train_utils.py 17.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

11
from datetime import date, datetime
12
from kerastuner import BayesianOptimization, Hyperband
13
from kerastuner import HyperParameters
14
from kerastuner_tensorboard_logger import TensorBoardLogger
15
from tensorboard.plugins.hparams import api as hp
16
from typing import Tuple, Union, Any, List
17
18
19
20
21
22
23
import deepof.hypermodels
import deepof.model_utils
import numpy as np
import os
import pickle
import tensorflow as tf

24
25
26
27
28
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


29
class CustomStopper(tf.keras.callbacks.EarlyStopping):
30
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


48
def load_hparams(hparams):
49
50
51
52
53
54
55
56
    """Loads hyperparameters from a custom dictionary pickled on disc.
    Thought to be used with the output of hyperparameter_tuning.py"""

    if hparams is not None:
        with open(hparams, "rb") as handle:
            hparams = pickle.load(handle)
    else:
        hparams = {
57
58
59
60
61
            "bidirectional_merge": "ave",
            "clipvalue": 1.0,
            "dense_activation": "relu",
            "dense_layers_per_branch": 1,
            "dropout_rate": 1e-3,
62
            "learning_rate": 1e-3,
63
64
65
            "units_conv": 160,
            "units_dense2": 120,
            "units_lstm": 300,
66
67
68
69
70
71
72
73
74
75
76
        }
    return hparams


def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
            os.path.join(
                train_path,
77
                [i for i in os.listdir(train_path) if i.endswith(".pkl")][0],
78
79
80
81
82
83
84
85
86
87
88
            ),
            "rb",
        ) as handle:
            treatment_dict = pickle.load(handle)
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
lucas_miranda's avatar
lucas_miranda committed
89
90
91
92
    X_train: np.array,
    batch_size: int,
    cp: bool,
    variational: bool,
93
    phenotype_class: float,
lucas_miranda's avatar
lucas_miranda committed
94
95
    predictor: float,
    loss: str,
96
    logparam: dict = None,
97
    outpath: str = ".",
98
) -> List[Union[Any]]:
99
    """Generates callbacks for model training, including:
100
101
102
103
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
104

105
    run_ID = "{}{}{}{}{}{}_{}".format(
106
        ("GMVAE" if variational else "AE"),
107
108
        ("Pred={}".format(predictor) if predictor > 0 and variational else ""),
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
109
        ("_loss={}".format(loss) if variational else ""),
110
111
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
112
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
113
114
    )

115
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
116
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
117
118
119
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
120
121
122
    )

    onecycle = deepof.model_utils.one_cycle_scheduler(
123
124
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
125
126
    )

127
128
129
130
    callbacks = [run_ID, tensorboard_callback, onecycle]

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
131
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
132
133
134
135
136
137
138
139
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
140
141


142
143
def deep_unsupervised_embedding(
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    batch_size: int,
    encoding_size: int,
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
    mmd_warmup,
    montecarlo_kl,
    n_components,
    output_path,
    phenotype_class,
    predictor: float,
    pretrained: str,
    save_checkpoints: bool,
    variational: bool,
160
):
161
162
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

163
    # Load data
164
165
166
167
168
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

169
    # Defines what to log on tensorboard (useful for trying out different models)
170

171
172
    logparam = {
        "encoding": encoding_size,
173
        "k": n_components,
174
175
176
177
178
        "loss": loss,
    }
    if phenotype_class:
        logparam["pheno_weight"] = phenotype_class

179
    # Load callbacks
180
    run_ID, *cbacks = get_callbacks(
181
182
183
184
        X_train=X_train,
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
185
        phenotype_class=phenotype_class,
186
187
188
189
190
        predictor=predictor,
        loss=loss,
        logparam=logparam,
        outpath=output_path,
    )
191
192
    if not log_history:
        cbacks = cbacks[1:]
193

194
    # Logs hyperparameters to tensorboard
195
196
    if log_hparams:
        logparams = [
197
            hp.HParam(
198
199
200
201
                "encoding",
                hp.Discrete([2, 4, 6, 8, 12, 16]),
                display_name="encoding",
                description="encoding size dimensionality",
202
            ),
203
204
205
206
207
208
209
210
211
212
213
            hp.HParam(
                "k",
                hp.IntInterval(min_value=1, max_value=25),
                display_name="k",
                description="cluster_number",
            ),
            hp.HParam(
                "loss",
                hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
                display_name="loss function",
                description="loss function",
214
215
216
            ),
        ]

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        rec = "reconstruction_" if phenotype_class else ""
        metrics = [
            hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
            hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
        ]
        if phenotype_class:
            logparams.append(
                hp.HParam(
                    "pheno_weight",
                    hp.RealInterval(min_value=0.0, max_value=1000.0),
                    display_name="pheno weight",
                    description="weight applied to phenotypic classifier from the latent space",
                )
            )
            metrics += [
                hp.Metric(
                    "phenotype_prediction_accuracy",
                    display_name="phenotype_prediction_accuracy",
                ),
                hp.Metric(
                    "phenotype_prediction_auc",
                    display_name="phenotype_prediction_auc",
                ),
            ]

        with tf.summary.create_file_writer(
            os.path.join(output_path, "hparams", run_ID)
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
249

250
    # Build models
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
        (
            encoder,
            generator,
            grouper,
            ae,
            kl_warmup_callback,
            mmd_warmup_callback,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            phenotype_prediction=phenotype_class,
            predictor=predictor,
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
285
        # If pretrained models are specified, load weights and return
286
287
288
289
290
291
292
293
294
295
296
297
298
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
                epochs=35,
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
299
300
                callbacks=cbacks
                + [
301
302
303
304
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
305
                        start_epoch=max(kl_warmup, mmd_warmup),
306
307
308
309
310
311
                    ),
                ],
            )

        else:

312
            callbacks_ = cbacks + [
313
314
315
316
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
317
                    start_epoch=max(kl_warmup, mmd_warmup),
318
319
320
                ),
            ]

321
            if "ELBO" in loss and kl_warmup > 0:
322
323
                # noinspection PyUnboundLocalVariable
                callbacks_.append(kl_warmup_callback)
324
            if "MMD" in loss and mmd_warmup > 0:
325
326
327
                # noinspection PyUnboundLocalVariable
                callbacks_.append(mmd_warmup_callback)

328
329
330
331
332
333
334
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

            if predictor > 0.0:
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

335
            if phenotype_class > 0.0:
336
337
338
                ys += [y_train]
                yvals += [y_val]

339
            ae.fit(
340
341
342
343
344
345
346
347
348
349
350
351
                x=Xs,
                y=ys,
                epochs=35,
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
            if log_hparams:
                # noinspection PyUnboundLocalVariable
                def tensorboard_metric_logging(run_dir: str, hpms: Any):
                    output = gmvaep.predict(X_val)
                    if phenotype_class or predictor:
                        reconstruction = output[0]
                        prediction = output[1]
                        pheno = output[-1]
                    else:
                        reconstruction = output

                    with tf.summary.create_file_writer(run_dir).as_default():
                        hp.hparams(hpms)  # record the values used in this trial
                        val_mae = tf.reduce_mean(
                            tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
367
                        )
368
369
                        val_mse = tf.reduce_mean(
                            tf.keras.metrics.mean_squared_error(X_val, reconstruction)
370
                        )
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
                        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
                        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

                        if predictor:
                            pred_mae = tf.reduce_mean(
                                tf.keras.metrics.mean_absolute_error(X_val, prediction)
                            )
                            pred_mse = tf.reduce_mean(
                                tf.keras.metrics.mean_squared_error(X_val, prediction)
                            )
                            tf.summary.scalar(
                                "val_prediction_mae".format(rec), pred_mae, step=1
                            )
                            tf.summary.scalar(
                                "val_prediction_mse".format(rec), pred_mse, step=1
                            )

                        if phenotype_class:
                            pheno_acc = tf.keras.metrics.binary_accuracy(
                                y_val, tf.squeeze(pheno)
                            )
                            pheno_auc = roc_auc_score(y_val, pheno)

                            tf.summary.scalar(
                                "phenotype_prediction_accuracy", pheno_acc, step=1
                            )
                            tf.summary.scalar(
                                "phenotype_prediction_auc", pheno_auc, step=1
                            )

                # Logparams to tensorboard
                tensorboard_metric_logging(
                    os.path.join(output_path, "hparams", run_ID),
                    logparam,
                )
406

407
408
409
    return return_list


410
def tune_search(
411
    data: List[np.array],
412
    encoding_size: int,
413
414
    hypertun_trials: int,
    hpt_type: str,
415
416
    hypermodel: str,
    k: int,
417
    kl_warmup_epochs: int,
418
    loss: str,
419
    mmd_warmup_epochs: int,
420
    overlap_loss: float,
421
    phenotype_class: float,
422
423
    predictor: float,
    project_name: str,
424
    callbacks: List,
425
    n_epochs: int = 30,
426
    n_replicas: int = 1,
427
) -> Union[bool, Tuple[Any, Any]]:
428
429
    """Define the search space using keras-tuner and bayesian optimization

430
431
432
433
434
435
436
437
438
439
440
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
441
        - phenotype_class (float): adds an extra regularizing neural network to the model,
442
443
444
445
446
447
448
449
450
451
452
453
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
454
455
456

    """

457
458
    X_train, y_train, X_val, y_val = data

459
460
461
462
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
463
    if hypermodel == "S2SAE":  # pragma: no cover
464
        assert (
465
            predictor == 0.0 and phenotype_class == 0.0
466
        ), "Prediction branches are only available for variational models. See documentation for more details"
467
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
468
469
470

    elif hypermodel == "S2SGMVAE":
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
471
            input_shape=X_train.shape,
472
            encoding=encoding_size,
473
            kl_warmup_epochs=kl_warmup_epochs,
474
            loss=loss,
475
            mmd_warmup_epochs=mmd_warmup_epochs,
476
            number_of_components=k,
477
            overlap_loss=overlap_loss,
478
            phenotype_predictor=phenotype_class,
479
            predictor=predictor,
480
        )
lucas_miranda's avatar
lucas_miranda committed
481

482
483
484
    else:
        return False

485
486
487
488
489
490
491
492
493
494
495
496
497
498
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
        "logger": TensorBoardLogger(metrics=["val_mae"], logdir="./logs/hparams"),
        "objective": "val_mae",
        "project_name": project_name,
        "seed": 42,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
            directory="HyperBandx_{}_{}".format(loss, str(date.today())),
            max_epochs=hypertun_trials,
499
            hyperband_iterations=3,
lucas_miranda's avatar
lucas_miranda committed
500
            factor=2,
501
502
503
504
505
506
507
508
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
            directory="BayOpt_{}_{}".format(loss, str(date.today())),
            max_trials=hypertun_trials,
            **hpt_params
        )
509
510
511

    print(tuner.search_space_summary())

512
513
514
515
516
517
518
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

519
    if phenotype_class > 0.0:
520
521
522
        ys += [y_train]
        yvals += [y_val]

523
    tuner.search(
524
525
        Xs,
        ys,
526
        epochs=n_epochs,
527
        validation_data=(Xvals, yvals),
528
529
        verbose=1,
        batch_size=256,
lucas_miranda's avatar
lucas_miranda committed
530
        callbacks=callbacks,
531
532
533
534
535
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
536
537
    print(tuner.results_summary())

538
    return best_hparams, best_run