) pheno_auc = pheno_auc.result().numpy() tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1) tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1) if rule_based_prediction: idx = next(idx_generator) rules_mae = tf.reduce_mean( tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx]) ) rules_mse = tf.reduce_mean( tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx]) ) tf.summary.scalar("val_prediction_mae".format(rec), rules_mae, step=1) tf.summary.scalar("val_prediction_mse".format(rec), rules_mse, step=1) def autoencoder_fitting( preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray], batch_size: int, encoding_size: int, epochs: int, hparams: dict, kl_warmup: int, log_history: bool, log_hparams: bool, loss: str, mmd_warmup: int, montecarlo_kl: int, n_components: int, output_path: str, next_sequence_prediction: float, phenotype_prediction: float, rule_based_prediction: float, pretrained: str, save_checkpoints: bool, save_weights: bool, variational: bool, reg_cat_clusters: bool, reg_cluster_variance: bool, entropy_samples: int, entropy_knn: int, run: int = run, ): """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding""" # Load data X_train, y_train, X_val, y_val = preprocessed_object # To avoid stability issues tf.keras.backend.clear_session() # Defines what to log on tensorboard (useful for trying out different models) logparam = { "encoding": encoding_size, "k": n_components, "loss": loss, } if phenotype_prediction: logparam["pheno_weight"] = phenotype_prediction # Load callbacks run_ID, *cbacks = get_callbacks( X_train=X_train, X_val=(X_val if X_val.shape != (0,) else None), batch_size=batch_size, cp=save_checkpoints, variational=variational, next_sequence_prediction=next_sequence_prediction, phenotype_prediction=phenotype_prediction, rule_based_prediction=rule_based_prediction, loss=loss, entropy_samples=entropy_samples, entropy_knn=entropy_knn, reg_cat_clusters=reg_cat_clusters, reg_cluster_variance=reg_cluster_variance, logparam=logparam, outpath=output_path, run=run, ) if not log_history: cbacks = cbacks[1:] # Logs hyperparameters to tensorboard rec = "reconstruction_" if phenotype_prediction else "" if log_hparams: logparams, metrics = log_hyperparameters(phenotype_prediction, rec) with tf.summary.create_file_writer( os.path.join(output_path, "hparams", run_ID) ).as_default(): hp.hparams_config( hparams=logparams, metrics=metrics, ) # Gets the number of rule-based features try: rule_based_features = ( y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1 ) except IndexError: rule_based_features = 0 # Build models if not variational: encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE( ({} if hparams is None else hparams) ).build(X_train.shape) return_list = (encoder, decoder, ae) else: ( encoder, generator, grouper, ae, prior, posterior, ) = deepof.models.SEQ_2_SEQ_GMVAE( architecture_hparams=({} if hparams is None else hparams), batch_size=batch_size, compile_model=True, encoding=encoding_size, kl_warmup_epochs=kl_warmup, loss=loss, mmd_warmup_epochs=mmd_warmup, montecarlo_kl=montecarlo_kl, neuron_control=False, number_of_components=n_components, overlap_loss=False, next_sequence_prediction=next_sequence_prediction, phenotype_prediction=phenotype_prediction, rule_based_prediction=rule_based_prediction, rule_based_features=rule_based_features, reg_cat_clusters=reg_cat_clusters, reg_cluster_variance=reg_cluster_variance, ).build( X_train.shape ) return_list = (encoder, generator, grouper, ae) if pretrained: # If pretrained models are specified, load weights and return ae.load_weights(pretrained) return return_list else: if not variational: ae.fit( x=X_train, y=X_train, epochs=epochs, batch_size=batch_size, verbose=1, validation_data=(X_val, X_val), callbacks=cbacks + [ CustomStopper( monitor="val_loss", patience=5, restore_best_weights=True, start_epoch=max(kl_warmup, mmd_warmup), ), ], ) if save_weights: ae.save_weights("{}_final_weights.h5".format(run_ID)) else: callbacks_ = cbacks + [ CustomStopper( monitor="val_loss", patience=5, restore_best_weights=True, start_epoch=max(kl_warmup, mmd_warmup), ), ] Xs, ys = [X_train], [X_train] Xvals, yvals = [X_val], [X_val] if next_sequence_prediction > 0.0: Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]] Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]] if phenotype_prediction > 0.0: ys += [y_train[-Xs.shape[0] :, 0]] yvals += [y_val[-Xs.shape[0] :, 0]] # Remove the used column (phenotype) from both y arrays y_train = y_train[:, 1:] y_val = y_val[:, 1:] if rule_based_prediction > 0.0: ys += [y_train[-Xs.shape[0] :]] yvals += [y_val[-Xs.shape[0] :]] ae.fit( x=Xs, y=ys, epochs=epochs, batch_size=batch_size, verbose=1, validation_data=( Xvals, yvals, ), callbacks=callbacks_, ) if not os.path.exists(os.path.join(output_path, "trained_weights")): os.makedirs("trained_weights") if save_weights: ae.save_weights( os.path.join( "{}".format(output_path), "trained_weights", "{}_final_weights.h5".format(run_ID), ) ) if log_hparams: # Logparams to tensorboard tensorboard_metric_logging( run_dir=os.path.join(output_path, "hparams", run_ID), hpms=logparam, ae=ae, X_val=Xvals, y_val=yvals, next_sequence_prediction=next_sequence_prediction, phenotype_prediction=phenotype_prediction, rule_based_prediction=rule_based_prediction, rec=rec, ) return return_list def tune_search( data: List[np.array], encoding_size: int, hypertun_trials: int, hpt_type: str, hypermodel: str, k: int, kl_warmup_epochs: int, loss: str, mmd_warmup_epochs: int, overlap_loss: float, next_sequence_prediction: float, phenotype_prediction: float, rule_based_prediction: float, project_name: str, callbacks: List, n_epochs: int = 30, n_replicas: int = 1, outpath: str = ".", ) -> Union[bool, Tuple[Any, Any]]: """Define the search space using keras-tuner and bayesian optimization Parameters: - train (np.array): dataset to train the model on - test (np.array): dataset to validate the model on - hypertun_trials (int): number of Bayesian optimization iterations to run - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband) - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder) or S2SGMVAE (Gaussian Mixture Variational autoencoder). - k (int) number of components of the Gaussian Mixture - loss (str): one of [ELBO, MMD, ELBO+MMD] - overlap_loss (float): assigns as weight to an extra loss term which penalizes overlap between GM components - phenotype_class (float): adds an extra regularizing neural network to the model, which tries to predict the phenotype of the animal from which the sequence comes - predictor (float): adds an extra regularizing neural network to the model, which tries to predict the next frame from the current one - project_name (str): ID of the current run - callbacks (list): list of callbacks for the training loop - n_epochs (int): optional. Number of epochs to train each run for - n_replicas (int): optional. Number of replicas per parameter set. Higher values will yield more robust results, but will affect performance severely Returns: - best_hparams (dict): dictionary with the best retrieved hyperparameters - best_run (tf.keras.Model): trained instance of the best model found """ X_train, y_train, X_val, y_val = data assert hpt_type in ["bayopt", "hyperband"], ( "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband" ) if hypermodel == "S2SAE": # pragma: no cover assert ( next_sequence_prediction == 0.0 and phenotype_prediction == 0.0 ), "Prediction branches are only available for variational models. See documentation for more details" batch_size = 1 hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape) elif hypermodel == "S2SGMVAE": batch_size = 64 hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE( input_shape=X_train.shape, encoding=encoding_size, kl_warmup_epochs=kl_warmup_epochs, loss=loss, mmd_warmup_epochs=mmd_warmup_epochs, number_of_components=k, overlap_loss=overlap_loss, next_sequence_prediction=next_sequence_prediction, phenotype_prediction=phenotype_prediction, rule_based_prediction=rule_based_prediction, rule_based_features=( y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1 ), ) else: return False hpt_params = { "hypermodel": hypermodel, "executions_per_trial": n_replicas, "logger": TensorBoardLogger( metrics=["val_mae"], logdir=os.path.join(outpath, "logged_hparams") ), "objective": "val_mae", "project_name": project_name, "tune_new_entries": True, } if hpt_type == "hyperband": tuner = Hyperband( directory=os.path.join( outpath, "HyperBandx_{}_{}".format(loss, str(date.today())) ), max_epochs=35, hyperband_iterations=hypertun_trials, factor=3, **hpt_params ) else: tuner = BayesianOptimization( directory=os.path.join( outpath, "BayOpt_{}_{}".format(loss, str(date.today())) ), max_trials=hypertun_trials, **hpt_params ) print(tuner.search_space_summary()) Xs, ys = [X_train], [X_train] Xvals, yvals = [X_val], [X_val] if next_sequence_prediction > 0.0: Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]] Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]] if phenotype_prediction > 0.0: ys += [y_train[:, 0]] yvals += [y_val[:, 0]] # Remove the used column (phenotype) from both y arrays y_train = y_train[:, 1:] y_val = y_val[:, 1:] if rule_based_prediction > 0.0: ys += [y_train] yvals += [y_val] tuner.search( Xs, ys, epochs=n_epochs, validation_data=(Xvals, yvals), verbose=1, batch_size=batch_size, callbacks=callbacks, ) best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0] best_run = tuner.hypermodel.build(best_hparams) print(tuner.results_summary()) return best_hparams, best_run