train_utils.py 17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

11
from datetime import date, datetime
12
from kerastuner import BayesianOptimization, Hyperband
13
from kerastuner import HyperParameters
14
from kerastuner_tensorboard_logger import TensorBoardLogger
15
from tensorboard.plugins.hparams import api as hp
16
from typing import Tuple, Union, Any, List
17
18
19
20
21
22
23
import deepof.hypermodels
import deepof.model_utils
import numpy as np
import os
import pickle
import tensorflow as tf

24
25
26
27
28
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


29
class CustomStopper(tf.keras.callbacks.EarlyStopping):
30
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


48
def load_hparams(hparams):
49
50
51
52
53
54
55
56
    """Loads hyperparameters from a custom dictionary pickled on disc.
    Thought to be used with the output of hyperparameter_tuning.py"""

    if hparams is not None:
        with open(hparams, "rb") as handle:
            hparams = pickle.load(handle)
    else:
        hparams = {
57
58
59
60
61
            "bidirectional_merge": "ave",
            "clipvalue": 1.0,
            "dense_activation": "relu",
            "dense_layers_per_branch": 1,
            "dropout_rate": 1e-3,
62
            "learning_rate": 1e-3,
63
64
65
            "units_conv": 160,
            "units_dense2": 120,
            "units_lstm": 300,
66
67
68
69
70
71
72
73
74
75
76
        }
    return hparams


def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
            os.path.join(
                train_path,
77
                [i for i in os.listdir(train_path) if i.endswith(".pkl")][0],
78
79
80
81
82
83
84
85
86
87
88
            ),
            "rb",
        ) as handle:
            treatment_dict = pickle.load(handle)
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
lucas_miranda's avatar
lucas_miranda committed
89
90
91
92
    X_train: np.array,
    batch_size: int,
    cp: bool,
    variational: bool,
93
    phenotype_class: float,
lucas_miranda's avatar
lucas_miranda committed
94
95
    predictor: float,
    loss: str,
96
    logparam: dict = None,
97
    outpath: str = ".",
98
) -> List[Union[Any]]:
99
    """Generates callbacks for model training, including:
100
101
102
103
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
104

105
    run_ID = "{}{}{}{}{}{}_{}".format(
106
        ("GMVAE" if variational else "AE"),
107
108
        ("Pred={}".format(predictor) if predictor > 0 and variational else ""),
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
109
        ("_loss={}".format(loss) if variational else ""),
110
111
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
112
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
113
114
    )

115
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
116
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
117
118
119
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
120
121
122
    )

    onecycle = deepof.model_utils.one_cycle_scheduler(
123
124
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
125
126
    )

127
128
129
130
    callbacks = [run_ID, tensorboard_callback, onecycle]

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
131
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
132
133
134
135
136
137
138
139
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
140
141


lucas_miranda's avatar
lucas_miranda committed
142
def log_hyperparameters(phenotype_class):
lucas_miranda's avatar
lucas_miranda committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    rec = "reconstruction_" if phenotype_class else ""
    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
def tensorboard_metric_logging(run_dir: str, hpms: Any):
    """Autoencoder metric logging in tensorboard"""

    output = ae.predict(X_val)
    if phenotype_class or predictor:
        reconstruction = output[0]
        prediction = output[1]
        pheno = output[-1]
    else:
        reconstruction = output

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
        val_mae = tf.reduce_mean(
            tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
        )
        val_mse = tf.reduce_mean(
            tf.keras.metrics.mean_squared_error(X_val, reconstruction)
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

        if predictor:
            pred_mae = tf.reduce_mean(
                tf.keras.metrics.mean_absolute_error(X_val, prediction)
            )
            pred_mse = tf.reduce_mean(
                tf.keras.metrics.mean_squared_error(X_val, prediction)
            )
            tf.summary.scalar("val_prediction_mae".format(rec), pred_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), pred_mse, step=1)

        if phenotype_class:
            pheno_acc = tf.keras.metrics.binary_accuracy(y_val, tf.squeeze(pheno))
            pheno_auc = roc_auc_score(y_val, pheno)

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)


235
def autoencoder_fitting(
236
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
237
238
    batch_size: int,
    encoding_size: int,
239
    epochs: int,
240
241
242
243
244
245
246
247
248
249
250
251
252
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
    mmd_warmup,
    montecarlo_kl,
    n_components,
    output_path,
    phenotype_class,
    predictor: float,
    pretrained: str,
    save_checkpoints: bool,
253
    save_weights: bool,
254
    variational: bool,
255
):
256
257
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

258
    # Load data
259
260
261
262
263
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

264
    # Defines what to log on tensorboard (useful for trying out different models)
265

266
267
    logparam = {
        "encoding": encoding_size,
268
        "k": n_components,
269
270
271
272
273
        "loss": loss,
    }
    if phenotype_class:
        logparam["pheno_weight"] = phenotype_class

274
    # Load callbacks
275
    run_ID, *cbacks = get_callbacks(
276
277
278
279
        X_train=X_train,
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
280
        phenotype_class=phenotype_class,
281
282
283
284
285
        predictor=predictor,
        loss=loss,
        logparam=logparam,
        outpath=output_path,
    )
286
287
    if not log_history:
        cbacks = cbacks[1:]
288

289
    # Logs hyperparameters to tensorboard
290
    if log_hparams:
lucas_miranda's avatar
lucas_miranda committed
291
        logparams, metrics = log_hyperparameters(phenotype_class)
292
293
294
295
296
297
298
299

        with tf.summary.create_file_writer(
            os.path.join(output_path, "hparams", run_ID)
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
300

301
    # Build models
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
        (
            encoder,
            generator,
            grouper,
            ae,
            kl_warmup_callback,
            mmd_warmup_callback,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            phenotype_prediction=phenotype_class,
            predictor=predictor,
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
336
        # If pretrained models are specified, load weights and return
337
338
339
340
341
342
343
344
345
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
346
                epochs=epochs,
347
348
349
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
350
351
                callbacks=cbacks
                + [
352
353
354
355
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
356
                        start_epoch=max(kl_warmup, mmd_warmup),
357
358
359
360
                    ),
                ],
            )

361
362
363
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

364
365
        else:

366
            callbacks_ = cbacks + [
367
368
369
370
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
371
                    start_epoch=max(kl_warmup, mmd_warmup),
372
373
374
                ),
            ]

375
            if "ELBO" in loss and kl_warmup > 0:
376
377
                # noinspection PyUnboundLocalVariable
                callbacks_.append(kl_warmup_callback)
378
            if "MMD" in loss and mmd_warmup > 0:
379
380
381
                # noinspection PyUnboundLocalVariable
                callbacks_.append(mmd_warmup_callback)

382
383
384
385
386
387
388
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

            if predictor > 0.0:
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

389
            if phenotype_class > 0.0:
390
391
392
                ys += [y_train]
                yvals += [y_val]

393
            ae.fit(
394
395
                x=Xs,
                y=ys,
396
                epochs=epochs,
397
398
399
400
401
402
403
404
405
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

406
407
408
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

409
410
411
412
413
414
            if log_hparams:
                # Logparams to tensorboard
                tensorboard_metric_logging(
                    os.path.join(output_path, "hparams", run_ID),
                    logparam,
                )
415

416
417
418
    return return_list


419
def tune_search(
420
    data: List[np.array],
421
    encoding_size: int,
422
423
    hypertun_trials: int,
    hpt_type: str,
424
425
    hypermodel: str,
    k: int,
426
    kl_warmup_epochs: int,
427
    loss: str,
428
    mmd_warmup_epochs: int,
429
    overlap_loss: float,
430
    phenotype_class: float,
431
432
    predictor: float,
    project_name: str,
433
    callbacks: List,
434
    n_epochs: int = 30,
435
    n_replicas: int = 1,
436
) -> Union[bool, Tuple[Any, Any]]:
437
438
    """Define the search space using keras-tuner and bayesian optimization

439
440
441
442
443
444
445
446
447
448
449
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
450
        - phenotype_class (float): adds an extra regularizing neural network to the model,
451
452
453
454
455
456
457
458
459
460
461
462
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
463
464
465

    """

466
467
    X_train, y_train, X_val, y_val = data

468
469
470
471
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
472
    if hypermodel == "S2SAE":  # pragma: no cover
473
        assert (
474
            predictor == 0.0 and phenotype_class == 0.0
475
        ), "Prediction branches are only available for variational models. See documentation for more details"
476
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
477
478
479

    elif hypermodel == "S2SGMVAE":
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
480
            input_shape=X_train.shape,
481
            encoding=encoding_size,
482
            kl_warmup_epochs=kl_warmup_epochs,
483
            loss=loss,
484
            mmd_warmup_epochs=mmd_warmup_epochs,
485
            number_of_components=k,
486
            overlap_loss=overlap_loss,
487
            phenotype_predictor=phenotype_class,
488
            predictor=predictor,
489
        )
lucas_miranda's avatar
lucas_miranda committed
490

491
492
493
    else:
        return False

494
495
496
497
498
499
500
501
502
503
504
505
506
507
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
        "logger": TensorBoardLogger(metrics=["val_mae"], logdir="./logs/hparams"),
        "objective": "val_mae",
        "project_name": project_name,
        "seed": 42,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
            directory="HyperBandx_{}_{}".format(loss, str(date.today())),
            max_epochs=hypertun_trials,
508
            hyperband_iterations=3,
lucas_miranda's avatar
lucas_miranda committed
509
            factor=2,
510
511
512
513
514
515
516
517
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
            directory="BayOpt_{}_{}".format(loss, str(date.today())),
            max_trials=hypertun_trials,
            **hpt_params
        )
518
519
520

    print(tuner.search_space_summary())

521
522
523
524
525
526
527
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

528
    if phenotype_class > 0.0:
529
530
531
        ys += [y_train]
        yvals += [y_val]

532
    tuner.search(
533
534
        Xs,
        ys,
535
        epochs=n_epochs,
536
        validation_data=(Xvals, yvals),
537
538
        verbose=1,
        batch_size=256,
lucas_miranda's avatar
lucas_miranda committed
539
        callbacks=callbacks,
540
541
542
543
544
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
545
546
    print(tuner.results_summary())

547
    return best_hparams, best_run