train_utils.py 17 KB
Newer Older
1
2
3
4
5
6
7
8
9
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""
10
from datetime import date, datetime
11

12
from kerastuner import BayesianOptimization, Hyperband
13
from kerastuner import HyperParameters
14
from kerastuner_tensorboard_logger import TensorBoardLogger
15
from tensorboard.plugins.hparams import api as hp
16
from typing import Tuple, Union, Any, List
17
18
19
20
21
22
23
import deepof.hypermodels
import deepof.model_utils
import numpy as np
import os
import pickle
import tensorflow as tf

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class CustomStopper(tf.keras.callbacks.EarlyStopping):
    """ Custom callback for """

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


43
def load_hparams(hparams):
44
45
46
47
48
49
50
51
    """Loads hyperparameters from a custom dictionary pickled on disc.
    Thought to be used with the output of hyperparameter_tuning.py"""

    if hparams is not None:
        with open(hparams, "rb") as handle:
            hparams = pickle.load(handle)
    else:
        hparams = {
52
53
54
55
56
            "bidirectional_merge": "ave",
            "clipvalue": 1.0,
            "dense_activation": "relu",
            "dense_layers_per_branch": 1,
            "dropout_rate": 1e-3,
57
            "learning_rate": 1e-3,
58
59
60
            "units_conv": 160,
            "units_dense2": 120,
            "units_lstm": 300,
61
62
63
64
65
66
67
68
69
70
71
        }
    return hparams


def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
            os.path.join(
                train_path,
72
                [i for i in os.listdir(train_path) if i.endswith(".pkl")][0],
73
74
75
76
77
78
79
80
81
82
83
            ),
            "rb",
        ) as handle:
            treatment_dict = pickle.load(handle)
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
lucas_miranda's avatar
lucas_miranda committed
84
85
86
87
    X_train: np.array,
    batch_size: int,
    cp: bool,
    variational: bool,
88
    phenotype_class: float,
lucas_miranda's avatar
lucas_miranda committed
89
90
    predictor: float,
    loss: str,
91
    logparam: dict = None,
92
    outpath: str = ".",
93
) -> List[Union[Any]]:
94
    """Generates callbacks for model training, including:
95
96
97
98
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
99

100
    run_ID = "{}{}{}{}{}{}_{}".format(
101
        ("GMVAE" if variational else "AE"),
102
103
        ("Pred={}".format(predictor) if predictor > 0 and variational else ""),
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
104
        ("_loss={}".format(loss) if variational else ""),
105
106
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
107
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
108
109
    )

110
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
111
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
112
113
114
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
115
116
117
    )

    onecycle = deepof.model_utils.one_cycle_scheduler(
118
119
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
120
121
    )

122
123
124
125
    callbacks = [run_ID, tensorboard_callback, onecycle]

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
126
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
127
128
129
130
131
132
133
134
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
135
136


137
138
139
140
141
142
143
144
145
146
def deep_unsupervised_embedding(
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
    batch_size: int = 256,
    encoding_size: int = 4,
    hparams: dict = None,
    kl_warmup: int = 0,
    loss: str = "ELBO",
    mmd_warmup: int = 0,
    montecarlo_kl: int = 10,
    n_components: int = 25,
147
    output_path: str = ".",
148
149
150
151
152
153
    phenotype_class: float = 0,
    predictor: float = 0,
    pretrained: str = False,
    save_checkpoints: bool = True,
    variational: bool = True,
):
154
155
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

156
    # Load data
157
158
159
160
161
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

162
    # Defines what to log on tensorboard (useful for trying out different models)
163
164
    logparam = {
        "encoding": encoding_size,
165
        "k": n_components,
166
167
168
169
170
        "loss": loss,
    }
    if phenotype_class:
        logparam["pheno_weight"] = phenotype_class

171
    # Load callbacks
172
173
174
175
176
    run_ID, tensorboard_callback, onecycle, cp_callback = get_callbacks(
        X_train=X_train,
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
177
        phenotype_class=phenotype_class,
178
179
180
181
182
183
        predictor=predictor,
        loss=loss,
        logparam=logparam,
        outpath=output_path,
    )

184
    # Logs hyperparameters to tensorboard
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=15),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    rec = "reconstruction_" if phenotype_class else ""
    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    with tf.summary.create_file_writer(
232
        os.path.join(output_path, "hparams", run_ID)
233
234
235
236
237
238
    ).as_default():
        hp.hparams_config(
            hparams=logparams,
            metrics=metrics,
        )

239
    # Build models
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
        (
            encoder,
            generator,
            grouper,
            ae,
            kl_warmup_callback,
            mmd_warmup_callback,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            phenotype_prediction=phenotype_class,
            predictor=predictor,
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
274
        # If pretrained models are specified, load weights and return
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
                epochs=35,
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
                callbacks=[
                    tensorboard_callback,
                    cp_callback,
                    onecycle,
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
296
                        start_epoch=max(kl_warmup, mmd_warmup),
297
298
299
300
301
302
                    ),
                ],
            )

        else:

303
304
            callbacks_ = [
                tensorboard_callback,
305
                cp_callback,
306
307
308
309
310
                onecycle,
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
311
                    start_epoch=max(kl_warmup, mmd_warmup),
312
313
314
                ),
            ]

315
            if "ELBO" in loss and kl_warmup > 0:
316
317
                # noinspection PyUnboundLocalVariable
                callbacks_.append(kl_warmup_callback)
318
            if "MMD" in loss and mmd_warmup > 0:
319
320
321
                # noinspection PyUnboundLocalVariable
                callbacks_.append(mmd_warmup_callback)

322
323
324
325
326
327
328
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

            if predictor > 0.0:
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

329
            if phenotype_class > 0.0:
330
331
332
                ys += [y_train]
                yvals += [y_val]

333
            ae.fit(
334
335
336
337
338
339
340
341
342
343
344
345
                x=Xs,
                y=ys,
                epochs=35,
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
            # noinspection PyUnboundLocalVariable
            def tensorboard_metric_logging(run_dir: str, hpms: Any):
                output = gmvaep.predict(X_val)
                if phenotype_class or predictor:
                    reconstruction = output[0]
                    prediction = output[1]
                    pheno = output[-1]
                else:
                    reconstruction = output

                with tf.summary.create_file_writer(run_dir).as_default():
                    hp.hparams(hpms)  # record the values used in this trial
                    val_mae = tf.reduce_mean(
                        tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
                    )
                    val_mse = tf.reduce_mean(
                        tf.keras.metrics.mean_squared_error(X_val, reconstruction)
                    )
                    tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
                    tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

                    if predictor:
                        pred_mae = tf.reduce_mean(
                            tf.keras.metrics.mean_absolute_error(X_val, prediction)
                        )
                        pred_mse = tf.reduce_mean(
                            tf.keras.metrics.mean_squared_error(X_val, prediction)
                        )
                        tf.summary.scalar(
                            "val_prediction_mae".format(rec), pred_mae, step=1
                        )
                        tf.summary.scalar(
                            "val_prediction_mse".format(rec), pred_mse, step=1
                        )

                    if phenotype_class:
                        pheno_acc = tf.keras.metrics.binary_accuracy(
                            y_val, tf.squeeze(pheno)
                        )
                        pheno_auc = roc_auc_score(y_val, pheno)

                        tf.summary.scalar(
                            "phenotype_prediction_accuracy", pheno_acc, step=1
                        )
                        tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)

            # Logparams to tensorboard
            tensorboard_metric_logging(
                os.path.join(output_path, "hparams", run_ID),
                logparam,
            )

398
399
400
    return return_list


401
def tune_search(
402
    data: List[np.array],
403
    encoding_size: int,
404
405
    hypertun_trials: int,
    hpt_type: str,
406
407
    hypermodel: str,
    k: int,
408
    kl_warmup_epochs: int,
409
    loss: str,
410
    mmd_warmup_epochs: int,
411
    overlap_loss: float,
412
    phenotype_class: float,
413
414
    predictor: float,
    project_name: str,
415
    callbacks: List,
416
    n_epochs: int = 30,
417
    n_replicas: int = 1,
418
) -> Union[bool, Tuple[Any, Any]]:
419
420
    """Define the search space using keras-tuner and bayesian optimization

421
422
423
424
425
426
427
428
429
430
431
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
432
        - phenotype_class (float): adds an extra regularizing neural network to the model,
433
434
435
436
437
438
439
440
441
442
443
444
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
445
446
447

    """

448
449
    X_train, y_train, X_val, y_val = data

450
451
452
453
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
454
    if hypermodel == "S2SAE":  # pragma: no cover
455
        assert (
456
            predictor == 0.0 and phenotype_class == 0.0
457
        ), "Prediction branches are only available for variational models. See documentation for more details"
458
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
459
460
461

    elif hypermodel == "S2SGMVAE":
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
462
            input_shape=X_train.shape,
463
            encoding=encoding_size,
464
            kl_warmup_epochs=kl_warmup_epochs,
465
            loss=loss,
466
            mmd_warmup_epochs=mmd_warmup_epochs,
467
            number_of_components=k,
468
            overlap_loss=overlap_loss,
469
            phenotype_predictor=phenotype_class,
470
            predictor=predictor,
471
        )
lucas_miranda's avatar
lucas_miranda committed
472

473
474
475
    else:
        return False

476
477
478
479
480
481
482
483
484
485
486
487
488
489
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
        "logger": TensorBoardLogger(metrics=["val_mae"], logdir="./logs/hparams"),
        "objective": "val_mae",
        "project_name": project_name,
        "seed": 42,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
            directory="HyperBandx_{}_{}".format(loss, str(date.today())),
            max_epochs=hypertun_trials,
490
            hyperband_iterations=3,
lucas_miranda's avatar
lucas_miranda committed
491
            factor=2,
492
493
494
495
496
497
498
499
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
            directory="BayOpt_{}_{}".format(loss, str(date.today())),
            max_trials=hypertun_trials,
            **hpt_params
        )
500
501
502

    print(tuner.search_space_summary())

503
504
505
506
507
508
509
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

510
    if phenotype_class > 0.0:
511
512
513
        ys += [y_train]
        yvals += [y_val]

514
    tuner.search(
515
516
        Xs,
        ys,
517
        epochs=n_epochs,
518
        validation_data=(Xvals, yvals),
519
520
        verbose=1,
        batch_size=256,
lucas_miranda's avatar
lucas_miranda committed
521
        callbacks=callbacks,
522
523
524
525
526
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
527
528
    print(tuner.results_summary())

529
    return best_hparams, best_run