diff --git a/deepof/models.py b/deepof/models.py
index ef71032152c4d0bfec8dd9649358b46185cfc0e6..6ad1b509eccab3540fa92574423a460b538c7f1f 100644
--- a/deepof/models.py
+++ b/deepof/models.py
@@ -133,9 +133,9 @@ class GMVAE:
 
         defaults = {
             "bidirectional_merge": "concat",
-            "clipvalue": 1.0,
+            "clipvalue": 0.75,
             "dense_activation": "relu",
-            "dense_layers_per_branch": 3,
+            "dense_layers_per_branch": 1,
             "dropout_rate": 0.1,
             "learning_rate": 1e-4,
             "units_conv": 64,
diff --git a/deepof_experiments.smk b/deepof_experiments.smk
index 3d33234df686f41a1fc08d43b1ead9ee6f8fcfa1..e7c701c3e0905c219ea0f4afaecdd839740b56d1 100644
--- a/deepof_experiments.smk
+++ b/deepof_experiments.smk
@@ -19,11 +19,11 @@ warmup_epochs = [15]
 warmup_mode = ["sigmoid"]
 losses = ["ELBO"]  # , "MMD", "ELBO+MMD"]
 overlap_loss = [0.1, 0.2, 0.5, 0.75, 1.]
-encodings = [32]  # [2, 4, 6, 8, 10, 12, 14, 16]
+encodings = [16]  # [2, 4, 6, 8, 10, 12, 14, 16]
 cluster_numbers = [15]  # [1, 5, 10, 15, 20, 25]
 latent_reg = ["variance"]  # ["none", "categorical", "variance", "categorical+variance"]
 entropy_knn = [10]
-next_sequence_pred_weights = [0.15]
+next_sequence_pred_weights = [0.0]
 phenotype_pred_weights = [0.0]
 rule_based_pred_weights = [0.0]
 window_lengths = [22]  # range(11,56,11)
diff --git a/supplementary_notebooks/deepof_model_evaluation.ipynb b/supplementary_notebooks/deepof_model_evaluation.ipynb
index b0cbd17fea2e6e14234689b7d3f6525b41b731aa..84679e4e9bfa8f8eaa726285eb0a391eb72270ff 100644
--- a/supplementary_notebooks/deepof_model_evaluation.ipynb
+++ b/supplementary_notebooks/deepof_model_evaluation.ipynb
@@ -630,7 +630,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 26,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -647,7 +647,7 @@
     "    compile_model=True,\n",
     "    batch_size=batch_size,\n",
     "    encoding=encoding,\n",
-    "    next_sequence_prediction=NextSeqPred,\n",
+    "    next_sequence_prediction=0.1,\n",
     "    phenotype_prediction=PhenoPred,\n",
     "    rule_based_prediction=RuleBasedPred,\n",
     ").build(\n",
@@ -658,11 +658,101 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 27,
    "metadata": {
-    "scrolled": true
+    "scrolled": false
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Model: \"SEQ_2_SEQ_GMVAE\"\n",
+      "__________________________________________________________________________________________________\n",
+      "Layer (type)                    Output Shape         Param #     Connected to                     \n",
+      "==================================================================================================\n",
+      "input_15 (InputLayer)           [(None, 22, 26)]     0                                            \n",
+      "__________________________________________________________________________________________________\n",
+      "conv1d_24 (Conv1D)              (None, 11, 64)       8384        input_15[0][0]                   \n",
+      "__________________________________________________________________________________________________\n",
+      "batch_normalization_94 (BatchNo (None, 11, 64)       256         conv1d_24[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "bidirectional_48 (Bidirectional (None, 11, 256)      148992      batch_normalization_94[0][0]     \n",
+      "__________________________________________________________________________________________________\n",
+      "batch_normalization_95 (BatchNo (None, 11, 256)      1024        bidirectional_48[0][0]           \n",
+      "__________________________________________________________________________________________________\n",
+      "bidirectional_49 (Bidirectional (None, 128)          123648      batch_normalization_95[0][0]     \n",
+      "__________________________________________________________________________________________________\n",
+      "batch_normalization_96 (BatchNo (None, 128)          512         bidirectional_49[0][0]           \n",
+      "__________________________________________________________________________________________________\n",
+      "dense_88 (Dense)                (None, 64)           8256        batch_normalization_96[0][0]     \n",
+      "__________________________________________________________________________________________________\n",
+      "batch_normalization_97 (BatchNo (None, 64)           256         dense_88[0][0]                   \n",
+      "__________________________________________________________________________________________________\n",
+      "dropout_8 (Dropout)             (None, 64)           0           batch_normalization_97[0][0]     \n",
+      "__________________________________________________________________________________________________\n",
+      "sequential_14 (Sequential)      (None, 32)           2208        dropout_8[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "cluster_means (Dense)           (None, 90)           2970        sequential_14[0][0]              \n",
+      "__________________________________________________________________________________________________\n",
+      "cluster_variances (Dense)       (None, 90)           2970        sequential_14[0][0]              \n",
+      "__________________________________________________________________________________________________\n",
+      "concatenate_14 (Concatenate)    (None, 180)          0           cluster_means[0][0]              \n",
+      "                                                                 cluster_variances[0][0]          \n",
+      "__________________________________________________________________________________________________\n",
+      "cluster_assignment (Dense)      (None, 15)           495         sequential_14[0][0]              \n",
+      "__________________________________________________________________________________________________\n",
+      "reshape_8 (Reshape)             (None, 12, 15)       0           concatenate_14[0][0]             \n",
+      "__________________________________________________________________________________________________\n",
+      "encoding_distribution (Distribu multiple             0           cluster_assignment[0][0]         \n",
+      "                                                                 reshape_8[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "kl_divergence_layer_6 (KLDiverg multiple             181         encoding_distribution[0][0]      \n",
+      "__________________________________________________________________________________________________\n",
+      "latent_distribution (Lambda)    multiple             0           kl_divergence_layer_6[0][0]      \n",
+      "__________________________________________________________________________________________________\n",
+      "dense_97 (Dense)                (None, 32)           224         latent_distribution[0][0]        \n",
+      "__________________________________________________________________________________________________\n",
+      "batch_normalization_102 (BatchN (None, 32)           128         dense_97[0][0]                   \n",
+      "__________________________________________________________________________________________________\n",
+      "dense_92 (Dense)                (None, 64)           2112        batch_normalization_102[0][0]    \n",
+      "__________________________________________________________________________________________________\n",
+      "batch_normalization_103 (BatchN (None, 64)           256         dense_92[0][0]                   \n",
+      "__________________________________________________________________________________________________\n",
+      "repeat_vector_9 (RepeatVector)  (None, 22, 64)       0           batch_normalization_103[0][0]    \n",
+      "__________________________________________________________________________________________________\n",
+      "bidirectional_52 (Bidirectional (None, 22, 256)      148992      repeat_vector_9[0][0]            \n",
+      "__________________________________________________________________________________________________\n",
+      "batch_normalization_104 (BatchN (None, 22, 256)      1024        bidirectional_52[0][0]           \n",
+      "__________________________________________________________________________________________________\n",
+      "bidirectional_53 (Bidirectional (None, 22, 256)      296448      batch_normalization_104[0][0]    \n",
+      "__________________________________________________________________________________________________\n",
+      "batch_normalization_105 (BatchN (None, 22, 256)      1024        bidirectional_53[0][0]           \n",
+      "__________________________________________________________________________________________________\n",
+      "conv1d_26 (Conv1D)              (None, 22, 64)       81984       batch_normalization_105[0][0]    \n",
+      "__________________________________________________________________________________________________\n",
+      "dense_99 (Dense)                (None, 22, 26)       1690        conv1d_26[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "tf.math.softplus_7 (TFOpLambda) (None, 22, 26)       0           dense_99[0][0]                   \n",
+      "__________________________________________________________________________________________________\n",
+      "dense_98 (Dense)                (None, 22, 26)       1690        conv1d_26[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "lambda_7 (Lambda)               (None, 22, 26)       0           tf.math.softplus_7[0][0]         \n",
+      "__________________________________________________________________________________________________\n",
+      "concatenate_16 (Concatenate)    (None, 22, 52)       0           dense_98[0][0]                   \n",
+      "                                                                 lambda_7[0][0]                   \n",
+      "__________________________________________________________________________________________________\n",
+      "vae_reconstruction (Functional) multiple             337940      latent_distribution[0][0]        \n",
+      "__________________________________________________________________________________________________\n",
+      "vae_prediction (IndependentNorm multiple             0           concatenate_16[0][0]             \n",
+      "==================================================================================================\n",
+      "Total params: 1,173,664\n",
+      "Trainable params: 1,170,271\n",
+      "Non-trainable params: 3,393\n",
+      "__________________________________________________________________________________________________\n"
+     ]
+    }
+   ],
    "source": [
     "# Uncomment to see model summaries\n",
     "# encoder.summary()\n",