pose_utils.py 26.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Functions and general utilities for rule-based pose estimation. See documentation for details

"""

import cv2
lucas_miranda's avatar
lucas_miranda committed
12
import deepof.utils
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import regex as re
import seaborn as sns
from itertools import combinations
from scipy import stats
from tqdm import tqdm
from typing import Any, List, NewType

Coordinates = NewType("Coordinates", Any)


def close_single_contact(
lucas_miranda's avatar
lucas_miranda committed
28
29
30
31
32
33
    pos_dframe: pd.DataFrame,
    left: str,
    right: str,
    tol: float,
    arena_abs: int,
    arena_rel: int,
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
) -> np.array:
    """Returns a boolean array that's True if the specified body parts are closer than tol.

        Parameters:
            - pos_dframe (pandas.DataFrame): DLC output as pandas.DataFrame; only applicable
            to two-animal experiments.
            - left (string): First member of the potential contact
            - right (string): Second member of the potential contact
            - tol (float): maximum distance for which a contact is reported
            - arena_abs (int): length in mm of the diameter of the real arena
            - arena_rel (int): length in pixels of the diameter of the arena in the video

        Returns:
            - contact_array (np.array): True if the distance between the two specified points
            is less than tol, False otherwise"""

    close_contact = (
lucas_miranda's avatar
lucas_miranda committed
51
52
        np.linalg.norm(pos_dframe[left] - pos_dframe[right], axis=1) * arena_abs
    ) / arena_rel < tol
53
54
55
56
57

    return close_contact


def close_double_contact(
lucas_miranda's avatar
lucas_miranda committed
58
59
60
61
62
63
64
65
66
    pos_dframe: pd.DataFrame,
    left1: str,
    left2: str,
    right1: str,
    right2: str,
    tol: float,
    arena_abs: int,
    arena_rel: int,
    rev: bool = False,
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
) -> np.array:
    """Returns a boolean array that's True if the specified body parts are closer than tol.

        Parameters:
            - pos_dframe (pandas.DataFrame): DLC output as pandas.DataFrame; only applicable
            to two-animal experiments.
            - left1 (string): First contact point of animal 1
            - left2 (string): Second contact point of animal 1
            - right1 (string): First contact point of animal 2
            - right2 (string): Second contact point of animal 2
            - tol (float): maximum distance for which a contact is reported
            - arena_abs (int): length in mm of the diameter of the real arena
            - arena_rel (int): length in pixels of the diameter of the arena in the video
            - rev (bool): reverses the default behaviour (nose2tail contact for both mice)

        Returns:
            - double_contact (np.array): True if the distance between the two specified points
            is less than tol, False otherwise"""

    if rev:
        double_contact = (
lucas_miranda's avatar
lucas_miranda committed
88
89
90
91
92
93
94
95
            (np.linalg.norm(pos_dframe[right1] - pos_dframe[left2], axis=1) * arena_abs)
            / arena_rel
            < tol
        ) & (
            (np.linalg.norm(pos_dframe[right2] - pos_dframe[left1], axis=1) * arena_abs)
            / arena_rel
            < tol
        )
96
97
98

    else:
        double_contact = (
lucas_miranda's avatar
lucas_miranda committed
99
100
101
102
103
104
105
106
            (np.linalg.norm(pos_dframe[right1] - pos_dframe[left1], axis=1) * arena_abs)
            / arena_rel
            < tol
        ) & (
            (np.linalg.norm(pos_dframe[right2] - pos_dframe[left2], axis=1) * arena_abs)
            / arena_rel
            < tol
        )
107
108
109
110
111

    return double_contact


def climb_wall(
112
113
114
115
116
117
    arena_type: str,
    arena: np.array,
    pos_dict: pd.DataFrame,
    tol: float,
    nose: str,
    centered_data: bool = True,
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
) -> np.array:
    """Returns True if the specified mouse is climbing the wall

        Parameters:
            - arena_type (str): arena type; must be one of ['circular']
            - arena (np.array): contains arena location and shape details
            - pos_dict (table_dict): position over time for all videos in a project
            - tol (float): minimum tolerance to report a hit
            - nose (str): indicates the name of the body part representing the nose of
            the selected animal

        Returns:
            - climbing (np.array): boolean array. True if selected animal
            is climbing the walls of the arena"""

    nose = pos_dict[nose]

    if arena_type == "circular":
136
        center = np.zeros(2) if centered_data else np.array(arena[:2])
137
138
139
140
141
142
143
144
145
        climbing = np.linalg.norm(nose - center, axis=1) > (arena[2] + tol)

    else:
        raise NotImplementedError("Supported values for arena_type are ['circular']")

    return climbing


def huddle(
lucas_miranda's avatar
lucas_miranda committed
146
147
148
149
150
151
    pos_dframe: pd.DataFrame,
    speed_dframe: pd.DataFrame,
    tol_forward: float,
    tol_spine: float,
    tol_speed: float,
    animal_id: str = "",
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
) -> np.array:
    """Returns true when the mouse is huddling using simple rules. (!!!) Designed to
    work with deepof's default DLC mice models; not guaranteed to work otherwise.

        Parameters:
            - pos_dframe (pandas.DataFrame): position of body parts over time
            - speed_dframe (pandas.DataFrame): speed of body parts over time
            - tol_forward (float): Maximum tolerated distance between ears and
            forward limbs
            - tol_rear (float): Maximum tolerated average distance between spine
            body parts
            - tol_speed (float): Maximum tolerated speed for the center of the mouse

        Returns:
            hudd (np.array): True if the animal is huddling, False otherwise
        """

    if animal_id != "":
        animal_id += "_"

    forward = (
lucas_miranda's avatar
lucas_miranda committed
173
174
175
176
177
178
179
180
181
182
183
184
        np.linalg.norm(
            pos_dframe[animal_id + "Left_ear"] - pos_dframe[animal_id + "Left_fhip"],
            axis=1,
        )
        < tol_forward
    ) & (
        np.linalg.norm(
            pos_dframe[animal_id + "Right_ear"] - pos_dframe[animal_id + "Right_fhip"],
            axis=1,
        )
        < tol_forward
    )
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    spine = [
        animal_id + "Spine_1",
        animal_id + "Center",
        animal_id + "Spine_2",
        animal_id + "Tail_base",
    ]
    spine_dists = []
    for comb in range(2):
        spine_dists.append(
            np.linalg.norm(
                pos_dframe[spine[comb]] - pos_dframe[spine[comb + 1]], axis=1
            )
        )
    spine = np.mean(spine_dists) < tol_spine
    speed = speed_dframe[animal_id + "Center"] < tol_speed
    hudd = forward & spine & speed

    return hudd


def following_path(
lucas_miranda's avatar
lucas_miranda committed
207
208
209
210
211
212
    distance_dframe: pd.DataFrame,
    position_dframe: pd.DataFrame,
    follower: str,
    followed: str,
    frames: int = 20,
    tol: float = 0,
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
) -> np.array:
    """For multi animal videos only. Returns True if 'follower' is closer than tol to the path that
    followed has walked over the last specified number of frames

        Parameters:
            - distance_dframe (pandas.DataFrame): distances between bodyparts; generated by the preprocess module
            - position_dframe (pandas.DataFrame): position of bodyparts; generated by the preprocess module
            - follower (str) identifier for the animal who's following
            - followed (str) identifier for the animal who's followed
            - frames (int) frames in which to track whether the process consistently occurs,
            - tol (float) Maximum distance for which True is returned

        Returns:
            - follow (np.array): boolean sequence, True if conditions are fulfilled, False otherwise"""

    # Check that follower is close enough to the path that followed has passed though in the last frames
    shift_dict = {
        i: position_dframe[followed + "_Tail_base"].shift(i) for i in range(frames)
    }
    dist_df = pd.DataFrame(
        {
            i: np.linalg.norm(
                position_dframe[follower + "_Nose"] - shift_dict[i], axis=1
            )
            for i in range(frames)
        }
    )

    # Check that the animals are oriented follower's nose -> followed's tail
    right_orient1 = (
lucas_miranda's avatar
lucas_miranda committed
243
244
245
246
        distance_dframe[tuple(sorted([follower + "_Nose", followed + "_Tail_base"]))]
        < distance_dframe[
            tuple(sorted([follower + "_Tail_base", followed + "_Tail_base"]))
        ]
247
248
249
    )

    right_orient2 = (
lucas_miranda's avatar
lucas_miranda committed
250
251
        distance_dframe[tuple(sorted([follower + "_Nose", followed + "_Tail_base"]))]
        < distance_dframe[tuple(sorted([follower + "_Nose", followed + "_Nose"]))]
252
253
254
255
256
257
258
259
260
261
    )

    follow = np.all(
        np.array([(dist_df.min(axis=1) < tol), right_orient1, right_orient2]), axis=0,
    )

    return follow


def single_behaviour_analysis(
lucas_miranda's avatar
lucas_miranda committed
262
263
264
265
266
267
268
    behaviour_name: str,
    treatment_dict: dict,
    behavioural_dict: dict,
    plot: int = 0,
    stat_tests: bool = True,
    save: str = None,
    ylim: float = None,
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
) -> list:
    """Given the name of the behaviour, a dictionary with the names of the groups to compare, and a dictionary
       with the actual tags, outputs a box plot and a series of significance tests amongst the groups

        Parameters:
            - behaviour_name (str): name of the behavioural trait to analize
            - treatment_dict (dict): dictionary containing video names as keys and experimental conditions as values
            - behavioural_dict (dict): tagged dictionary containing video names as keys and annotations as values
            - plot (int): Silent if 0; otherwise, indicates the dpi of the figure to plot
            - stat_tests (bool): performs FDR corrected Mann-U non-parametric tests among all groups if True
            - save (str): Saves the produced figure to the specified file
            - ylim (float): y-limit for the boxplot. Ignored if plot == False

        Returns:
            - beh_dict (dict): dictionary containing experimental conditions as keys and video names as values
            - stat_dict (dict): dictionary containing condition pairs as keys and stat results as values"""

    beh_dict = {condition: [] for condition in treatment_dict.keys()}

    for condition in beh_dict.keys():
        for ind in treatment_dict[condition]:
            beh_dict[condition].append(
                np.sum(behavioural_dict[ind][behaviour_name])
                / len(behavioural_dict[ind][behaviour_name])
            )

    return_list = [beh_dict]

    if plot > 0:

        fig, ax = plt.subplots(dpi=plot)

        sns.boxplot(
            list(beh_dict.keys()), list(beh_dict.values()), orient="vertical", ax=ax
        )

        ax.set_title("{} across groups".format(behaviour_name))
        ax.set_ylabel("Proportion of frames")

        if ylim is not None:
            ax.set_ylim(ylim)

        if save is not None:  # pragma: no cover
            plt.savefig(save)

        return_list.append(fig)

    if stat_tests:
        stat_dict = {}
        for i in combinations(treatment_dict.keys(), 2):
            # Solves issue with automatically generated examples
lucas_miranda's avatar
lucas_miranda committed
320
321
322
323
324
325
326
327
            if np.any(
                np.array(
                    [
                        beh_dict[i[0]] == beh_dict[i[1]],
                        np.var(beh_dict[i[0]]) == 0,
                        np.var(beh_dict[i[1]]) == 0,
                    ]
                )
328
329
330
331
332
333
334
335
336
337
338
339
            ):
                stat_dict[i] = "Identical sources. Couldn't run"
            else:
                stat_dict[i] = stats.mannwhitneyu(
                    beh_dict[i[0]], beh_dict[i[1]], alternative="two-sided"
                )
        return_list.append(stat_dict)

    return return_list


def max_behaviour(
lucas_miranda's avatar
lucas_miranda committed
340
    behaviour_dframe: pd.DataFrame, window_size: int = 10, stepped: bool = False
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
) -> np.array:
    """Returns the most frequent behaviour in a window of window_size frames

        Parameters:
                - behaviour_dframe (pd.DataFrame): boolean matrix containing occurrence
                of tagged behaviours per frame in the video
                - window_size (int): size of the window to use when computing
                the maximum behaviour per time slot
                - stepped (bool): sliding windows don't overlap if True. False by default

        Returns:
            - max_array (np.array): string array with the most common behaviour per instance
            of the sliding window"""

    speeds = [col for col in behaviour_dframe.columns if "speed" in col.lower()]

    behaviour_dframe = behaviour_dframe.drop(speeds, axis=1).astype("float")
    win_array = behaviour_dframe.rolling(window_size, center=True).sum()
    if stepped:
        win_array = win_array[::window_size]
    max_array = win_array[1:].idxmax(axis=1)

    return np.array(max_array)


366
# noinspection PyDefaultArgument
lucas_miranda's avatar
lucas_miranda committed
367
368
369
def get_hparameters(hparams: dict = {}) -> dict:
    """Returns the most frequent behaviour in a window of window_size frames

370
371
        Parameters:
            - hparams (dict): dictionary containing hyperparameters to overwrite
lucas_miranda's avatar
lucas_miranda committed
372

373
374
375
        Returns:
            - defaults (dict): dictionary with overwriten parameters. Those not
            specified in the input retain their default values"""
lucas_miranda's avatar
lucas_miranda committed
376
377
378
379
380
381
382
383
384

    defaults = {
        "speed_pause": 10,
        "close_contact_tol": 15,
        "side_contact_tol": 15,
        "follow_frames": 20,
        "follow_tol": 20,
        "huddle_forward": 15,
        "huddle_spine": 10,
lucas_miranda's avatar
lucas_miranda committed
385
        "huddle_speed": 0.1,
lucas_miranda's avatar
lucas_miranda committed
386
        "fps": 24,
lucas_miranda's avatar
lucas_miranda committed
387
    }
388

lucas_miranda's avatar
lucas_miranda committed
389
390
    for k, v in hparams.items():
        defaults[k] = v
391

lucas_miranda's avatar
lucas_miranda committed
392
393
394
    return defaults


395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# noinspection PyDefaultArgument
def frame_corners(w, h, corners: dict = {}):
    """Returns a dictionary with the corner positions of the video frame

        Parameters:
            - w (int): width of the frame in pixels
            - h (int): height of the frame in pixels
            - corners (dict): dictionary containing corners to overwrite

        Returns:
            - defaults (dict): dictionary with overwriten parameters. Those not
            specified in the input retain their default values"""

    defaults = {
        "downleft": (int(w * 0.3 / 10), int(h / 1.05)),
        "downright": (int(w * 6.5 / 10), int(h / 1.05)),
        "upleft": (int(w * 0.3 / 10), int(h / 20)),
        "upright": (int(w * 6.3 / 10), int(h / 20)),
    }

    for k, v in corners.items():
        defaults[k] = v

    return defaults


421
# noinspection PyDefaultArgument,PyProtectedMember
422
def rule_based_tagging(
lucas_miranda's avatar
lucas_miranda committed
423
424
425
426
    tracks: List,
    videos: List,
    coordinates: Coordinates,
    vid_index: int,
427
    arena_type: str,
lucas_miranda's avatar
lucas_miranda committed
428
429
430
    recog_limit: int = 1,
    path: str = os.path.join("."),
    hparams: dict = {},
431
432
433
434
435
436
437
438
439
) -> pd.DataFrame:
    """Outputs a dataframe with the registered motives per frame. If specified, produces a labeled
    video displaying the information in real time

    Parameters:
        - tracks (list): list containing experiment IDs as strings
        - videos (list): list of videos to load, in the same order as tracks
        - coordinates (deepof.preprocessing.coordinates): coordinates object containing the project information
        - vid_index (int): index in videos of the experiment to annotate
lucas_miranda's avatar
lucas_miranda committed
440
        - path (str): directory in which the experimental data is stored
441
        - recog_limit (int): number of frames to use for arena recognition (1 by default)
lucas_miranda's avatar
lucas_miranda committed
442
443
444
445
446
447
448
449
450
451
452
        - hparams (dict): dictionary to overwrite the default values of the hyperparameters of the functions
        that the rule-based pose estimation utilizes. Values can be:
            - speed_pause (int): size of the rolling window to use when computing speeds
            - close_contact_tol (int): maximum distance between single bodyparts that can be used to report the trait
            - side_contact_tol (int): maximum distance between single bodyparts that can be used to report the trait
            - follow_frames (int): number of frames during which the following trait is tracked
            - follow_tol (int): maximum distance between follower and followed's path during the last follow_frames,
            in order to report a detection
            - huddle_forward (int): maximum distance between ears and forward limbs to report a huddle detection
            - huddle_spine (int): maximum average distance between spine body parts to report a huddle detection
            - huddle_speed (int): maximum speed to report a huddle detection
453
454
455
456
457

    Returns:
        - tag_df (pandas.DataFrame): table with traits as columns and frames as rows. Each
        value is a boolean indicating trait detection at a given time"""

lucas_miranda's avatar
lucas_miranda committed
458
    hparams = get_hparameters(hparams)
459
    animal_ids = coordinates._animal_ids
460
    undercond = "_" if len(animal_ids) > 1 else ""
lucas_miranda's avatar
lucas_miranda committed
461

462
    try:
463
        vid_name = re.findall("(.*)DLC", tracks[vid_index])[0]
464
465
    except IndexError:
        vid_name = tracks[vid_index]
466
467
468
469
470

    coords = coordinates.get_coords()[vid_name]
    speeds = coordinates.get_coords(speed=1)[vid_name]
    arena_abs = coordinates.get_arenas[1][0]
    arena, h, w = deepof.utils.recognize_arena(
471
        videos, vid_index, path, recog_limit, coordinates._arena
472
473
474
475
476
    )

    # Dictionary with motives per frame
    tag_dict = {}

477
478
479
480
    def onebyone_contact(bparts: List):
        """Returns a smooth boolean array with 1to1 contacts between two mice"""
        nonlocal coords, animal_ids, hparams, arena_abs, arena
        return deepof.utils.smooth_boolean_array(
481
482
            close_single_contact(
                coords,
483
484
                animal_ids[0] + bparts[0],
                animal_ids[1] + bparts[-1],
lucas_miranda's avatar
lucas_miranda committed
485
                hparams["close_contact_tol"],
486
487
488
489
                arena_abs,
                arena[2],
            )
        )
490
491
492
493
494
495

    def twobytwo_contact(rev):
        """Returns a smooth boolean array with side by side contacts between two mice"""

        nonlocal coords, animal_ids, hparams, arena_abs, arena
        return deepof.utils.smooth_boolean_array(
496
497
498
499
500
501
            close_double_contact(
                coords,
                animal_ids[0] + "_Nose",
                animal_ids[0] + "_Tail_base",
                animal_ids[1] + "_Nose",
                animal_ids[1] + "_Tail_base",
lucas_miranda's avatar
lucas_miranda committed
502
                hparams["side_contact_tol"],
503
                rev=rev,
504
505
506
507
                arena_abs=arena_abs,
                arena_rel=arena[2],
            )
        )
508

509
    if len(animal_ids) == 2:
510
511
512
513
514
515
516
517
518
519
520
        # Define behaviours that can be computed on the fly from the distance matrix
        tag_dict["nose2nose"] = onebyone_contact(bparts=["_Nose"])

        tag_dict["sidebyside"] = twobytwo_contact(rev=False)

        tag_dict["sidereside"] = twobytwo_contact(rev=True)

        for i, _id in enumerate(animal_ids):
            bps = [["_Nose", "_Tail_base"], ["_Tail_base", "_Nose"]]
            tag_dict[_id + "_nose2tail"] = onebyone_contact(bparts=bps)

521
522
523
524
525
526
527
        for _id in animal_ids:
            tag_dict[_id + "_following"] = deepof.utils.smooth_boolean_array(
                following_path(
                    coords[vid_name],
                    coords,
                    follower=_id,
                    followed=[i for i in animal_ids if i != _id][0],
lucas_miranda's avatar
lucas_miranda committed
528
529
                    frames=hparams["follow_frames"],
                    tol=hparams["follow_tol"],
530
531
532
                )
            )

533
534
    for _id in animal_ids:
        tag_dict[_id + undercond + "climbing"] = deepof.utils.smooth_boolean_array(
535
            climb_wall(arena_type, arena, coords, 0.05, _id + undercond + "Nose")
536
        )
537
538
        tag_dict[_id + undercond + "speed"] = speeds[_id + undercond + "Center"]
        tag_dict[_id + undercond + "huddle"] = deepof.utils.smooth_boolean_array(
lucas_miranda's avatar
lucas_miranda committed
539
540
541
542
543
544
545
            huddle(
                coords,
                speeds,
                hparams["huddle_forward"],
                hparams["huddle_spine"],
                hparams["huddle_speed"],
            )
546
547
        )

548
549
550
551
552
    tag_df = pd.DataFrame(tag_dict)

    return tag_df


lucas_miranda's avatar
lucas_miranda committed
553
554
555
556
557
558
559
560
def tag_rulebased_frames(
    frame,
    font,
    frame_speeds,
    animal_ids,
    corners,
    tag_dict,
    fnum,
lucas_miranda's avatar
lucas_miranda committed
561
    dims,
lucas_miranda's avatar
lucas_miranda committed
562
563
564
    undercond,
    hparams,
):
lucas_miranda's avatar
lucas_miranda committed
565
566
567
568
569
    """Helper function for rule_based_video. Annotates a fiven frame with on-screen information
    about the recognised patterns"""

    w, h = dims

lucas_miranda's avatar
lucas_miranda committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    def write_on_frame(text, pos, col=(255, 255, 255)):
        """Partial closure over cv2.putText to avoid code repetition"""
        return cv2.putText(frame, text, pos, font, 1, col, 2)

    def conditional_pos():
        """Returns a position depending on a condition"""
        if frame_speeds[animal_ids[0]] > frame_speeds[animal_ids[1]]:
            return corners["downleft"]
        else:
            return corners["downright"]

    def conditional_col(cond=None):
        """Returns a colour depending on a condition"""
        if cond is None:
            cond = frame_speeds[animal_ids[0]] > frame_speeds[animal_ids[1]]
        if cond:
            return 150, 150, 255
        else:
            return 150, 255, 150

    zipped_pos = zip(
        animal_ids,
        [corners["downleft"], corners["downright"]],
        [corners["upleft"], corners["upright"]],
    )

    if len(animal_ids) > 1:
        if tag_dict["nose2nose"][fnum] and not tag_dict["sidebyside"][fnum]:
            write_on_frame("Nose-Nose", conditional_pos())
        if (
            tag_dict[animal_ids[0] + "_nose2tail"][fnum]
            and not tag_dict["sidereside"][fnum]
        ):
            write_on_frame("Nose-Tail", corners["downleft"])
        if (
            tag_dict[animal_ids[1] + "_nose2tail"][fnum]
            and not tag_dict["sidereside"][fnum]
        ):
            write_on_frame("Nose-Tail", corners["downright"])
        if tag_dict["sidebyside"][fnum]:
            write_on_frame(
                "Side-side", conditional_pos(),
            )
        if tag_dict["sidereside"][fnum]:
            write_on_frame(
                "Side-Rside", conditional_pos(),
            )
        for _id, down_pos, up_pos in zipped_pos:
            if (
                tag_dict[_id + "_following"][fnum]
                and not tag_dict[_id + "_climbing"][fnum]
            ):
                write_on_frame(
                    "*f", (int(w * 0.3 / 10), int(h / 10)), conditional_col(),
                )

    for _id, down_pos, up_pos in zipped_pos:

        if tag_dict[_id + undercond + "climbing"][fnum]:
            write_on_frame("Climbing", down_pos)
        if (
            tag_dict[_id + undercond + "huddle"][fnum]
            and not tag_dict[_id + undercond + "climbing"][fnum]
        ):
            write_on_frame("huddle", down_pos)

        # Define the condition controlling the colour of the speed display
        if len(animal_ids) > 1:
            colcond = frame_speeds[_id] == max(list(frame_speeds.values()))
        else:
            colcond = hparams["huddle_speed"] > frame_speeds

        write_on_frame(
            str(np.round(frame_speeds, 2)) + " mmpf",
            up_pos,
            conditional_col(cond=colcond),
        )


lucas_miranda's avatar
lucas_miranda committed
649
# noinspection PyProtectedMember,PyDefaultArgument
650
def rule_based_video(
lucas_miranda's avatar
lucas_miranda committed
651
652
653
654
655
656
657
658
659
    coordinates: Coordinates,
    tracks: List,
    videos: List,
    vid_index: int,
    tag_dict: pd.DataFrame,
    frame_limit: int = np.inf,
    recog_limit: int = 1,
    path: str = os.path.join("."),
    hparams: dict = {},
lucas_miranda's avatar
lucas_miranda committed
660
) -> True:
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
    """Renders a version of the input video with all rule-based taggings in place.

    Parameters:
        - tracks (list): list containing experiment IDs as strings
        - videos (list): list of videos to load, in the same order as tracks
        - coordinates (deepof.preprocessing.coordinates): coordinates object containing the project information
        - vid_index (int): index in videos of the experiment to annotate
        - fps (float): frames per second of the analysed video. Same as input by default
        - path (str): directory in which the experimental data is stored
        - frame_limit (float): limit the number of frames to output. Generates all annotated frames by default
        - recog_limit (int): number of frames to use for arena recognition (1 by default)
        - hparams (dict): dictionary to overwrite the default values of the hyperparameters of the functions
        that the rule-based pose estimation utilizes. Values can be:
            - speed_pause (int): size of the rolling window to use when computing speeds
            - close_contact_tol (int): maximum distance between single bodyparts that can be used to report the trait
            - side_contact_tol (int): maximum distance between single bodyparts that can be used to report the trait
            - follow_frames (int): number of frames during which the following trait is tracked
            - follow_tol (int): maximum distance between follower and followed's path during the last follow_frames,
            in order to report a detection
            - huddle_forward (int): maximum distance between ears and forward limbs to report a huddle detection
            - huddle_spine (int): maximum average distance between spine body parts to report a huddle detection
            - huddle_speed (int): maximum speed to report a huddle detection

    Returns:
        True

    """

lucas_miranda's avatar
lucas_miranda committed
689
    # DATA OBTENTION AND PREPARATION
lucas_miranda's avatar
lucas_miranda committed
690
    hparams = get_hparameters(hparams)
691
    animal_ids = coordinates._animal_ids
lucas_miranda's avatar
lucas_miranda committed
692
    undercond = "_" if len(animal_ids) > 1 else ""
693

694
    try:
695
        vid_name = re.findall("(.*)DLC", tracks[vid_index])[0]
696
697
    except IndexError:
        vid_name = tracks[vid_index]
698
699
700
701
702
703

    coords = coordinates.get_coords()[vid_name]
    speeds = coordinates.get_coords(speed=1)[vid_name]
    arena, h, w = deepof.utils.recognize_arena(
        videos, vid_index, path, recog_limit, coordinates._arena
    )
704
    corners = frame_corners(h, w)
705

lucas_miranda's avatar
lucas_miranda committed
706
707
708
709
    cap = cv2.VideoCapture(os.path.join(path, videos[vid_index]))
    # Keep track of the frame number, to align with the tracking data
    fnum = 0
    writer = None
lucas_miranda's avatar
lucas_miranda committed
710
711
712
    frame_speeds = (
        {_id: -np.inf for _id in animal_ids} if len(animal_ids) > 1 else -np.inf
    )
713

lucas_miranda's avatar
lucas_miranda committed
714
715
716
    # Loop over the frames in the video
    pbar = tqdm(total=min(coords.shape[0] - recog_limit, frame_limit))
    while cap.isOpened() and fnum < frame_limit:
717

lucas_miranda's avatar
lucas_miranda committed
718
719
720
721
722
        ret, frame = cap.read()
        # if frame is read correctly ret is True
        if not ret:  # pragma: no cover
            print("Can't receive frame (stream end?). Exiting ...")
            break
723

lucas_miranda's avatar
lucas_miranda committed
724
        font = cv2.FONT_HERSHEY_COMPLEX_SMALL
725

lucas_miranda's avatar
lucas_miranda committed
726
727
728
        # Capture speeds
        try:
            if (
lucas_miranda's avatar
lucas_miranda committed
729
730
                list(frame_speeds.values())[0] == -np.inf
                or fnum % hparams["speed_pause"] == 0
lucas_miranda's avatar
lucas_miranda committed
731
732
            ):
                for _id in animal_ids:
lucas_miranda's avatar
lucas_miranda committed
733
                    frame_speeds[_id] = speeds[_id + undercond + "Center"][fnum]
lucas_miranda's avatar
lucas_miranda committed
734
735
736
737
738
        except AttributeError:
            if frame_speeds == -np.inf or fnum % hparams["speed_pause"] == 0:
                frame_speeds = speeds["Center"][fnum]

        # Display all annotations in the output video
lucas_miranda's avatar
lucas_miranda committed
739
740
741
742
        tag_rulebased_frames(
            frame,
            font,
            frame_speeds,
lucas_miranda's avatar
lucas_miranda committed
743
            animal_ids,
lucas_miranda's avatar
lucas_miranda committed
744
745
746
            corners,
            tag_dict,
            fnum,
lucas_miranda's avatar
lucas_miranda committed
747
            (w, h),
lucas_miranda's avatar
lucas_miranda committed
748
749
            undercond,
            hparams,
lucas_miranda's avatar
lucas_miranda committed
750
751
        )

lucas_miranda's avatar
lucas_miranda committed
752
753
754
755
756
        if writer is None:
            # Define the codec and create VideoWriter object.The output is stored in 'outpy.avi' file.
            # Define the FPS. Also frame size is passed.
            writer = cv2.VideoWriter()
            writer.open(
757
                vid_name + "_tagged.avi",
lucas_miranda's avatar
lucas_miranda committed
758
759
760
761
762
                cv2.VideoWriter_fourcc(*"MJPG"),
                hparams["fps"],
                (frame.shape[1], frame.shape[0]),
                True,
            )
763

lucas_miranda's avatar
lucas_miranda committed
764
        writer.write(frame)
765

lucas_miranda's avatar
lucas_miranda committed
766
767
        pbar.update(1)
        fnum += 1
768

lucas_miranda's avatar
lucas_miranda committed
769
770
    cap.release()
    cv2.destroyAllWindows()
lucas_miranda's avatar
lucas_miranda committed
771
772

    return True