Commit 7b8696ea authored by lucas_miranda's avatar lucas_miranda
Browse files

added inplace alignment on deepof.data.coordinates.get_coords() on data.py

parent ff1ec1ed
Pipeline #83460 passed with stage
in 17 minutes and 36 seconds
......@@ -12,6 +12,7 @@ from itertools import combinations
from tensorflow.keras import backend as K
from tensorflow.keras.constraints import Constraint
from tensorflow.keras.layers import Layer
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_probability as tfp
......@@ -20,6 +21,52 @@ tfpl = tfp.layers
# Helper functions
class exponential_learning_rate(tf.keras.callbacks.Callback):
"""Simple class that allows to grow learning rate exponentially during training"""
def __init__(self, factor):
super().__init__()
self.factor = factor
self.rates = []
self.losses = []
# noinspection PyMethodOverriding
def on_batch_end(self, batch, logs):
"""This callback acts after processing each batch"""
self.rates.append(K.get_value(self.model.optimizer.lr))
self.losses.append(logs["loss"])
K.set_value(self.model.optimizer.lr, self.model.optimizer.lr * self.factor)
def find_learning_rate(
model, X, y, epochs=1, batch_size=32, min_rate=10 ** -5, max_rate=10
):
"""Trains the provided model for an epoch with an exponentially increasing learning rate"""
init_weights = model.get_weights()
iterations = len(X) // batch_size * epochs
factor = K.exp(K.log(max_rate / min_rate) / iterations)
init_lr = K.get_value(model.optimizer.lr)
K.set_value(model.optimizer.lr, min_rate)
exp_lr = exponential_learning_rate(factor)
model.fit(X, y, epochs=epochs, batch_size=batch_size, callbacks=[exp_lr])
K.set_value(model.optimizer.lr, init_lr)
model.set_weights(init_weights)
return exp_lr.rates, exp_lr.losses
def plot_lr_vs_loss(rates, losses): # pragma: no cover
"""Plots learing rate versus the loss function of the model"""
plt.plot(rates, losses)
plt.gca().set_xscale("log")
plt.hlines(min(losses), min(rates), max(rates))
plt.axis([min(rates), max(rates), min(losses), (losses[0] + min(losses)) / 2])
plt.xlabel("Learning rate")
plt.ylabel("Loss")
@tf.function
def far_away_uniform_initialiser(
shape: tuple, minval: int = 0, maxval: int = 15, iters: int = 100000
......
......@@ -227,6 +227,8 @@ class SEQ_2_SEQ_AE:
metrics=["mae"],
)
model.build(input_shape)
return encoder, decoder, model
......@@ -652,6 +654,8 @@ class SEQ_2_SEQ_GMVAE:
loss_weights=([1, self.predictor] if self.predictor > 0 else [1]),
)
gmvaep.build(input_shape)
return (
encoder,
generator,
......
%% Cell type:code id: tags:
``` python
import os
os.chdir(os.path.dirname("../"))
```
%% Cell type:code id: tags:
``` python
import deepof.data
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import tqdm.notebook as tqdm
from ipywidgets import interact
```
%% Cell type:code id: tags:
``` python
%%time
deepof_main = deepof.data.project(path=os.path.join("..","..","Desktop","deepof-data"), #Path where to find the required files
smooth_alpha=0.99, #Alpha value for exponentially weighted smoothing
arena_dims=[380])
```
%%%% Output: stream
CPU times: user 14.8 s, sys: 2.65 s, total: 17.4 s
Wall time: 4.04 s
CPU times: user 16 s, sys: 2.93 s, total: 18.9 s
Wall time: 4.92 s
%% Cell type:markdown id: tags:
# Run project
%% Cell type:code id: tags:
``` python
%%time
deepof_main = deepof_main.run(verbose=True)
print(deepof_main)
```
%%%% Output: stream
Loading trajectories...
Smoothing trajectories...
Computing distances...
Computing angles...
Done!
deepof analysis of 109 videos
CPU times: user 25.8 s, sys: 2.06 s, total: 27.8 s
Wall time: 28.4 s
CPU times: user 33.6 s, sys: 2.48 s, total: 36.1 s
Wall time: 46.6 s
%% Cell type:markdown id: tags:
# Check tagging quality
%% Cell type:code id: tags:
``` python
all_quality = pd.concat([tab for tab in deepof_main.get_quality().values()]).droplevel("scorer", axis=1)
```
%% Cell type:code id: tags:
``` python
all_quality.boxplot(rot=45)
plt.ylim(0.99985, 1.00001)
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
@interact(quality_top=(0., 1., 0.01))
def low_quality_tags(quality_top):
pd.DataFrame(pd.melt(all_quality).groupby("bodyparts").value.apply(
lambda y: sum(y<quality_top) / len(y) * 100)
).sort_values(by="value", ascending=False).plot.bar(rot=45)
plt.xlabel("body part")
plt.ylabel("Tags with quality under {} (%)".format(quality_top))
plt.tight_layout()
plt.legend([])
plt.show()
```
%%%% Output: display_data
%% Cell type:markdown id: tags:
# Generate coords
%% Cell type:code id: tags:
``` python
%%time
deepof_coords = deepof_main.get_coords(center="Center", polar=False, speed=0, align="Spine_1")
```
%%%% Output: stream
CPU times: user 36.7 s, sys: 187 ms, total: 36.8 s
Wall time: 36.8 s
CPU times: user 2.92 s, sys: 250 ms, total: 3.17 s
Wall time: 3.19 s
%% Cell type:markdown id: tags:
# Visualization playground
# Visualization
%% Cell type:code id: tags:
``` python
heat = deepof_coords.plot_heatmaps(['Left_ear'], i=0, dpi=100)
heat = deepof_coords.plot_heatmaps(['Nose'], i=0, dpi=40)
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
%% Cell type:code id: tags:
# Dimensionality reduction playground
``` python
deepof_coords = deepof_main.get_coords(center="Center", polar=False, speed=0, align="Spine_1", align_inplace=True)
```
%% Cell type:code id: tags:
``` python
pca = deepof_coords.pca(2, 1000)
plt.scatter(pca[0][:,0],pca[0][:,1])
plt.show()
tuple(deepof_coords["Test 10_s2"]["Nose"].loc[0,:])
```
%%%% Output: display_data
![]()
%%%% Output: execute_result
%% Cell type:markdown id: tags:
# Preprocessing playground
(-2.735058755246037, 45.89004523470992)
%% Cell type:code id: tags:
``` python
mtest = merge_tables(
DLC_social_1_coords.get_coords(center="B_Center", polar=False, length='00:10:00', align='B_Nose')
#DLC_social_1_coords.get_distances(speed=0, length='00:10:00'),
#DLC_social_1_coords.get_angles(degrees=True, speed=0, length='00:10:00'),
)
```
# Draft: function to produce a video with the animal in motion using cv2
import cv2
%% Cell type:code id: tags:
w=400
h=400
factor=2.5
``` python
mtest2 = merge_tables(
DLC_social_2_coords.get_coords(center="B_Center", polar=False, length='00:10:00', align='B_Nose'),
#DLC_social_2_coords.get_distances(speed=0, length='00:10:00'),
#DLC_social_2_coords.get_angles(degrees=True, speed=0, length='00:10:00'),
)
```
# Instantiate video
writer = cv2.VideoWriter()
writer.open("test_video.avi", cv2.VideoWriter_fourcc(*"MJPG"),
24, (int(w*factor), int(h*factor)), True)
%% Cell type:code id: tags:
for frame in tqdm.tqdm(range(100)):
``` python
%%time
pttest = mtest.preprocess(window_size=13, window_step=10, filter=None, sigma=55,
shift=0, scale='standard', align='center', shuffle=True, test_videos=0)
print(pttest.shape)
#print(pttrain.shape)
image=np.zeros((h,w,3),np.uint8) + 30
for bpart in deepof_coords["Test 10_s2"].columns.levels[0]:
try:
pos = ( (- int(deepof_coords["Test 10_s2"][bpart].loc[frame, "x"]) + w//2),
(- int(deepof_coords["Test 10_s2"][bpart].loc[frame, "y"]) + h//2))
cv2.circle(image, pos, 2, (0,0,255), -1)
except KeyError:
continue
# draw skeleton
def draw_line(start, end):
for bpart in end:
cv2.line(image, tuple(- deepof_coords["Test 10_s2"][start].loc[frame,:].astype(int) + w//2),
tuple(- deepof_coords["Test 10_s2"][bpart].loc[frame,:].astype(int) + h//2), (0,0,255), 1)
draw_line("Nose", ["Left_ear", "Right_ear"])
draw_line("Spine_1", ["Left_ear", "Right_ear", "Left_fhip", "Right_fhip"])
draw_line("Spine_2", ["Spine_1", "Tail_base", "Left_bhip", "Right_bhip"])
draw_line("Tail_1", ["Tail_base", "Tail_2"])
draw_line("Tail_tip", ["Tail_2"])
image = cv2.resize(image, (0,0), fx = factor, fy = factor)
writer.write(image)
writer.release()
cv2.destroyAllWindows()
```
%%%% Output: display_data
%%%% Output: stream
%% Cell type:markdown id: tags:
# Preprocessing
%% Cell type:code id: tags:
``` python
%%time
pttest2 = mtest2.preprocess(window_size=13, window_step=1, filter=None, sigma=55,
shift=0, scale="standard", align='all', shuffle=False)
pttest2.shape
deepof_train, deepof_test = deepof_coords.preprocess(window_size=13, window_step=10, conv_filter=None, sigma=55,
shift=0, scale='standard', align='all', shuffle=True, test_videos=20)
print("Train dataset shape: ", deepof_train.shape)
print("Test dataset shape: ", deepof_test.shape)
```
%%%% Output: stream
Train dataset shape: (133517, 13, 26)
Test dataset shape: (30003, 13, 26)
CPU times: user 35.9 s, sys: 1.05 s, total: 36.9 s
Wall time: 37.3 s
%% Cell type:code id: tags:
``` python
n = 100
plt.scatter(pttest[:n,10,0], pttest[:n,10,1], label='Nose')
plt.scatter(pttest[:n,10,2], pttest[:n,10,3], label='Right ear')
plt.scatter(pttest[:n,10,4], pttest[:n,10,5], label='Right hips')
plt.scatter(pttest[:n,10,6], pttest[:n,10,7], label='Left ear')
plt.scatter(pttest[:n,10,8], pttest[:n,10,9], label='Left hips')
plt.scatter(pttest[:n,10,10], pttest[:n,10,11], label='Tail base')
plt.scatter(deepof_train[:n,10,0], deepof_train[:n,10,1], label='Nose')
plt.scatter(deepof_train[:n,10,2], deepof_train[:n,10,3], label='Right ear')
plt.scatter(deepof_train[:n,10,4], deepof_train[:n,10,5], label='Right hips')
plt.scatter(deepof_train[:n,10,6], deepof_train[:n,10,7], label='Left ear')
plt.scatter(deepof_train[:n,10,8], deepof_train[:n,10,9], label='Left hips')
plt.scatter(deepof_train[:n,10,10], deepof_train[:n,10,11], label='Tail base')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
# Trained models playground
# Build models and get learning rate (1-cycle policy)
%% Cell type:markdown id: tags:
### Seq 2 seq Variational Auto Encoder
%% Cell type:code id: tags:
``` python
from datetime import datetime
import tensorflow.keras as k
import tensorflow as tf
```
%% Cell type:code id: tags:
``` python
NAME = 'Baseline_AE_512_wu10_slide10_gauss_fullval'
log_dir = os.path.abspath(
"logs/fit/{}_{}".format(NAME, datetime.now().strftime("%Y%m%d-%H%M%S"))
)
tensorboard_callback = k.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
```
%% Cell type:code id: tags:
``` python
from source.models import SEQ_2_SEQ_AE, SEQ_2_SEQ_GMVAE
from deepof.models import SEQ_2_SEQ_AE, SEQ_2_SEQ_GMVAE
```
%% Cell type:code id: tags:
``` python
encoder, decoder, ae = SEQ_2_SEQ_AE(pttest.shape).build()
ae.build(pttest.shape)
encoder, decoder, ae = SEQ_2_SEQ_AE().build(deepof_train.shape)
```
%% Cell type:code id: tags:
``` python
ae.summary()
```
%%%% Output: stream
Model: "SEQ_2_SEQ_AE"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
SEQ_2_SEQ_Encoder (Sequentia (None, 16) 1787600
_________________________________________________________________
SEQ_2_SEQ_Decoder (Sequentia multiple 2685354
=================================================================
Total params: 4,430,762
Trainable params: 4,426,410
Non-trainable params: 4,352
_________________________________________________________________
%% Cell type:code id: tags:
``` python
%%time
tf.keras.backend.clear_session()
encoder, generator, grouper, gmvaep, kl_warmup_callback, mmd_warmup_callback = SEQ_2_SEQ_GMVAE(pttest.shape,
loss='ELBO',
encoder, generator, grouper, gmvaep, kl_warmup_callback, mmd_warmup_callback = SEQ_2_SEQ_GMVAE(loss='ELBO',
number_of_components=30,
kl_warmup_epochs=10,
mmd_warmup_epochs=10,
encoding=16,
predictor=False).build()
# gmvaep.build(pttest.shape)
```
%% Cell type:code id: tags:
``` python
import tensorflow as tf
from tensorflow import keras as keras
K = tf.keras.backend
class ExponentialLearningRate(tf.keras.callbacks.Callback):
def __init__(self, factor):
self.factor = factor
self.rates = []
self.losses = []
def on_batch_end(self, batch, logs):
self.rates.append(K.get_value(self.model.optimizer.lr))
self.losses.append(logs["loss"])
K.set_value(self.model.optimizer.lr, self.model.optimizer.lr * self.factor)
def find_learning_rate(model, X, y, epochs=1, batch_size=32, min_rate=10**-5, max_rate=10):
init_weights = model.get_weights()
iterations = len(X) // batch_size * epochs
factor = np.exp(np.log(max_rate / min_rate) / iterations)
init_lr = K.get_value(model.optimizer.lr)
K.set_value(model.optimizer.lr, min_rate)
exp_lr = ExponentialLearningRate(factor)
history = model.fit(X, y, epochs=epochs, batch_size=batch_size,
callbacks=[exp_lr])
K.set_value(model.optimizer.lr, init_lr)
model.set_weights(init_weights)
return exp_lr.rates, exp_lr.losses
def plot_lr_vs_loss(rates, losses):
plt.plot(rates, losses)
plt.gca().set_xscale('log')
plt.hlines(min(losses), min(rates), max(rates))
plt.axis([min(rates), max(rates), min(losses), (losses[0] + min(losses)) / 2])
plt.xlabel("Learning rate")
plt.ylabel("Loss")
predictor=False).build(deepof_train.shape)
```
%% Cell type:code id: tags:
%%%% Output: stream
``` python
class OneCycleScheduler(tf.keras.callbacks.Callback):
def __init__(self, iterations, max_rate, start_rate=None,
last_iterations=None, last_rate=None):
self.iterations = iterations
self.max_rate = max_rate
self.start_rate = start_rate or max_rate / 10
self.last_iterations = last_iterations or iterations // 10 + 1
self.half_iteration = (iterations - self.last_iterations) // 2
self.last_rate = last_rate or self.start_rate / 1000
self.iteration = 0
def _interpolate(self, iter1, iter2, rate1, rate2):
return ((rate2 - rate1) * (self.iteration - iter1)
/ (iter2 - iter1) + rate1)
def on_batch_begin(self, batch, logs):
if self.iteration < self.half_iteration:
rate = self._interpolate(0, self.half_iteration, self.start_rate, self.max_rate)
elif self.iteration < 2 * self.half_iteration:
rate = self._interpolate(self.half_iteration, 2 * self.half_iteration,
self.max_rate, self.start_rate)
else:
rate = self._interpolate(