- 25 May, 2020 10 commits
-
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
- 22 May, 2020 10 commits
-
-
lucas_miranda authored
-
lucas_miranda authored
-
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
Replaces sys.argv for argparse in hyperparameter_tuning.py, making the CLI more friendly. Adds number of trials in Bayesian optimization as a parameter
-
lucas_miranda authored
-
lucas_miranda authored
hyperparameter_tuning.py now builds a dictionary with the best hyperparameters instead of returning a partially trained model
-
Lucas Miranda authored
-
- 21 May, 2020 11 commits
-
-
lucas_miranda authored
-
lucas_miranda authored
Restructured models.py and hypermodels.py. Now all helper functions and custom layers are imported from model_utils.py
-
lucas_miranda authored
Restructured models.py and hypermodels.py. Now all helper functions and custom layers are imported from model_utils.py
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
Refactors KLD and MMD as independent Layers in experimental main.ipynb, thus avoiding global variable usage. Proposes a model including both KLD and MMD as regularizing terms in the loss function
-
lucas_miranda authored
-
- 20 May, 2020 9 commits
-
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-
lucas_miranda authored
-