train_utils.py 18.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

11
from datetime import date, datetime
12
from kerastuner import BayesianOptimization, Hyperband
13
from kerastuner import HyperParameters
14
from kerastuner_tensorboard_logger import TensorBoardLogger
lucas_miranda's avatar
lucas_miranda committed
15
from sklearn.metrics import roc_auc_score
16
from tensorboard.plugins.hparams import api as hp
17
from typing import Tuple, Union, Any, List
18
19
20
21
22
23
24
import deepof.hypermodels
import deepof.model_utils
import numpy as np
import os
import pickle
import tensorflow as tf

25
26
27
28
29
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


30
class CustomStopper(tf.keras.callbacks.EarlyStopping):
31
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


49
50
51
52
53
def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
54
55
56
57
58
            os.path.join(
                train_path,
                [i for i in os.listdir(train_path) if i.endswith(".pkl")][0],
            ),
            "rb",
59
60
61
62
63
64
65
66
67
        ) as handle:
            treatment_dict = pickle.load(handle)
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
68
69
70
71
72
73
74
75
76
77
78
79
80
    X_train: np.array,
    batch_size: int,
    variational: bool,
    phenotype_class: float,
    predictor: float,
    loss: str,
    X_val: np.array = None,
    cp: bool = False,
    reg_cat_clusters: bool = False,
    reg_cluster_variance: bool = False,
    entropy_samples: int = 15000,
    logparam: dict = None,
    outpath: str = ".",
81
) -> List[Union[Any]]:
82
    """Generates callbacks for model training, including:
83
84
85
86
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
87

88
89
90
91
92
93
94
95
    latreg = "none"
    if reg_cat_clusters and not reg_cluster_variance:
        latreg = "categorical"
    elif reg_cluster_variance and not reg_cat_clusters:
        latreg = "variance"
    elif reg_cat_clusters and reg_cluster_variance:
        latreg = "categorical+variance"

96
    run_ID = "{}{}{}{}{}{}{}_{}".format(
97
        ("GMVAE" if variational else "AE"),
lucas_miranda's avatar
lucas_miranda committed
98
        ("_Pred={}".format(predictor) if predictor > 0 and variational else ""),
99
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
100
        ("_loss={}".format(loss) if variational else ""),
101
102
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
103
        ("_latreg={}".format(latreg)),
104
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
105
106
    )

107
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
108
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
109
110
111
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
112
113
    )

114
    entropy = deepof.model_utils.neighbor_cluster_purity(
115
        encoding_dim=logparam["encoding"],
116
        samples=entropy_samples,
lucas_miranda's avatar
lucas_miranda committed
117
        validation_data=X_val,
118
        log_dir=os.path.join(outpath, "metrics", run_ID),
119
        variational=variational,
lucas_miranda's avatar
lucas_miranda committed
120
121
    )

122
    onecycle = deepof.model_utils.one_cycle_scheduler(
123
124
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
125
        log_dir=os.path.join(outpath, "metrics", run_ID),
126
127
    )

128
    callbacks = [run_ID, tensorboard_callback, entropy, onecycle]
129
130
131

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
132
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
133
134
135
136
137
138
139
140
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
141
142


lucas_miranda's avatar
lucas_miranda committed
143
def log_hyperparameters(phenotype_class: float, rec: str):
lucas_miranda's avatar
lucas_miranda committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
lucas_miranda's avatar
lucas_miranda committed
195
def tensorboard_metric_logging(
196
197
198
199
200
201
202
203
    run_dir: str,
    hpms: Any,
    ae: Any,
    X_val: np.ndarray,
    y_val: np.ndarray,
    phenotype_class: float,
    predictor: float,
    rec: str,
lucas_miranda's avatar
lucas_miranda committed
204
):
lucas_miranda's avatar
lucas_miranda committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    """Autoencoder metric logging in tensorboard"""

    output = ae.predict(X_val)
    if phenotype_class or predictor:
        reconstruction = output[0]
        prediction = output[1]
        pheno = output[-1]
    else:
        reconstruction = output

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
        val_mae = tf.reduce_mean(
            tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
        )
        val_mse = tf.reduce_mean(
            tf.keras.metrics.mean_squared_error(X_val, reconstruction)
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

        if predictor:
            pred_mae = tf.reduce_mean(
                tf.keras.metrics.mean_absolute_error(X_val, prediction)
            )
            pred_mse = tf.reduce_mean(
                tf.keras.metrics.mean_squared_error(X_val, prediction)
            )
            tf.summary.scalar("val_prediction_mae".format(rec), pred_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), pred_mse, step=1)

        if phenotype_class:
            pheno_acc = tf.keras.metrics.binary_accuracy(y_val, tf.squeeze(pheno))
            pheno_auc = roc_auc_score(y_val, pheno)

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)


244
def autoencoder_fitting(
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
    batch_size: int,
    encoding_size: int,
    epochs: int,
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
    mmd_warmup: int,
    montecarlo_kl: int,
    n_components: int,
    output_path: str,
    phenotype_class: float,
    predictor: float,
    pretrained: str,
    save_checkpoints: bool,
    save_weights: bool,
    variational: bool,
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
    entropy_samples: int,
267
):
268
269
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

270
    # Load data
271
272
273
274
275
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

276
    # Defines what to log on tensorboard (useful for trying out different models)
277
278
    logparam = {
        "encoding": encoding_size,
279
        "k": n_components,
280
281
282
283
284
        "loss": loss,
    }
    if phenotype_class:
        logparam["pheno_weight"] = phenotype_class

285
    # Load callbacks
286
    run_ID, *cbacks = get_callbacks(
287
        X_train=X_train,
lucas_miranda's avatar
lucas_miranda committed
288
        X_val=(X_val if X_val.shape != (0,) else None),
289
290
291
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
292
        phenotype_class=phenotype_class,
293
294
        predictor=predictor,
        loss=loss,
295
        entropy_samples=entropy_samples,
296
        reg_cat_clusters=reg_cat_clusters,
297
        reg_cluster_variance=reg_cluster_variance,
298
299
300
        logparam=logparam,
        outpath=output_path,
    )
301
302
    if not log_history:
        cbacks = cbacks[1:]
303

304
    # Logs hyperparameters to tensorboard
lucas_miranda's avatar
lucas_miranda committed
305
    rec = "reconstruction_" if phenotype_class else ""
306
    if log_hparams:
lucas_miranda's avatar
lucas_miranda committed
307
        logparams, metrics = log_hyperparameters(phenotype_class, rec)
308
309

        with tf.summary.create_file_writer(
310
            os.path.join(output_path, "hparams", run_ID)
311
312
313
314
315
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
316

317
    # Build models
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
        (
            encoder,
            generator,
            grouper,
            ae,
            kl_warmup_callback,
            mmd_warmup_callback,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            phenotype_prediction=phenotype_class,
            predictor=predictor,
346
347
            reg_cat_clusters=reg_cat_clusters,
            reg_cluster_variance=reg_cluster_variance,
348
349
350
351
352
353
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
354
        # If pretrained models are specified, load weights and return
355
356
357
358
359
360
361
362
363
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
364
                epochs=epochs,
365
366
367
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
368
                callbacks=cbacks
369
370
371
372
373
374
375
376
                + [
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
                        start_epoch=max(kl_warmup, mmd_warmup),
                    ),
                ],
377
378
            )

379
380
381
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

382
383
        else:

384
            callbacks_ = cbacks + [
385
386
387
388
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
389
                    start_epoch=max(kl_warmup, mmd_warmup),
390
391
392
                ),
            ]

393
            if "ELBO" in loss and kl_warmup > 0:
394
395
                # noinspection PyUnboundLocalVariable
                callbacks_.append(kl_warmup_callback)
396
            if "MMD" in loss and mmd_warmup > 0:
397
398
399
                # noinspection PyUnboundLocalVariable
                callbacks_.append(mmd_warmup_callback)

400
401
402
403
404
405
406
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

            if predictor > 0.0:
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

407
            if phenotype_class > 0.0:
408
409
410
                ys += [y_train]
                yvals += [y_val]

411
            ae.fit(
412
413
                x=Xs,
                y=ys,
414
                epochs=epochs,
415
416
417
418
419
420
421
422
423
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

424
            if not os.path.exists(os.path.join(output_path, "trained_weights")):
425
426
                os.makedirs("trained_weights")

427
            if save_weights:
428
429
                ae.save_weights(
                    os.path.join(
430
431
432
                        "{}".format(output_path),
                        "trained_weights",
                        "{}_final_weights.h5".format(run_ID),
433
434
                    )
                )
435

436
437
438
439
440
            if log_hparams:
                # Logparams to tensorboard
                tensorboard_metric_logging(
                    os.path.join(output_path, "hparams", run_ID),
                    logparam,
lucas_miranda's avatar
lucas_miranda committed
441
                    ae,
lucas_miranda's avatar
lucas_miranda committed
442
443
                    Xvals,
                    yvals[-1],
lucas_miranda's avatar
lucas_miranda committed
444
445
446
                    phenotype_class,
                    predictor,
                    rec,
447
                )
448

449
450
451
    return return_list


452
def tune_search(
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    data: List[np.array],
    encoding_size: int,
    hypertun_trials: int,
    hpt_type: str,
    hypermodel: str,
    k: int,
    kl_warmup_epochs: int,
    loss: str,
    mmd_warmup_epochs: int,
    overlap_loss: float,
    phenotype_class: float,
    predictor: float,
    project_name: str,
    callbacks: List,
    n_epochs: int = 30,
    n_replicas: int = 1,
    outpath: str = ".",
470
) -> Union[bool, Tuple[Any, Any]]:
471
472
    """Define the search space using keras-tuner and bayesian optimization

473
474
475
476
477
478
479
480
481
482
483
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
484
        - phenotype_class (float): adds an extra regularizing neural network to the model,
485
486
487
488
489
490
491
492
493
494
495
496
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
497
498
499

    """

500
501
    X_train, y_train, X_val, y_val = data

502
503
504
505
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
506
    if hypermodel == "S2SAE":  # pragma: no cover
507
        assert (
508
            predictor == 0.0 and phenotype_class == 0.0
509
        ), "Prediction branches are only available for variational models. See documentation for more details"
510
        batch_size = 1
511
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
512
513

    elif hypermodel == "S2SGMVAE":
514
        batch_size = 64
515
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
516
            input_shape=X_train.shape,
517
            encoding=encoding_size,
518
            kl_warmup_epochs=kl_warmup_epochs,
519
            loss=loss,
520
            mmd_warmup_epochs=mmd_warmup_epochs,
521
            number_of_components=k,
522
            overlap_loss=overlap_loss,
523
            phenotype_predictor=phenotype_class,
524
            predictor=predictor,
525
        )
lucas_miranda's avatar
lucas_miranda committed
526

527
528
529
    else:
        return False

530
531
532
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
533
534
535
        "logger": TensorBoardLogger(
            metrics=["val_mae"], logdir=os.path.join(outpath, "logged_hparams")
        ),
536
537
538
539
540
541
542
        "objective": "val_mae",
        "project_name": project_name,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
543
544
545
            directory=os.path.join(
                outpath, "HyperBandx_{}_{}".format(loss, str(date.today()))
            ),
546
547
            max_epochs=35,
            hyperband_iterations=hypertun_trials,
548
            factor=3,
549
550
551
552
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
553
554
555
            directory=os.path.join(
                outpath, "BayOpt_{}_{}".format(loss, str(date.today()))
            ),
556
557
558
            max_trials=hypertun_trials,
            **hpt_params
        )
559
560
561

    print(tuner.search_space_summary())

562
563
564
565
566
567
568
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

569
    if phenotype_class > 0.0:
570
571
572
        ys += [y_train]
        yvals += [y_val]

573
    tuner.search(
574
575
        Xs,
        ys,
576
        epochs=n_epochs,
577
        validation_data=(Xvals, yvals),
578
        verbose=1,
579
        batch_size=batch_size,
lucas_miranda's avatar
lucas_miranda committed
580
        callbacks=callbacks,
581
582
583
584
585
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
586
587
    print(tuner.results_summary())

588
    return best_hparams, best_run