From 442ed01be4ed015f4437621c2227dd542e0adff8 Mon Sep 17 00:00:00 2001 From: lucas_miranda <lucasmiranda42@gmail.com> Date: Fri, 5 Jun 2020 12:41:50 +0200 Subject: [PATCH] Implemented KL and MMD warmup on SEQ2SEQ_VAEP in models.py --- source/model_utils.py | 6 ++++-- source/models.py | 4 ++++ 2 files changed, 8 insertions(+), 2 deletions(-) diff --git a/source/model_utils.py b/source/model_utils.py index 0abc4431..75a31206 100644 --- a/source/model_utils.py +++ b/source/model_utils.py @@ -130,9 +130,10 @@ class KLDivergenceLayer(Layer): def call(self, inputs, **kwargs): mu, log_var = inputs - kL_batch = -0.5 * self.beta * K.sum(1 + log_var - K.square(mu) - K.exp(log_var), axis=-1) + KL_batch = -0.5 * self.beta * K.sum(1 + log_var - K.square(mu) - K.exp(log_var), axis=-1) - self.add_loss(K.mean(kL_batch), inputs=inputs) + self.add_loss(K.mean(KL_batch), inputs=inputs) + self.add_metric(KL_batch, aggregation="mean", name="kl_divergence") self.add_metric(self.beta, aggregation="mean", name="kl_rate") return inputs @@ -158,6 +159,7 @@ class MMDiscrepancyLayer(Layer): mmd_batch = self.beta * compute_mmd(true_samples, z) self.add_loss(K.mean(mmd_batch), inputs=z) + self.add_metric(mmd_batch, aggregation="mean", name="mmd") self.add_metric(self.beta, aggregation="mean", name="mmd_rate") return z diff --git a/source/models.py b/source/models.py index 24d50ee3..f978d651 100644 --- a/source/models.py +++ b/source/models.py @@ -277,6 +277,7 @@ class SEQ_2_SEQ_VAE: if "ELBO" in self.loss: kl_beta = K.variable(1.0, name="kl_beta") + kl_beta._trainable = False if self.kl_warmup: kl_warmup_callback = LambdaCallback( @@ -293,6 +294,7 @@ class SEQ_2_SEQ_VAE: if "MMD" in self.loss: mmd_beta = K.variable(1.0, name="mmd_beta") + mmd_beta._trainable = False if self.mmd_warmup: mmd_warmup_callback = LambdaCallback( @@ -480,6 +482,7 @@ class SEQ_2_SEQ_VAEP: if "ELBO" in self.loss: kl_beta = K.variable(1.0, name="kl_beta") + kl_beta._trainable = False if self.kl_warmup: kl_warmup_callback = LambdaCallback( on_epoch_begin=lambda epoch, logs: K.set_value( @@ -495,6 +498,7 @@ class SEQ_2_SEQ_VAEP: if "MMD" in self.loss: mmd_beta = K.variable(1.0, name="mmd_beta") + mmd_beta._trainable = False if self.mmd_warmup: mmd_warmup_callback = LambdaCallback( on_epoch_begin=lambda epoch, logs: K.set_value( -- GitLab