train_utils.py 18.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

11
from datetime import date, datetime
12
from kerastuner import BayesianOptimization, Hyperband
13
from kerastuner import HyperParameters
14
from kerastuner_tensorboard_logger import TensorBoardLogger
lucas_miranda's avatar
lucas_miranda committed
15
from sklearn.metrics import roc_auc_score
16
from tensorboard.plugins.hparams import api as hp
17
from typing import Tuple, Union, Any, List
18
19
20
21
22
23
24
import deepof.hypermodels
import deepof.model_utils
import numpy as np
import os
import pickle
import tensorflow as tf

25
26
27
28
29
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


30
class CustomStopper(tf.keras.callbacks.EarlyStopping):
31
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


49
def load_hparams(hparams):
50
51
52
53
54
55
56
57
    """Loads hyperparameters from a custom dictionary pickled on disc.
    Thought to be used with the output of hyperparameter_tuning.py"""

    if hparams is not None:
        with open(hparams, "rb") as handle:
            hparams = pickle.load(handle)
    else:
        hparams = {
58
59
60
61
62
            "bidirectional_merge": "ave",
            "clipvalue": 1.0,
            "dense_activation": "relu",
            "dense_layers_per_branch": 1,
            "dropout_rate": 1e-3,
63
            "learning_rate": 1e-3,
64
65
66
            "units_conv": 160,
            "units_dense2": 120,
            "units_lstm": 300,
67
68
69
70
71
72
73
74
75
76
77
        }
    return hparams


def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
            os.path.join(
                train_path,
78
                [i for i in os.listdir(train_path) if i.endswith(".pkl")][0],
79
80
81
82
83
84
85
86
87
88
89
            ),
            "rb",
        ) as handle:
            treatment_dict = pickle.load(handle)
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
lucas_miranda's avatar
lucas_miranda committed
90
91
92
93
    X_train: np.array,
    batch_size: int,
    cp: bool,
    variational: bool,
94
    phenotype_class: float,
lucas_miranda's avatar
lucas_miranda committed
95
96
    predictor: float,
    loss: str,
97
98
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
99
    logparam: dict = None,
100
    outpath: str = ".",
101
) -> List[Union[Any]]:
102
    """Generates callbacks for model training, including:
103
104
105
106
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
107

108
109
110
111
112
113
114
115
    latreg = "none"
    if reg_cat_clusters and not reg_cluster_variance:
        latreg = "categorical"
    elif reg_cluster_variance and not reg_cat_clusters:
        latreg = "variance"
    elif reg_cat_clusters and reg_cluster_variance:
        latreg = "categorical+variance"

116
    run_ID = "{}{}{}{}{}{}{}_{}".format(
117
        ("GMVAE" if variational else "AE"),
lucas_miranda's avatar
lucas_miranda committed
118
        ("_Pred={}".format(predictor) if predictor > 0 and variational else ""),
119
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
120
        ("_loss={}".format(loss) if variational else ""),
121
122
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
123
        ("_latreg={}".format(latreg)),
124
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
125
126
    )

127
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
128
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
129
130
131
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
132
133
134
    )

    onecycle = deepof.model_utils.one_cycle_scheduler(
135
136
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
137
138
    )

139
140
141
142
    callbacks = [run_ID, tensorboard_callback, onecycle]

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
143
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
144
145
146
147
148
149
150
151
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
152
153


lucas_miranda's avatar
lucas_miranda committed
154
def log_hyperparameters(phenotype_class: float, rec: str):
lucas_miranda's avatar
lucas_miranda committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
lucas_miranda's avatar
lucas_miranda committed
206
207
208
209
210
211
212
213
214
215
def tensorboard_metric_logging(
    run_dir: str,
    hpms: Any,
    ae: Any,
    X_val: np.ndarray,
    y_val: np.ndarray,
    phenotype_class: float,
    predictor: float,
    rec: str,
):
lucas_miranda's avatar
lucas_miranda committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    """Autoencoder metric logging in tensorboard"""

    output = ae.predict(X_val)
    if phenotype_class or predictor:
        reconstruction = output[0]
        prediction = output[1]
        pheno = output[-1]
    else:
        reconstruction = output

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
        val_mae = tf.reduce_mean(
            tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
        )
        val_mse = tf.reduce_mean(
            tf.keras.metrics.mean_squared_error(X_val, reconstruction)
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

        if predictor:
            pred_mae = tf.reduce_mean(
                tf.keras.metrics.mean_absolute_error(X_val, prediction)
            )
            pred_mse = tf.reduce_mean(
                tf.keras.metrics.mean_squared_error(X_val, prediction)
            )
            tf.summary.scalar("val_prediction_mae".format(rec), pred_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), pred_mse, step=1)

        if phenotype_class:
            pheno_acc = tf.keras.metrics.binary_accuracy(y_val, tf.squeeze(pheno))
            pheno_auc = roc_auc_score(y_val, pheno)

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)


255
def autoencoder_fitting(
256
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
257
258
    batch_size: int,
    encoding_size: int,
259
    epochs: int,
260
261
262
263
264
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
265
266
267
268
269
    mmd_warmup: int,
    montecarlo_kl: int,
    n_components: int,
    output_path: str,
    phenotype_class: float,
270
271
272
    predictor: float,
    pretrained: str,
    save_checkpoints: bool,
273
    save_weights: bool,
274
    variational: bool,
275
276
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
277
):
278
279
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

280
    # Load data
281
282
283
284
285
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

286
    # Defines what to log on tensorboard (useful for trying out different models)
287
288
    logparam = {
        "encoding": encoding_size,
289
        "k": n_components,
290
291
292
293
294
        "loss": loss,
    }
    if phenotype_class:
        logparam["pheno_weight"] = phenotype_class

295
    # Load callbacks
296
    run_ID, *cbacks = get_callbacks(
297
298
299
300
        X_train=X_train,
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
301
        phenotype_class=phenotype_class,
302
303
        predictor=predictor,
        loss=loss,
304
        reg_cat_clusters=reg_cat_clusters,
305
        reg_cluster_variance=reg_cluster_variance,
306
307
308
        logparam=logparam,
        outpath=output_path,
    )
309
310
    if not log_history:
        cbacks = cbacks[1:]
311

312
    # Logs hyperparameters to tensorboard
lucas_miranda's avatar
lucas_miranda committed
313
    rec = "reconstruction_" if phenotype_class else ""
314
    if log_hparams:
lucas_miranda's avatar
lucas_miranda committed
315
        logparams, metrics = log_hyperparameters(phenotype_class, rec)
316
317
318
319
320
321
322
323

        with tf.summary.create_file_writer(
            os.path.join(output_path, "hparams", run_ID)
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
324

325
    # Build models
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
        (
            encoder,
            generator,
            grouper,
            ae,
            kl_warmup_callback,
            mmd_warmup_callback,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            phenotype_prediction=phenotype_class,
            predictor=predictor,
354
355
            reg_cat_clusters=reg_cat_clusters,
            reg_cluster_variance=reg_cluster_variance,
356
357
358
359
360
361
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
362
        # If pretrained models are specified, load weights and return
363
364
365
366
367
368
369
370
371
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
372
                epochs=epochs,
373
374
375
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
376
377
                callbacks=cbacks
                + [
378
379
380
381
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
382
                        start_epoch=max(kl_warmup, mmd_warmup),
383
384
385
386
                    ),
                ],
            )

387
388
389
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

390
391
        else:

392
            callbacks_ = cbacks + [
393
394
395
396
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
397
                    start_epoch=max(kl_warmup, mmd_warmup),
398
399
400
                ),
            ]

401
            if "ELBO" in loss and kl_warmup > 0:
402
403
                # noinspection PyUnboundLocalVariable
                callbacks_.append(kl_warmup_callback)
404
            if "MMD" in loss and mmd_warmup > 0:
405
406
407
                # noinspection PyUnboundLocalVariable
                callbacks_.append(mmd_warmup_callback)

408
409
410
411
412
413
414
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

            if predictor > 0.0:
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

415
            if phenotype_class > 0.0:
416
417
418
                ys += [y_train]
                yvals += [y_val]

419
            ae.fit(
420
421
                x=Xs,
                y=ys,
422
                epochs=epochs,
423
424
425
426
427
428
429
430
431
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

432
            if save_weights:
433
434
435
436
437
                ae.save_weights(
                    os.path.join(
                        "{}".format(output_path), "{}_final_weights.h5".format(run_ID)
                    )
                )
438

439
440
441
442
443
            if log_hparams:
                # Logparams to tensorboard
                tensorboard_metric_logging(
                    os.path.join(output_path, "hparams", run_ID),
                    logparam,
lucas_miranda's avatar
lucas_miranda committed
444
                    ae,
lucas_miranda's avatar
lucas_miranda committed
445
446
                    Xvals,
                    yvals[-1],
lucas_miranda's avatar
lucas_miranda committed
447
448
449
                    phenotype_class,
                    predictor,
                    rec,
450
                )
451

452
453
454
    return return_list


455
def tune_search(
456
    data: List[np.array],
457
    encoding_size: int,
458
459
    hypertun_trials: int,
    hpt_type: str,
460
461
    hypermodel: str,
    k: int,
462
    kl_warmup_epochs: int,
463
    loss: str,
464
    mmd_warmup_epochs: int,
465
    overlap_loss: float,
466
    phenotype_class: float,
467
468
    predictor: float,
    project_name: str,
469
    callbacks: List,
470
    n_epochs: int = 30,
471
    n_replicas: int = 1,
472
) -> Union[bool, Tuple[Any, Any]]:
473
474
    """Define the search space using keras-tuner and bayesian optimization

475
476
477
478
479
480
481
482
483
484
485
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
486
        - phenotype_class (float): adds an extra regularizing neural network to the model,
487
488
489
490
491
492
493
494
495
496
497
498
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
499
500
501

    """

502
503
    X_train, y_train, X_val, y_val = data

504
505
506
507
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
508
    if hypermodel == "S2SAE":  # pragma: no cover
509
        assert (
510
            predictor == 0.0 and phenotype_class == 0.0
511
        ), "Prediction branches are only available for variational models. See documentation for more details"
512
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
513
514
515

    elif hypermodel == "S2SGMVAE":
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
516
            input_shape=X_train.shape,
517
            encoding=encoding_size,
518
            kl_warmup_epochs=kl_warmup_epochs,
519
            loss=loss,
520
            mmd_warmup_epochs=mmd_warmup_epochs,
521
            number_of_components=k,
522
            overlap_loss=overlap_loss,
523
            phenotype_predictor=phenotype_class,
524
            predictor=predictor,
525
        )
lucas_miranda's avatar
lucas_miranda committed
526

527
528
529
    else:
        return False

530
531
532
533
534
535
536
537
538
539
540
541
542
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
        "logger": TensorBoardLogger(metrics=["val_mae"], logdir="./logs/hparams"),
        "objective": "val_mae",
        "project_name": project_name,
        "seed": 42,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
            directory="HyperBandx_{}_{}".format(loss, str(date.today())),
543
544
            max_epochs=35,
            hyperband_iterations=hypertun_trials,
lucas_miranda's avatar
lucas_miranda committed
545
            factor=2,
546
547
548
549
550
551
552
553
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
            directory="BayOpt_{}_{}".format(loss, str(date.today())),
            max_trials=hypertun_trials,
            **hpt_params
        )
554
555
556

    print(tuner.search_space_summary())

557
558
559
560
561
562
563
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

564
    if phenotype_class > 0.0:
565
566
567
        ys += [y_train]
        yvals += [y_val]

568
    tuner.search(
569
570
        Xs,
        ys,
571
        epochs=n_epochs,
572
        validation_data=(Xvals, yvals),
573
574
        verbose=1,
        batch_size=256,
lucas_miranda's avatar
lucas_miranda committed
575
        callbacks=callbacks,
576
577
578
579
580
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
581
582
    print(tuner.results_summary())

583
    return best_hparams, best_run