diff --git a/main.ipynb b/main.ipynb index b892655237958e6616d46b4a05b3a696be20ac63..13824c0eda1cbc873579b015ecc93feb615ed3ba 100644 --- a/main.ipynb +++ b/main.ipynb @@ -303,7 +303,7 @@ "metadata": {}, "outputs": [], "source": [ - "NAME = 'Baseline_VAEP_short'\n", + "NAME = 'Baseline_VAEP_short_partially_untied'\n", "log_dir = os.path.abspath(\n", " \"logs/fit/{}_{}\".format(NAME, datetime.now().strftime(\"%Y%m%d-%H%M%S\"))\n", ")\n", @@ -346,6 +346,15 @@ "encoder, generator, vaep = SEQ_2_SEQ_VAEP(pttest.shape).build()" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#vaep.summary()" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/source/models.py b/source/models.py index e0de2ffa8fab7ed9d7ec1a4dc018f6f6ada50a86..0d1542d5f5bb33a271503716ad7329d617abdf1b 100644 --- a/source/models.py +++ b/source/models.py @@ -129,7 +129,6 @@ class SEQ_2_SEQ_AE: decoder.add(Model_D2) encoder.add(BatchNormalization()) decoder.add(Model_D3) - decoder.add(BatchNormalization()) decoder.add(Model_D4) encoder.add(BatchNormalization()) decoder.add(Model_D5) @@ -222,7 +221,6 @@ class SEQ_2_SEQ_VAE: Model_B3 = BatchNormalization() Model_B4 = BatchNormalization() Model_B5 = BatchNormalization() - Model_B6 = BatchNormalization() Model_D0 = DenseTranspose( Model_E5, activation="relu", output_dim=self.ENCODING, ) @@ -280,11 +278,10 @@ class SEQ_2_SEQ_VAE: generator = Model_D2(generator) generator = Model_B3(generator) generator = Model_D3(generator) - generator = Model_B4(generator) generator = Model_D4(generator) - generator = Model_B5(generator) + generator = Model_B4(generator) generator = Model_D5(generator) - generator = Model_B6(generator) + generator = Model_B5(generator) x_decoded_mean = TimeDistributed(Dense(self.input_shape[2]))(generator) # end-to-end autoencoder @@ -300,11 +297,10 @@ class SEQ_2_SEQ_VAE: _generator = Model_D2(_generator) _generator = Model_B3(_generator) _generator = Model_D3(_generator) - _generator = Model_B4(_generator) _generator = Model_D4(_generator) - _generator = Model_B5(_generator) + _generator = Model_B4(_generator) _generator = Model_D5(_generator) - _generator = Model_B6(_generator) + _generator = Model_B5(_generator) _x_decoded_mean = TimeDistributed(Dense(self.input_shape[2]))(_generator) generator = Model(g, _x_decoded_mean, name="SEQ_2_SEQ_VGenerator") @@ -398,7 +394,6 @@ class SEQ_2_SEQ_VAEP: Model_B3 = BatchNormalization() Model_B4 = BatchNormalization() Model_B5 = BatchNormalization() - Model_B6 = BatchNormalization() Model_D0 = DenseTranspose( Model_E5, activation="relu", output_dim=self.ENCODING, ) @@ -456,22 +451,26 @@ class SEQ_2_SEQ_VAEP: generator = Model_D2(generator) generator = Model_B3(generator) generator = Model_D3(generator) - generator = Model_B4(generator) generator = Model_D4(generator) - generator = Model_B5(generator) + generator = Model_B4(generator) generator = Model_D5(generator) - generator = Model_B6(generator) + generator = Model_B5(generator) x_decoded_mean = TimeDistributed(Dense(self.input_shape[2]))(generator) # Define and instanciate predictor - predictor = Model_D0(z) - predictor = Model_B1(predictor) - predictor = Model_D1(predictor) - predictor = Model_B2(predictor) - predictor = Model_D2(predictor) - predictor = Model_B3(predictor) - predictor = Model_D3(predictor) - predictor = Model_B4(predictor) + predictor = Dense( + self.ENCODING, activation="relu", kernel_initializer=he_uniform() + )(z) + predictor = BatchNormalization()(predictor) + predictor = Dense( + self.DENSE_2, activation="relu", kernel_initializer=he_uniform() + )(predictor) + predictor = BatchNormalization()(predictor) + predictor = Dense( + self.DENSE_1, activation="relu", kernel_initializer=he_uniform() + )(predictor) + predictor = BatchNormalization()(predictor) + predictor = RepeatVector(self.input_shape[1])(predictor) predictor = Bidirectional( LSTM( self.LSTM_units_1, @@ -507,11 +506,10 @@ class SEQ_2_SEQ_VAEP: _generator = Model_D2(_generator) _generator = Model_B3(_generator) _generator = Model_D3(_generator) - _generator = Model_B4(_generator) _generator = Model_D4(_generator) - _generator = Model_B5(_generator) + _generator = Model_B4(_generator) _generator = Model_D5(_generator) - _generator = Model_B6(_generator) + _generator = Model_B5(_generator) _x_decoded_mean = TimeDistributed(Dense(self.input_shape[2]))(_generator) generator = Model(g, _x_decoded_mean, name="SEQ_2_SEQ_VGenerator")