utils.py 44.6 KB
Newer Older
lucas_miranda's avatar
lucas_miranda committed
1
# @author lucasmiranda42
2
3
4
5

import cv2
import matplotlib.pyplot as plt
import multiprocessing
6
import networkx as nx
7
import numpy as np
lucas_miranda's avatar
lucas_miranda committed
8
import os
9
import pandas as pd
10
import regex as re
11
import seaborn as sns
12
from copy import deepcopy
13
from itertools import combinations, product
14
15
from joblib import Parallel, delayed
from scipy import spatial
16
from scipy import stats
17
from sklearn import mixture
18
from tqdm import tqdm
lucas_miranda's avatar
lucas_miranda committed
19
from typing import Tuple, Any, List, Union, NewType
20
21
22
23

# DEFINE CUSTOM ANNOTATED TYPES #


24
Coordinates = NewType("Coordinates", Any)
25
26


27
# QUALITY CONTROL AND PREPROCESSING #
28

29

lucas_miranda's avatar
lucas_miranda committed
30
31
32
33
34
35
36
37
38
39
def likelihood_qc(dframe: pd.DataFrame, threshold: float = 0.9) -> np.array:
    """Returns a DataFrame filtered dataframe, keeping only the rows entirely above the threshold.

        Parameters:
            - dframe (pandas.DataFrame): DeepLabCut output, with positions over time and associated likelihhod
            - threshold (float): minimum acceptable confidence

        Returns:
            - filt_mask (np.array): mask on the rows of dframe"""

40
41
    Likes = np.array([dframe[i]["likelihood"] for i in list(dframe.columns.levels[0])])
    Likes = np.nan_to_num(Likes, nan=1.0)
lucas_miranda's avatar
lucas_miranda committed
42
43
44
    filt_mask = np.all(Likes > threshold, axis=0)

    return filt_mask
45
46


47
48
49
50
51
52
53
54
55
def bp2polar(tab: pd.DataFrame) -> pd.DataFrame:
    """Returns the DataFrame in polar coordinates.

        Parameters:
            - tab (pandas.DataFrame):Table with cartesian coordinates

        Returns:
            - polar (pandas.DataFrame): Equivalent to input, but with values in polar coordinates"""

56
57
58
59
60
61
62
    tab_ = np.array(tab)
    complex_ = tab_[:, 0] + 1j * tab_[:, 1]
    polar = pd.DataFrame(np.array([abs(complex_), np.angle(complex_)]).T)
    polar.rename(columns={0: "rho", 1: "phi"}, inplace=True)
    return polar


63
64
65
66
67
68
69
70
71
def tab2polar(cartesian_df: pd.DataFrame) -> pd.DataFrame:
    """Returns a pandas.DataFrame in which all the coordinates are polar.

        Parameters:
            - cartesian_df (pandas.DataFrame):DataFrame containing tables with cartesian coordinates

        Returns:
            - result (pandas.DataFrame): Equivalent to input, but with values in polar coordinates"""

72
    result = []
73
74
    for df in list(cartesian_df.columns.levels[0]):
        result.append(bp2polar(cartesian_df[df]))
75
76
    result = pd.concat(result, axis=1)
    idx = pd.MultiIndex.from_product(
77
78
        [list(cartesian_df.columns.levels[0]), ["rho", "phi"]],
        names=["bodyparts", "coords"],
79
80
81
82
83
    )
    result.columns = idx
    return result


84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def compute_dist(
    pair_array: np.array, arena_abs: int = 1, arena_rel: int = 1
) -> pd.DataFrame:
    """Returns a pandas.DataFrame with the scaled distances between a pair of body parts.

        Parameters:
            - pair_array (numpy.array): np.array of shape N * 4 containing X,y positions
            over time for a given pair of body parts
            - arena_abs (int): diameter of the real arena in cm
            - arena_rel (int): diameter of the captured arena in pixels

        Returns:
            - result (pd.DataFrame): pandas.DataFrame with the
            absolute distances between a pair of body parts"""

lucas_miranda's avatar
lucas_miranda committed
99
100
    lim = 2 if pair_array.shape[1] == 4 else 1
    a, b = pair_array[:, :lim], pair_array[:, lim:]
101
    ab = a - b
lucas_miranda's avatar
lucas_miranda committed
102

103
    dist = np.sqrt(np.einsum("...i,...i", ab, ab))
104
105
106
    return pd.DataFrame(dist * arena_abs / arena_rel)


107
108
109
110
111
112
113
114
115
116
def bpart_distance(
    dataframe: pd.DataFrame, arena_abs: int = 1, arena_rel: int = 1
) -> pd.DataFrame:
    """Returns a pandas.DataFrame with the scaled distances between all pairs of body parts.

        Parameters:
            - dataframe (pandas.DataFrame): pd.DataFrame of shape N*(2*bp) containing X,y positions
        over time for a given set of bp body parts
            - arena_abs (int): diameter of the real arena in cm
            - arena_rel (int): diameter of the captured arena in pixels
117

118
119
120
121
122
        Returns:
            - result (pd.DataFrame): pandas.DataFrame with the
            absolute distances between all pairs of body parts"""

    indexes = combinations(dataframe.columns.levels[0], 2)
123
124
125
126
127
128
129
    dists = []
    for idx in indexes:
        dist = compute_dist(np.array(dataframe.loc[:, list(idx)]), arena_abs, arena_rel)
        dist.columns = [idx]
        dists.append(dist)

    return pd.concat(dists, axis=1)
130
131


132
133
134
135
136
137
138
def angle(a: np.array, b: np.array, c: np.array) -> np.array:
    """Returns a numpy.array with the angles between the provided instances.

        Parameters:
            - a (2D np.array): positions over time for a bodypart
            - b (2D np.array): positions over time for a bodypart
            - c (2D np.array): positions over time for a bodypart
lucas_miranda's avatar
lucas_miranda committed
139

140
141
142
        Returns:
            - ang (1D np.array): angles between the three-point-instances"""

lucas_miranda's avatar
lucas_miranda committed
143
144
145
    ba = a - b
    bc = c - b

146
    cosine_angle = np.einsum("...i,...i", ba, bc) / (
lucas_miranda's avatar
lucas_miranda committed
147
148
        np.linalg.norm(ba, axis=1) * np.linalg.norm(bc, axis=1)
    )
149
150
151
152
153
154
155
    ang = np.arccos(cosine_angle)

    return ang


def angle_trio(bpart_array: np.array) -> np.array:
    """Returns a numpy.array with all three possible angles between the provided instances.
lucas_miranda's avatar
lucas_miranda committed
156

157
158
        Parameters:
            - bpart_array (2D numpy.array): positions over time for a bodypart
lucas_miranda's avatar
lucas_miranda committed
159

160
161
        Returns:
            - ang_trio (2D numpy.array): all-three angles between the three-point-instances"""
lucas_miranda's avatar
lucas_miranda committed
162

163
164
    a, b, c = bpart_array
    ang_trio = np.array([angle(a, b, c), angle(a, c, b), angle(b, a, c)])
lucas_miranda's avatar
lucas_miranda committed
165

166
    return ang_trio
lucas_miranda's avatar
lucas_miranda committed
167
168


169
170
171
172
def rotate(
    p: np.array, angles: np.array, origin: np.array = np.array([0, 0])
) -> np.array:
    """Returns a numpy.array with the initial values rotated by angles radians
lucas_miranda's avatar
lucas_miranda committed
173

174
175
176
177
178
179
180
        Parameters:
            - p (2D numpy.array): array containing positions of bodyparts over time
            - angles (2D numpy.array): set of angles (in radians) to rotate p with
            - origin (2D numpy.array): rotation axis (zero vector by default)

        Returns:
            - rotated (2D numpy.array): rotated positions over time"""
lucas_miranda's avatar
lucas_miranda committed
181

182
183
184
185
186
    R = np.array([[np.cos(angles), -np.sin(angles)], [np.sin(angles), np.cos(angles)]])

    o = np.atleast_2d(origin)
    p = np.atleast_2d(p)

187
188
189
190
    rotated = np.squeeze((R @ (p.T - o.T) + o.T).T)

    return rotated

191

192
193
194
def align_trajectories(data: np.array, mode: str = "all") -> np.array:
    """Returns a numpy.array with the positions rotated in a way that the center (0 vector)
    and the body part in the first column of data are aligned with the y axis.
195

196
197
198
199
200
        Parameters:
            - data (3D numpy.array): array containing positions of body parts over time, where
            shape is N (sliding window instances) * m (sliding window size) * l (features)
            - mode (string): specifies if *all* instances of each sliding window get
            aligned, or only the *center*
201

202
203
        Returns:
            - aligned_trajs (2D np.array): aligned positions over time"""
204

lucas_miranda's avatar
lucas_miranda committed
205
206
    print(data.shape, mode)

207
    angles = np.zeros(data.shape[0])
208
    data = deepcopy(data)
209
    dshape = data.shape
210

211
212
213
214
    if mode == "center":
        center_time = (data.shape[1] - 1) // 2
        angles = np.arctan2(data[:, center_time, 0], data[:, center_time, 1])
    elif mode == "all":
lucas_miranda's avatar
lucas_miranda committed
215
        data = data.reshape(-1, dshape[-1], order="C")
216
        angles = np.arctan2(data[:, 0], data[:, 1])
lucas_miranda's avatar
lucas_miranda committed
217
218
219
    elif mode == "none":
        data = data.reshape(-1, dshape[-1], order="C")
        angles = np.zeros(data.shape[0])
220
221
222
223
224

    aligned_trajs = np.zeros(data.shape)

    for frame in range(data.shape[0]):
        aligned_trajs[frame] = rotate(
lucas_miranda's avatar
lucas_miranda committed
225
226
            data[frame].reshape([-1, 2], order="C"), angles[frame],
        ).reshape(data.shape[1:], order="C")
227

lucas_miranda's avatar
lucas_miranda committed
228
229
    if mode == "all" or mode == "none":
        aligned_trajs = aligned_trajs.reshape(dshape, order="C")
230

231
232
233
    return aligned_trajs


234
235
236
237
238
239
240
241
242
def smooth_boolean_array(a: np.array) -> np.array:
    """Returns a boolean array in which isolated appearances of a feature are smoothened

        Parameters:
            - a (1D numpy.array): boolean instances

        Returns:
            - a (1D numpy.array): smoothened boolean instances"""

243
244
245
246
247
248
    for i in range(1, len(a) - 1):
        if a[i - 1] == a[i + 1]:
            a[i] = a[i - 1]
    return a == 1


249
250
251
def rolling_window(a: np.array, window_size: int, window_step: int) -> np.array:
    """Returns a 3D numpy.array with a sliding-window extra dimension

252
253
        Parameters:
            - a (2D np.array): N (instances) * m (features) shape
254

255
256
257
        Returns:
            - rolled_a (3D np.array):
            N (sliding window instances) * l (sliding window size) * m (features)"""
258

259
260
    shape = (a.shape[0] - window_size + 1, window_size) + a.shape[1:]
    strides = (a.strides[0],) + a.strides
261
262
    rolled_a = np.lib.stride_tricks.as_strided(
        a, shape=shape, strides=strides, writeable=True
263
    )[::window_step]
264
    return rolled_a
265

266

267
268
269
def smooth_mult_trajectory(series: np.array, alpha: float = 0.15) -> np.array:
    """Returns a smooths a trajectory using exponentially weighted averages

270
271
        Parameters:
            - series (numpy.array): 1D trajectory array with N (instances) - alpha (float): 0 <= alpha <= 1;
272
273
            indicates the inverse weight assigned to previous observations. Higher (alpha~1) indicates less smoothing;
            lower indicates more (alpha~0)
274
275
276

        Returns:
            - smoothed_series (np.array): smoothed version of the input, with equal shape"""
277
278
279
280
281

    result = [series[0]]
    for n in range(len(series)):
        result.append(alpha * series[n] + (1 - alpha) * result[n - 1])

282
283
284
    smoothed_series = np.array(result)

    return smoothed_series
285

lucas_miranda's avatar
lucas_miranda committed
286
287

# BEHAVIOUR RECOGNITION FUNCTIONS #
288
289


290
def close_single_contact(
291
292
293
294
295
296
    pos_dframe: pd.DataFrame,
    left: str,
    right: str,
    tol: float,
    arena_abs: int,
    arena_rel: int,
297
298
) -> np.array:
    """Returns a boolean array that's True if the specified body parts are closer than tol.
299

300
301
302
303
304
        Parameters:
            - pos_dframe (pandas.DataFrame): DLC output as pandas.DataFrame; only applicable
            to two-animal experiments.
            - left (string): First member of the potential contact
            - right (string): Second member of the potential contact
305
306
307
            - tol (float): maximum distance for which a contact is reported
            - arena_abs (int): length in mm of the diameter of the real arena
            - arena_rel (int): length in pixels of the diameter of the arena in the video
308

309
310
311
        Returns:
            - contact_array (np.array): True if the distance between the two specified points
            is less than tol, False otherwise"""
312

313
314
315
    close_contact = (
        np.linalg.norm(pos_dframe[left] - pos_dframe[right], axis=1) * arena_abs
    ) / arena_rel < tol
316

317
    return close_contact
318
319


320
321
322
323
324
325
326
def close_double_contact(
    pos_dframe: pd.DataFrame,
    left1: str,
    left2: str,
    right1: str,
    right2: str,
    tol: float,
327
328
    arena_abs: int,
    arena_rel: int,
329
330
331
332
333
334
335
336
337
338
339
    rev: bool = False,
) -> np.array:
    """Returns a boolean array that's True if the specified body parts are closer than tol.

        Parameters:
            - pos_dframe (pandas.DataFrame): DLC output as pandas.DataFrame; only applicable
            to two-animal experiments.
            - left1 (string): First contact point of animal 1
            - left2 (string): Second contact point of animal 1
            - right1 (string): First contact point of animal 2
            - right2 (string): Second contact point of animal 2
340
341
342
343
            - tol (float): maximum distance for which a contact is reported
            - arena_abs (int): length in mm of the diameter of the real arena
            - arena_rel (int): length in pixels of the diameter of the arena in the video
            - rev (bool): reverses the default behaviour (nose2tail contact for both mice)
344
345
346
347
348
349
350

        Returns:
            - double_contact (np.array): True if the distance between the two specified points
            is less than tol, False otherwise"""

    if rev:
        double_contact = (
351
352
353
354
355
356
357
358
            (np.linalg.norm(pos_dframe[right1] - pos_dframe[left2], axis=1) * arena_abs)
            / arena_rel
            < tol
        ) & (
            (np.linalg.norm(pos_dframe[right2] - pos_dframe[left1], axis=1) * arena_abs)
            / arena_rel
            < tol
        )
359
360
361

    else:
        double_contact = (
362
363
364
365
366
367
368
369
            (np.linalg.norm(pos_dframe[right1] - pos_dframe[left1], axis=1) * arena_abs)
            / arena_rel
            < tol
        ) & (
            (np.linalg.norm(pos_dframe[right2] - pos_dframe[left2], axis=1) * arena_abs)
            / arena_rel
            < tol
        )
370
371

    return double_contact
372
373
374


def recognize_arena(
lucas_miranda's avatar
lucas_miranda committed
375
376
377
378
379
    videos: list,
    vid_index: int,
    path: str = ".",
    recoglimit: int = 1,
    arena_type: str = "circular",
380
) -> Tuple[np.array, int, int]:
lucas_miranda's avatar
lucas_miranda committed
381
382
383
    """Returns numpy.array with information about the arena recognised from the first frames
    of the video. WARNING: estimates won't be reliable if the camera moves along the video.

384
385
386
387
388
389
        Parameters:
            - videos (list): relative paths of the videos to analise
            - vid_index (int): element of videos to use
            - path (string): full path of the directory where the videos are
            - recoglimit (int): number of frames to use for position estimates
            - arena_type (string): arena type; must be one of ['circular']
lucas_miranda's avatar
lucas_miranda committed
390

391
392
        Returns:
            - arena (np.array): 1D-array containing information about the arena.
393
394
395
            "circular" (3-element-array) -> x-y position of the center and the radius
            - h (int): height of the video in pixels
            - w (int): width of the video in pixels"""
lucas_miranda's avatar
lucas_miranda committed
396
397

    cap = cv2.VideoCapture(os.path.join(path, videos[vid_index]))
398
399

    # Loop over the first frames in the video to get resolution and center of the arena
lucas_miranda's avatar
lucas_miranda committed
400
    arena, fnum, h, w = False, 0, None, None
401
402
403
404
405
406
407
408
409
410
411
412

    while cap.isOpened() and fnum < recoglimit:
        ret, frame = cap.read()
        # if frame is read correctly ret is True
        if not ret:
            print("Can't receive frame (stream end?). Exiting ...")
            break

        if arena_type == "circular":

            # Detect arena and extract positions
            arena = circular_arena_recognition(frame)[0]
413
            if h is None and w is None:
414
415
416
417
                h, w = frame.shape[0], frame.shape[1]

        fnum += 1

418
419
420
    cap.release()
    cv2.destroyAllWindows()

421
    return arena, h, w
422
423


424
425
def circular_arena_recognition(frame: np.array) -> np.array:
    """Returns x,y position of the center and the radius of the recognised arena
lucas_miranda's avatar
lucas_miranda committed
426

427
        Parameters:
428
            - frame (np.array): numpy.array representing an individual frame of a video
429

430
431
432
        Returns:
            - circles (np.array): 3-element-array containing x,y positions of the center
            of the arena, and a third value indicating the radius"""
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

    # Convert image to greyscale, threshold it, blur it and detect the biggest best fitting circle
    # using the Hough algorithm
    gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(gray_image, 50, 255, 0)
    frame = cv2.medianBlur(thresh, 9)
    circle = cv2.HoughCircles(
        frame,
        cv2.HOUGH_GRADIENT,
        1,
        300,
        param1=50,
        param2=10,
        minRadius=0,
        maxRadius=0,
    )

    circles = []

    if circle is not None:
        circle = np.uint16(np.around(circle[0]))
        circles.append(circle)

    return circles[0]


459
460
461
462
def climb_wall(
    arena_type: str, arena: np.array, pos_dict: pd.DataFrame, tol: float, nose: str
) -> np.array:
    """Returns True if the specified mouse is climbing the wall
lucas_miranda's avatar
lucas_miranda committed
463

464
465
466
467
468
469
470
471
472
473
474
475
476
        Parameters:
            - arena_type (str): arena type; must be one of ['circular']
            - arena (np.array): contains arena location and shape details
            - pos_dict (table_dict): position over time for all videos in a project
            - tol (float): minimum tolerance to report a hit
            - nose (str): indicates the name of the body part representing the nose of
            the selected animal

        Returns:
            - climbing (np.array): boolean array. True if selected animal
            is climbing the walls of the arena"""

    nose = pos_dict[nose]
477

478
479
480
481
482
483
    if arena_type == "circular":
        center = np.array(arena[:2])
        climbing = np.linalg.norm(nose - center, axis=1) > (arena[2] + tol)

    else:
        raise NotImplementedError("Supported values for arena_type are ['circular']")
484

485
    return climbing
486
487


lucas_miranda's avatar
lucas_miranda committed
488
def rolling_speed(
lucas_miranda's avatar
lucas_miranda committed
489
490
491
492
493
494
    dframe: pd.DatetimeIndex,
    window: int = 5,
    rounds: int = 10,
    deriv: int = 1,
    center: str = None,
    typ: str = "coords",
lucas_miranda's avatar
lucas_miranda committed
495
496
) -> pd.DataFrame:
    """Returns the average speed over n frames in pixels per frame
lucas_miranda's avatar
lucas_miranda committed
497

lucas_miranda's avatar
lucas_miranda committed
498
499
500
501
502
503
        Parameters:
            - dframe (pandas.DataFrame): position over time dataframe
            - pause (int):  frame-length of the averaging window
            - rounds (int): float rounding decimals
            - deriv (int): position derivative order; 1 for speed,
            2 for acceleration, 3 for jerk, etc
lucas_miranda's avatar
lucas_miranda committed
504
505
506
            - center (str): for internal usage only; solves an issue
            with pandas.MultiIndex that arises when centering frames
            to a specific body part
lucas_miranda's avatar
lucas_miranda committed
507

lucas_miranda's avatar
lucas_miranda committed
508
509
510
511
512
        Returns:
            - speeds (pd.DataFrame): containing 2D speeds for each body part
            in the original data or their consequent derivatives"""

    original_shape = dframe.shape
lucas_miranda's avatar
lucas_miranda committed
513
514
515
516
517
518
519
520
    if center:
        body_parts = [bp for bp in dframe.columns.levels[0] if bp != center]
    else:
        try:
            body_parts = dframe.columns.levels[0]
        except AttributeError:
            body_parts = dframe.columns

lucas_miranda's avatar
lucas_miranda committed
521
522
523
    speeds = pd.DataFrame

    for der in range(deriv):
lucas_miranda's avatar
lucas_miranda committed
524
525
526

        features = 2 if der == 0 and typ == "coords" else 1

lucas_miranda's avatar
lucas_miranda committed
527
528
        distances = np.concatenate(
            [
lucas_miranda's avatar
lucas_miranda committed
529
530
                np.array(dframe).reshape([-1, features], order="F"),
                np.array(dframe.shift()).reshape([-1, features], order="F"),
lucas_miranda's avatar
lucas_miranda committed
531
532
533
            ],
            axis=1,
        )
lucas_miranda's avatar
lucas_miranda committed
534

lucas_miranda's avatar
lucas_miranda committed
535
536
        distances = np.array(compute_dist(distances))
        distances = distances.reshape(
lucas_miranda's avatar
lucas_miranda committed
537
538
539
540
541
            [
                original_shape[0],
                (original_shape[1] // 2 if typ == "coords" else original_shape[1]),
            ],
            order="F",
lucas_miranda's avatar
lucas_miranda committed
542
543
544
545
        )
        distances = pd.DataFrame(distances, index=dframe.index)
        speeds = np.round(distances.rolling(window).mean(), rounds)
        speeds[np.isnan(speeds)] = 0.0
lucas_miranda's avatar
lucas_miranda committed
546

lucas_miranda's avatar
lucas_miranda committed
547
        dframe = speeds
lucas_miranda's avatar
lucas_miranda committed
548

lucas_miranda's avatar
lucas_miranda committed
549
    speeds.columns = body_parts
550
551
552
553

    return speeds


554
def huddle(
555
556
557
558
559
560
    pos_dframe: pd.DataFrame,
    speed_dframe: pd.DataFrame,
    tol_forward: float,
    tol_spine: float,
    tol_speed: float,
    animal_id: str = "",
561
) -> np.array:
lucas_miranda's avatar
lucas_miranda committed
562
563
    """Returns true when the mouse is huddling using simple rules. (!!!) Designed to
    work with deepof's default DLC mice models; not guaranteed to work otherwise.
564

lucas_miranda's avatar
lucas_miranda committed
565
        Parameters:
566
567
            - pos_dframe (pandas.DataFrame): position of body parts over time
            - speed_dframe (pandas.DataFrame): speed of body parts over time
lucas_miranda's avatar
lucas_miranda committed
568
569
570
571
            - tol_forward (float): Maximum tolerated distance between ears and
            forward limbs
            - tol_rear (float): Maximum tolerated average distance between spine
            body parts
572
            - tol_speed (float): Maximum tolerated speed for the center of the mouse
lucas_miranda's avatar
lucas_miranda committed
573

lucas_miranda's avatar
lucas_miranda committed
574
575
576
577
        Returns:
            hudd (np.array): True if the animal is huddling, False otherwise
        """

578
579
580
    if animal_id != "":
        animal_id += "_"

lucas_miranda's avatar
lucas_miranda committed
581
    forward = (
582
583
584
585
        np.linalg.norm(
            pos_dframe[animal_id + "Left_ear"] - pos_dframe[animal_id + "Left_fhip"],
            axis=1,
        )
lucas_miranda's avatar
lucas_miranda committed
586
587
        < tol_forward
    ) & (
588
589
590
591
        np.linalg.norm(
            pos_dframe[animal_id + "Right_ear"] - pos_dframe[animal_id + "Right_fhip"],
            axis=1,
        )
lucas_miranda's avatar
lucas_miranda committed
592
        < tol_forward
593
594
    )

595
596
597
598
599
600
    spine = [
        animal_id + "Spine_1",
        animal_id + "Center",
        animal_id + "Spine_2",
        animal_id + "Tail_base",
    ]
lucas_miranda's avatar
lucas_miranda committed
601
602
603
604
605
606
607
608
    spine_dists = []
    for comb in range(2):
        spine_dists.append(
            np.linalg.norm(
                pos_dframe[spine[comb]] - pos_dframe[spine[comb + 1]], axis=1
            )
        )
    spine = np.mean(spine_dists) < tol_spine
609
610
    speed = speed_dframe[animal_id + "Center"] < tol_speed
    hudd = forward & spine & speed
lucas_miranda's avatar
lucas_miranda committed
611
612
613

    return hudd

614

lucas_miranda's avatar
lucas_miranda committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
def following_path(
    distance_dframe: pd.DataFrame,
    position_dframe: pd.DataFrame,
    follower: str,
    followed: str,
    frames: int = 20,
    tol: float = 0,
) -> np.array:
    """For multi animal videos only. Returns True if 'follower' is closer than tol to the path that
    followed has walked over the last specified number of frames

        Parameters:
            - distance_dframe (pandas.DataFrame): distances between bodyparts; generated by the preprocess module
            - position_dframe (pandas.DataFrame): position of bodyparts; generated by the preprocess module
            - follower (str) identifier for the animal who's following
            - followed (str) identifier for the animal who's followed
            - frames (int) frames in which to track whether the process consistently occurs,
            - tol (float) Maximum distance for which True is returned

        Returns:
            - follow (np.array): boolean sequence, True if conditions are fulfilled, False otherwise"""
636
637

    # Check that follower is close enough to the path that followed has passed though in the last frames
lucas_miranda's avatar
lucas_miranda committed
638
639
640
    shift_dict = {
        i: position_dframe[followed + "_Tail_base"].shift(i) for i in range(frames)
    }
641
642
    dist_df = pd.DataFrame(
        {
lucas_miranda's avatar
lucas_miranda committed
643
644
645
            i: np.linalg.norm(
                position_dframe[follower + "_Nose"] - shift_dict[i], axis=1
            )
646
647
648
649
650
651
            for i in range(frames)
        }
    )

    # Check that the animals are oriented follower's nose -> followed's tail
    right_orient1 = (
lucas_miranda's avatar
lucas_miranda committed
652
653
654
655
        distance_dframe[tuple(sorted([follower + "_Nose", followed + "_Tail_base"]))]
        < distance_dframe[
            tuple(sorted([follower + "_Tail_base", followed + "_Tail_base"]))
        ]
656
657
658
    )

    right_orient2 = (
lucas_miranda's avatar
lucas_miranda committed
659
660
        distance_dframe[tuple(sorted([follower + "_Nose", followed + "_Tail_base"]))]
        < distance_dframe[tuple(sorted([follower + "_Nose", followed + "_Nose"]))]
661
662
    )

lucas_miranda's avatar
lucas_miranda committed
663
664
    follow = np.all(
        np.array([(dist_df.min(axis=1) < tol), right_orient1, right_orient2]), axis=0,
665
666
    )

lucas_miranda's avatar
lucas_miranda committed
667
668
    return follow

669

lucas_miranda's avatar
lucas_miranda committed
670
def single_behaviour_analysis(
671
672
673
674
675
676
677
678
    behaviour_name: str,
    treatment_dict: dict,
    behavioural_dict: dict,
    plot: int = 0,
    stat_tests: bool = True,
    save: str = None,
    ylim: float = None,
) -> list:
679
    """Given the name of the behaviour, a dictionary with the names of the groups to compare, and a dictionary
680
681
682
683
684
685
686
687
688
689
690
691
692
693
       with the actual tags, outputs a box plot and a series of significance tests amongst the groups

        Parameters:
            - behaviour_name (str): name of the behavioural trait to analize
            - treatment_dict (dict): dictionary containing video names as keys and experimental conditions as values
            - behavioural_dict (dict): tagged dictionary containing video names as keys and annotations as values
            - plot (int): Silent if 0; otherwise, indicates the dpi of the figure to plot
            - stat_tests (bool): performs FDR corrected Mann-U non-parametric tests among all groups if True
            - save (str): Saves the produced figure to the specified file
            - ylim (float): y-limit for the boxplot. Ignored if plot == False

        Returns:
            - beh_dict (dict): dictionary containing experimental conditions as keys and video names as values
            - stat_dict (dict): dictionary containing condition pairs as keys and stat results as values"""
694
695
696
697
698
699
700
701
702
703

    beh_dict = {condition: [] for condition in treatment_dict.keys()}

    for condition in beh_dict.keys():
        for ind in treatment_dict[condition]:
            beh_dict[condition].append(
                np.sum(behavioural_dict[ind][behaviour_name])
                / len(behavioural_dict[ind][behaviour_name])
            )

704
    return_list = [beh_dict]
705

706
    if plot > 0:
707

708
        fig, ax = plt.subplots(dpi=plot)
709

710
711
712
713
714
715
716
717
718
        sns.boxplot(
            list(beh_dict.keys()), list(beh_dict.values()), orient="vertical", ax=ax
        )

        ax.set_title("{} across groups".format(behaviour_name))
        ax.set_ylabel("Proportion of frames")

        if ylim is not None:
            ax.set_ylim(ylim)
719

720
        if save is not None:
721
722
            plt.savefig(save)

723
        return_list.append(ax)
724

725
726
    if stat_tests:
        stat_dict = {}
727
        for i in combinations(treatment_dict.keys(), 2):
728
729
730
731
732
733
734
735
736
737
738
            # Solves issue with automatically generated examples
            if (
                beh_dict[i[0]] == beh_dict[i[1]]
                or np.var(beh_dict[i[0]]) == 0
                or np.var(beh_dict[i[1]]) == 0
            ):
                stat_dict[i] = "Identical sources. Couldn't run"
            else:
                stat_dict[i] = stats.mannwhitneyu(
                    beh_dict[i[0]], beh_dict[i[1]], alternative="two-sided"
                )
739
        return_list.append(stat_dict)
740

741
    return return_list
742
743


744
745
746
747
748
749
750
751
752
753
754
755
def max_behaviour(
    behaviour_dframe: pd.DataFrame, window_size: int = 10, stepped: bool = False
) -> np.array:
    """Returns the most frequent behaviour in a window of window_size frames

        Parameters:
                - behaviour_dframe (pd.DataFrame): boolean matrix containing occurrence
                of tagged behaviours per frame in the video
                - window_size (int): size of the window to use when computing
                the maximum behaviour per time slot
                - stepped (bool): sliding windows don't overlap if True. False by default

756
757
758
        Returns:
            - max_array (np.array): string array with the most common behaviour per instance
            of the sliding window"""
759
760
761
762
763
764
765

    speeds = [col for col in behaviour_dframe.columns if "speed" in col.lower()]

    behaviour_dframe = behaviour_dframe.drop(speeds, axis=1).astype("float")
    win_array = behaviour_dframe.rolling(window_size, center=True).sum()
    if stepped:
        win_array = win_array[::window_size]
766
767
    max_array = win_array[1:].idxmax(axis=1)

768
769
770
771
    return np.array(max_array)


# MACHINE LEARNING FUNCTIONS #
772
773


774
775
776
777
778
779
780
781
782
783
784
785
786
def gmm_compute(x: np.array, n_components: int, cv_type: str) -> list:
    """Fits a Gaussian Mixture Model to the provided data and returns evaluation metrics.

        Parameters:
            - x (numpy.array): data matrix to train the model
            - n_components (int): number of Gaussian components to use
            - cv_type (str): covariance matrix type to use.
            Must be one of "spherical", "tied", "diag", "full"

        Returns:
            - gmm_eval (list): model and associated BIC for downstream selection
    """

787
788
789
790
791
792
793
    gmm = mixture.GaussianMixture(
        n_components=n_components,
        covariance_type=cv_type,
        max_iter=100000,
        init_params="kmeans",
    )
    gmm.fit(x)
794
795
796
797
798
    gmm_eval = [gmm, gmm.bic(x)]
    return gmm_eval


def gmm_model_selection(
799
    x: pd.DataFrame,
800
801
802
803
804
805
806
807
    n_components_range: range,
    part_size: int,
    n_runs: int = 100,
    n_cores: int = False,
    cv_types: Tuple = ("spherical", "tied", "diag", "full"),
) -> Tuple[List[list], List[np.ndarray], Union[int, Any]]:
    """Runs GMM clustering model selection on the specified X dataframe, outputs the bic distribution per model,
       a vector with the median BICs and an object with the overall best model
808

809
        Parameters:
810
            - x (pandas.DataFrame): data matrix to train the models
811
812
813
814
815
            - n_components_range (range): generator with numbers of components to evaluate
            - n_runs (int): number of bootstraps for each model
            - part_size (int): size of bootstrap samples for each model
            - n_cores (int): number of cores to use for computation
            - cv_types (tuple): Covariance Matrices to try. All four available by default
816

817
818
819
820
821
822
823
        Returns:
            - bic (list): All recorded BIC values for all attempted parameter combinations
            (useful for plotting)
            - m_bic(list): All minimum BIC values recorded throughout the process
            (useful for plottinh)
            - best_bic_gmm (sklearn.GMM): unfitted version of the best found model
    """
824
825
826
827
828
829
830
831

    # Set the default of n_cores to the most efficient value
    if not n_cores:
        n_cores = min(multiprocessing.cpu_count(), n_runs)

    bic = []
    m_bic = []
    lowest_bic = np.inf
832
    best_bic_gmm = 0
833
834
835
836
837
838
839
840

    pbar = tqdm(total=len(cv_types) * len(n_components_range))

    for cv_type in cv_types:

        for n_components in n_components_range:

            res = Parallel(n_jobs=n_cores, prefer="threads")(
841
842
843
844
                delayed(gmm_compute)(
                    x.sample(part_size, replace=True), n_components, cv_type
                )
                for _ in range(n_runs)
845
846
847
848
849
850
851
852
853
854
855
            )
            bic.append([i[1] for i in res])

            pbar.update(1)
            m_bic.append(np.median([i[1] for i in res]))
            if m_bic[-1] < lowest_bic:
                lowest_bic = m_bic[-1]
                best_bic_gmm = res[0][0]

    return bic, m_bic, best_bic_gmm

856
857

# RESULT ANALYSIS FUNCTIONS #
858
859
860


def cluster_transition_matrix(
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    cluster_sequence: np.array,
    nclusts: int,
    autocorrelation: bool = True,
    return_graph: bool = False,
) -> Tuple[Union[nx.Graph, Any], np.ndarray]:
    """Computes the transition matrix between clusters and the autocorrelation in the sequence.

        Parameters:
            - cluster_sequence (numpy.array):
            - nclusts (int):
            - autocorrelation (bool):
            - return_graph (bool):

        Returns:
            - trans_normed (numpy.array / networkx.Graph:
            - autocorr (numpy.array):
877
878
879
    """

    # Stores all possible transitions between clusters
880
881
882
    clusters = [str(i) for i in range(nclusts)]
    cluster_sequence = cluster_sequence.astype(str)

883
884
885
886
887
888
889
    trans = {t: 0 for t in product(clusters, clusters)}
    k = len(clusters)

    # Stores the cluster sequence as a string
    transtr = "".join(list(cluster_sequence))

    # Assigns to each transition the number of times it occurs in the sequence
890
    for t in trans.keys():
891
892
893
        trans[t] = len(re.findall("".join(t), transtr, overlapped=True))

    # Normalizes the counts to add up to 1 for each departing cluster
894
895
    trans_normed = np.zeros([k, k]) + 1e-5
    for t in trans.keys():
896
        trans_normed[int(t[0]), int(t[1])] = np.round(
897
898
899
            trans[t]
            / (sum({i: j for i, j in trans.items() if i[0] == t[0]}.values()) + 1e-5),
            3,
900
901
902
903
904
905
906
907
        )

    # If specified, returns the transition matrix as an nx.Graph object
    if return_graph:
        trans_normed = nx.Graph(trans_normed)

    if autocorrelation:
        cluster_sequence = list(map(int, cluster_sequence))
908
909
        autocorr = np.corrcoef(cluster_sequence[:-1], cluster_sequence[1:])
        return trans_normed, autocorr
910
911
912

    return trans_normed

913

914
915
916
917
918
919
# MAIN BEHAVIOUR TAGGING FUNCTION #


def rule_based_tagging(
    tracks: List,
    videos: List,
920
    coordinates: Coordinates,
921
922
923
924
    vid_index: int,
    animal_ids: List = None,
    show: bool = False,
    save: bool = False,
925
    fps: float = 0.0,
926
    speed_pause: int = 10,
927
928
929
930
    frame_limit: float = np.inf,
    recog_limit: int = 1,
    path: str = os.path.join("./"),
    arena_type: str = "circular",
931
932
933
934
935
936
    close_contact_tol: int = 15,
    side_contact_tol: int = 15,
    follow_frames: int = 20,
    follow_tol: int = 20,
    huddle_forward: int = 15,
    huddle_spine: int = 10,
937
    huddle_speed: int = 1,
938
) -> pd.DataFrame:
lucas_miranda's avatar
lucas_miranda committed
939
940
941
942
    """Outputs a dataframe with the registered motives per frame. If specified, produces a labeled
    video displaying the information in real time

    Parameters:
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
        - tracks (list): list containing experiment IDs as strings
        - videos (list): list of videos to load, in the same order as tracks
        - coordinates (deepof.preprocessing.coordinates): coordinates object containing the project information
        - vid_index (int): index in videos of the experiment to annotate
        - animal_ids (list): IDs identifying multiple animals on the arena. None if there's only one
        - show (bool): if True, enables the display of the annotated video in a separate window
        - save (bool): if True, saves the annotated video to an mp4 file
        - fps (float): frames per second of the analysed video. Same as input by default
        - speed_pause (int): size of the rolling window to use when computing speeds
        - frame_limit (float): limit the number of frames to output. Generates all annotated frames by default
        - recog_limit (int): number of frames to use for arena recognition (1 by default)
        - path (str): directory in which the experimental data is stored
        - arena_type (str): type of the arena used in the experiments. Must be one of 'circular'"
        - close_contact_tol (int): maximum distance between single bodyparts that can be used to report the trait
        - side_contact_tol (int): maximum distance between single bodyparts that can be used to report the trait
        - follow_frames (int): number of frames during which the following trait is tracked
        - follow_tol (int): maximum distance between follower and followed's path during the last follow_frames,
        in order to report a detection
        - huddle_forward (int): maximum distance between ears and forward limbs to report a huddle detection
        - huddle_spine (int): maximum average distance between spine body parts to report a huddle detection
        - huddle_speed (int): maximum speed to report a huddle detection
lucas_miranda's avatar
lucas_miranda committed
964
965
966
967

    Returns:
        - tag_df (pandas.DataFrame): table with traits as columns and frames as rows. Each
        value is a boolean indicating trait detection at a given time"""
968
969
970

    vid_name = re.findall("(.*?)_", tracks[vid_index])[0]

971
    coords = coordinates.get_coords()[vid_name]
972
    speeds = coordinates.get_coords(speed=1)[vid_name]
973
    arena_abs = coordinates.get_arenas[1][0]
974
975
976
    arena, h, w = recognize_arena(videos, vid_index, path, recog_limit, arena_type)

    # Dictionary with motives per frame
977
    tag_dict = {}
978
979
980
981
982

    if animal_ids:
        # Define behaviours that can be computed on the fly from the distance matrix
        tag_dict["nose2nose"] = smooth_boolean_array(
            close_single_contact(
983
                coords,
984
985
                animal_ids[0] + "_Nose",
                animal_ids[1] + "_Nose",
986
                close_contact_tol,
987
988
989
990
991
992
                arena_abs,
                arena[2],
            )
        )
        tag_dict[animal_ids[0] + "_nose2tail"] = smooth_boolean_array(
            close_single_contact(
993
                coords,
994
995
                animal_ids[0] + "_Nose",
                animal_ids[1] + "_Tail_base",
996
                close_contact_tol,
997
998
999
1000
1001
1002
                arena_abs,
                arena[2],
            )
        )
        tag_dict[animal_ids[1] + "_nose2tail"] = smooth_boolean_array(
            close_single_contact(
1003
                coords,
1004
1005
                animal_ids[1] + "_Nose",
                animal_ids[0] + "_Tail_base",
1006
                close_contact_tol,
1007
1008
1009
1010
1011
1012
                arena_abs,
                arena[2],
            )
        )
        tag_dict["sidebyside"] = smooth_boolean_array(
            close_double_contact(
1013
                coords,
1014
1015
1016
1017
                animal_ids[0] + "_Nose",
                animal_ids[0] + "_Tail_base",
                animal_ids[1] + "_Nose",
                animal_ids[1] + "_Tail_base",
1018
                side_contact_tol,
1019
1020
1021
1022
1023
1024
1025
                rev=False,
                arena_abs=arena_abs,
                arena_rel=arena[2],
            )
        )
        tag_dict["sidereside"] = smooth_boolean_array(
            close_double_contact(
1026
                coords,
1027
1028
1029
1030
                animal_ids[0] + "_Nose",
                animal_ids[0] + "_Tail_base",
                animal_ids[1] + "_Nose",
                animal_ids[1] + "_Tail_base",
1031
                side_contact_tol,
1032
1033
1034
1035
1036
1037
1038
1039
                rev=True,
                arena_abs=arena_abs,
                arena_rel=arena[2],
            )
        )
        for _id in animal_ids:
            tag_dict[_id + "_following"] = smooth_boolean_array(
                following_path(
1040
1041
                    coords[vid_name],
                    coords,
1042
1043
                    follower=_id,
                    followed=[i for i in animal_ids if i != _id][0],
1044
1045
                    frames=follow_frames,
                    tol=follow_tol,
1046
1047
                )
            )
1048
            tag_dict[_id + "_climbing"] = smooth_boolean_array(
1049
1050
1051
                pd.Series(
                    (
                        spatial.distance.cdist(
1052
                            np.array(coords[_id + "_Nose"]), np.zeros([1, 2])
1053
1054
                        )
                        > (w / 200 + arena[2])
1055
1056
                    ).reshape(coords.shape[0]),
                    index=coords.index,
1057
                ).astype(bool)
1058
            )
1059
            tag_dict[_id + "_speed"] = speeds[_id + "_speed"]
1060
1061
1062
            tag_dict[_id + "_huddle"] = smooth_boolean_array(
                huddle(coords, speeds, huddle_forward, huddle_spine, huddle_speed)
            )
1063
1064

    else:
1065
        tag_dict["climbing"] = smooth_boolean_array(
1066
1067
            pd.Series(
                (
1068
                    spatial.distance.cdist(np.array(coords["Nose"]), np.zeros([1, 2]))
1069
                    > (w / 200 + arena[2])
1070
1071
                ).reshape(coords.shape[0]),
                index=coords.index,
1072
            ).astype(bool)
1073
        )
1074
        tag_dict["speed"] = speeds["Center"]
1075
1076
1077
        tag_dict["huddle"] = smooth_boolean_array(
            huddle(coords, speeds, huddle_forward, huddle_spine, huddle_speed)
        )
1078

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    if any([show, save]):

        cap = cv2.VideoCapture(os.path.join(path, videos[vid_index]))
        # Keep track of the frame number, to align with the tracking data
        fnum = 0
        writer = None
        frame_speeds = {_id: -np.inf for _id in animal_ids} if animal_ids else -np.inf

        # Loop over the frames in the video
        pbar = tqdm(total=min(coords.shape[0] - recog_limit, frame_limit))
        while cap.isOpened() and fnum < frame_limit:

            ret, frame = cap.read()
            # if frame is read correctly ret is True
            if not ret:
                print("Can't receive frame (stream end?). Exiting ...")
                break

            font = cv2.FONT_HERSHEY_COMPLEX_SMALL

            # Label positions
            downleft = (int(w * 0.3 / 10), int(h / 1.05))
            downright = (int(w * 6.5 / 10), int(h / 1.05))
            upleft = (int(w * 0.3 / 10), int(h / 20))
            upright = (int(w * 6.3 / 10), int(h / 20))

            # Capture speeds
            try:
                if list(frame_speeds.values())[0] == -np.inf or fnum % speed_pause == 0:
                    for _id in animal_ids:
                        frame_speeds[_id] = speeds[_id + "_Center"][fnum]
            except AttributeError:
                if frame_speeds == -np.inf or fnum % speed_pause == 0:
                    frame_speeds = speeds["Center"][fnum]

            # Display all annotations in the output video
            if animal_ids:
                if tag_dict["nose2nose"][fnum] and not tag_dict["sidebyside"][fnum]:
                    cv2.putText(
                        frame,
                        "Nose-Nose",
                        (
                            downleft
                            if frame_speeds[animal_ids[0]] > frame_speeds[animal_ids[1]]
                            else downright
                        ),
                        font,
                        1,
                        (255, 255, 255),
                        2,
                    )
                if (
                    tag_dict[animal_ids[0] + "_nose2tail"][fnum]
                    and not tag_dict["sidereside"][fnum]
                ):
                    cv2.putText(
                        frame, "Nose-Tail", downleft, font, 1, (255, 255, 255), 2
                    )
                if (
                    tag_dict[animal_ids[1] + "_nose2tail"][fnum]
                    and not tag_dict["sidereside"][fnum]
                ):
                    cv2.putText(
                        frame, "Nose-Tail", downright, font, 1, (255, 255, 255), 2
                    )
                if tag_dict["sidebyside"][fnum]:
                    cv2.putText(
                        frame,
                        "Side-side",
                        (
                            downleft
                            if frame_speeds[animal_ids[0]] > frame_speeds[animal_ids[1]]
                            else downright
                        ),
                        font,
                        1,
                        (255, 255, 255),
                        2,
                    )
                if tag_dict["sidereside"][fnum]:
                    cv2.putText(
                        frame,
                        "Side-Rside",
                        (
                            downleft
                            if frame_speeds[animal_ids[0]] > frame_speeds[animal_ids[1]]
                            else downright
                        ),
                        font,
                        1,
                        (255, 255, 255),
                        2,
                    )
                for _id, down_pos, up_pos in zip(
                    animal_ids, [downleft, downright], [upleft, upright]
                ):
                    if tag_dict[_id + "_climbing"][fnum]:
                        cv2.putText(
                            frame, "Climbing", down_pos, font, 1, (255, 255, 255), 2
                        )
                    if (
                        tag_dict[_id + "_huddle"][fnum]
                        and not tag_dict[_id + "_climbing"][fnum]
                    ):
                        cv2.putText(
                            frame, "Huddling", down_pos, font, 1, (255, 255, 255), 2
                        )
                    if (
                        tag_dict[_id + "_following"][fnum]
                        and not tag_dict[_id + "_climbing"][fnum]
                    ):
                        cv2.putText(
                            frame,
                            "*f",
                            (int(w * 0.3 / 10), int(h / 10)),
                            font,
                            1,
                            (
                                (150, 150, 255)
                                if frame_speeds[animal_ids[0]]
                                > frame_speeds[animal_ids[1]]
                                else (150, 255, 150)
                            ),
                            2,
                        )
                    cv2.putText(
                        frame,
                        _id + ": " + str(np.round(frame_speeds[_id], 2)) + " mmpf",
                        (up_pos[0] - 20, up_pos[1]),
                        font,
                        1,
                        (
                            (150, 150, 255)
                            if frame_speeds[_id] == max(list(frame_speeds.values()))
                            else (150, 255, 150)
                        ),
                        2,
                    )

            else:
                if tag_dict["climbing"][fnum]:
                    cv2.putText(
                        frame, "Climbing", downleft, font, 1, (255, 255, 255), 2
                    )
                if tag_dict["huddle"][fnum] and not tag_dict["climbing"][fnum]:
                    cv2.putText(frame, "huddle", downleft, font, 1, (255, 255, 255), 2)
                cv2.putText(
                    frame,
                    str(np.round(frame_speeds, 2)) + " mmpf",
                    upleft,
                    font,
                    1,
                    (
                        (150, 150, 255)
                        if huddle_speed > frame_speeds
                        else (150, 255, 150)
                    ),
                    2,
1237
1238
                )

1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
            if show:
                cv2.imshow("frame", frame)

                if cv2.waitKey(1) == ord("q"):
                    break

            if save:

                if writer is None:
                    # Define the codec and create VideoWriter object.The output is stored in 'outpy.avi' file.
                    # Define the FPS. Also frame size is passed.
                    writer = cv2.VideoWriter()
                    writer.open(
                        re.findall("(.*?)_", tracks[vid_index])[0] + "_tagged.avi",
                        cv2.VideoWriter_fourcc(*"MJPG"),
1254
                        (fps if fps != 0 else cv2.CAP_PROP_FPS),
1255
1256
1257
1258
                        (frame.shape[1], frame.shape[0]),
                        True,
                    )

1259
1260
                print(cv2.CAP_PROP_FPS)

1261
1262
1263
1264
1265
1266
1267
                writer.write(frame)

            pbar.update(1)
            fnum += 1

        cap.release()
        cv2.destroyAllWindows()
1268

1269
    tag_df = pd.DataFrame(tag_dict)
1270

1271
    return tag_df
1272
1273


1274
1275
# TODO:
#    - Add sequence plot to single_behaviour_analysis (show how the condition varies across a specified time window)
1276
1277
1278
#    - Add digging to rule_based_tagging
#    - Add center to rule_based_tagging
#    - Check for features requested by Joeri