train_utils.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

lucas_miranda's avatar
lucas_miranda committed
11
12
import json
import os
13
from datetime import date, datetime
lucas_miranda's avatar
lucas_miranda committed
14
15
16
17
from typing import Tuple, Union, Any, List

import numpy as np
import tensorflow as tf
18
from kerastuner import BayesianOptimization, Hyperband
19
from kerastuner_tensorboard_logger import TensorBoardLogger
lucas_miranda's avatar
lucas_miranda committed
20
from sklearn.metrics import roc_auc_score
21
from tensorboard.plugins.hparams import api as hp
lucas_miranda's avatar
lucas_miranda committed
22

23
24
25
import deepof.hypermodels
import deepof.model_utils

26
27
28
29
30
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


31
class CustomStopper(tf.keras.callbacks.EarlyStopping):
32
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


50
51
52
53
54
def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
55
56
57
58
59
            os.path.join(
                train_path,
                [i for i in os.listdir(train_path) if i.endswith(".json")][0],
            ),
            "r",
60
        ) as handle:
61
            treatment_dict = json.load(handle)
62
63
64
65
66
67
68
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
69
70
    X_train: np.array,
    batch_size: int,
71
72
73
    phenotype_prediction: float,
    next_sequence_prediction: float,
    rule_based_prediction: float,
74
    loss: str,
75
76
    loss_warmup: int = 0,
    warmup_mode: str = "none",
77
    X_val: np.array = None,
78
    input_type: str = False,
79
80
81
82
83
84
85
    cp: bool = False,
    reg_cat_clusters: bool = False,
    reg_cluster_variance: bool = False,
    entropy_samples: int = 15000,
    entropy_knn: int = 100,
    logparam: dict = None,
    outpath: str = ".",
86
    run: int = False,
87
) -> List[Union[Any]]:
88
    """Generates callbacks for model training, including:
89
90
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
91
92
93
94
    - cp_callback: for checkpoint saving;
    - onecycle: for learning rate scheduling;
    - entropy: neighborhood entropy in the latent space;
    """
95

96
97
98
99
100
101
102
103
    latreg = "none"
    if reg_cat_clusters and not reg_cluster_variance:
        latreg = "categorical"
    elif reg_cluster_variance and not reg_cat_clusters:
        latreg = "variance"
    elif reg_cat_clusters and reg_cluster_variance:
        latreg = "categorical+variance"

104
    run_ID = "{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}".format(
105
        ("deepof_GMVAE"),
106
        ("_input_type={}".format(input_type) if input_type else "coords"),
107
        ("_window_size={}".format(X_train.shape[1])),
108
109
110
111
        ("_NextSeqPred={}".format(next_sequence_prediction)),
        ("_PhenoPred={}".format(phenotype_prediction)),
        ("_RuleBasedPred={}".format(rule_based_prediction)),
        ("_loss={}".format(loss)),
112
113
        ("_loss_warmup={}".format(loss_warmup)),
        ("_warmup_mode={}".format(warmup_mode)),
114
115
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
116
        ("_latreg={}".format(latreg)),
117
118
        ("_entknn={}".format(entropy_knn)),
        ("_run={}".format(run) if run else ""),
119
        ("_{}".format(datetime.now().strftime("%Y%m%d-%H%M%S")) if not run else ""),
120
121
    )

122
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
123
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
124
125
126
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
127
128
    )

129
    entropy = deepof.model_utils.neighbor_latent_entropy(
130
        encoding_dim=logparam["encoding"],
131
        k=entropy_knn,
132
        samples=entropy_samples,
lucas_miranda's avatar
lucas_miranda committed
133
        validation_data=X_val,
134
        log_dir=os.path.join(outpath, "metrics", run_ID),
lucas_miranda's avatar
lucas_miranda committed
135
136
    )

137
    onecycle = deepof.model_utils.one_cycle_scheduler(
138
139
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
140
        log_dir=os.path.join(outpath, "metrics", run_ID),
141
142
    )

143
    callbacks = [run_ID, tensorboard_callback, entropy, onecycle]
144
145
146

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
147
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
148
149
150
151
152
153
154
155
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
156
157


lucas_miranda's avatar
lucas_miranda committed
158
def log_hyperparameters(phenotype_class: float, rec: str):
lucas_miranda's avatar
lucas_miranda committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
lucas_miranda's avatar
lucas_miranda committed
210
def tensorboard_metric_logging(
211
212
213
214
215
    run_dir: str,
    hpms: Any,
    ae: Any,
    X_val: np.ndarray,
    y_val: np.ndarray,
216
217
218
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
219
    rec: str,
lucas_miranda's avatar
lucas_miranda committed
220
):
lucas_miranda's avatar
lucas_miranda committed
221
222
    """Autoencoder metric logging in tensorboard"""

223
224
    outputs = ae.predict(X_val)
    idx_generator = (idx for idx in range(len(outputs)))
lucas_miranda's avatar
lucas_miranda committed
225
226
227

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
228
229
        idx = next(idx_generator)

lucas_miranda's avatar
lucas_miranda committed
230
        val_mae = tf.reduce_mean(
231
            tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx])
lucas_miranda's avatar
lucas_miranda committed
232
233
        )
        val_mse = tf.reduce_mean(
234
            tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx])
lucas_miranda's avatar
lucas_miranda committed
235
236
237
238
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

239
        if next_sequence_prediction:
240
            idx = next(idx_generator)
lucas_miranda's avatar
lucas_miranda committed
241
            pred_mae = tf.reduce_mean(
242
                tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx])
lucas_miranda's avatar
lucas_miranda committed
243
244
            )
            pred_mse = tf.reduce_mean(
245
                tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx])
246
247
248
249
250
251
            )
            tf.summary.scalar(
                "val_next_sequence_prediction_mae".format(rec), pred_mae, step=1
            )
            tf.summary.scalar(
                "val_next_sequence_prediction_mse".format(rec), pred_mse, step=1
lucas_miranda's avatar
lucas_miranda committed
252
253
            )

254
        if phenotype_prediction:
255
            idx = next(idx_generator)
256
257
258
            pheno_acc = tf.keras.metrics.binary_accuracy(
                y_val[idx], tf.squeeze(outputs[idx])
            )
259
            pheno_auc = tf.keras.metrics.AUC()
260
            pheno_auc.update_state(y_val[idx], outputs[idx])
261
            pheno_auc = pheno_auc.result().numpy()
lucas_miranda's avatar
lucas_miranda committed
262
263
264
265

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)

266
        if rule_based_prediction:
267
            idx = next(idx_generator)
268
            rules_mae = tf.reduce_mean(
269
                tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx])
270
271
            )
            rules_mse = tf.reduce_mean(
272
                tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx])
273
274
275
276
            )
            tf.summary.scalar("val_prediction_mae".format(rec), rules_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), rules_mse, step=1)

lucas_miranda's avatar
lucas_miranda committed
277

278
def autoencoder_fitting(
279
280
281
282
283
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
    batch_size: int,
    encoding_size: int,
    epochs: int,
    hparams: dict,
284
    kl_annealing_mode: str,
285
286
287
288
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
289
    mmd_annealing_mode: str,
290
291
292
293
    mmd_warmup: int,
    montecarlo_kl: int,
    n_components: int,
    output_path: str,
294
295
296
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
297
298
299
300
301
302
303
    pretrained: str,
    save_checkpoints: bool,
    save_weights: bool,
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
    entropy_samples: int,
    entropy_knn: int,
304
    input_type: str,
305
    run: int = 0,
306
    strategy: tf.distribute.Strategy = tf.distribute.MirroredStrategy(),
307
):
308
309
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

310
    # Load data
311
312
313
314
315
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

316
317
318
319
320
321
322
323
324
325
    # Set options for tf.data.Datasets
    options = tf.data.Options()
    options.experimental_distribute.auto_shard_policy = (
        tf.data.experimental.AutoShardPolicy.DATA
    )

    # Generate validation dataset for callback usage
    X_val_dataset = (
        tf.data.Dataset.from_tensor_slices(X_val)
        .with_options(options)
326
        .batch(batch_size * strategy.num_replicas_in_sync)
327
328
    )

329
    # Defines what to log on tensorboard (useful for trying out different models)
330
331
    logparam = {
        "encoding": encoding_size,
332
        "k": n_components,
333
334
        "loss": loss,
    }
335
336
    if phenotype_prediction:
        logparam["pheno_weight"] = phenotype_prediction
337

338
    # Load callbacks
339
    run_ID, *cbacks = get_callbacks(
340
341
        X_train=X_train,
        batch_size=batch_size,
342
        phenotype_prediction=phenotype_prediction,
343
        next_sequence_prediction=next_sequence_prediction,
344
        rule_based_prediction=rule_based_prediction,
345
        loss=loss,
346
347
        loss_warmup=kl_warmup,
        warmup_mode=kl_annealing_mode,
348
        input_type=input_type,
349
        X_val=(X_val_dataset if X_val.shape != (0,) else None),
350
        cp=save_checkpoints,
351
        reg_cat_clusters=reg_cat_clusters,
352
        reg_cluster_variance=reg_cluster_variance,
353
354
        entropy_samples=entropy_samples,
        entropy_knn=entropy_knn,
355
356
        logparam=logparam,
        outpath=output_path,
357
        run=run,
358
    )
359
360
    if not log_history:
        cbacks = cbacks[1:]
361

362
    # Logs hyperparameters to tensorboard
363
    rec = "reconstruction_" if phenotype_prediction else ""
364
    if log_hparams:
365
        logparams, metrics = log_hyperparameters(phenotype_prediction, rec)
366
367

        with tf.summary.create_file_writer(
368
            os.path.join(output_path, "hparams", run_ID)
369
370
371
372
373
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
374

375
376
377
378
379
380
381
382
    # Gets the number of rule-based features
    try:
        rule_based_features = (
            y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1
        )
    except IndexError:
        rule_based_features = 0

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    # Build model
    with strategy.scope():
        (encoder, generator, grouper, ae, prior, posterior,) = deepof.models.GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size * strategy.num_replicas_in_sync,
            compile_model=True,
            encoding=encoding_size,
            kl_annealing_mode=kl_annealing_mode,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_annealing_mode=mmd_annealing_mode,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            number_of_components=n_components,
            overlap_loss=False,
            next_sequence_prediction=next_sequence_prediction,
            phenotype_prediction=phenotype_prediction,
            rule_based_prediction=rule_based_prediction,
            rule_based_features=rule_based_features,
            reg_cat_clusters=reg_cat_clusters,
            reg_cluster_variance=reg_cluster_variance,
404
        ).build(X_train.shape)
405
        return_list = (encoder, generator, grouper, ae)
406
407

    if pretrained:
408
        # If pretrained models are specified, load weights and return
409
410
411
        ae.load_weights(pretrained)
        return return_list

412
413
414
415
416
417
418
419
    callbacks_ = cbacks + [
        CustomStopper(
            monitor="val_loss",
            patience=15,
            restore_best_weights=True,
            start_epoch=max(kl_warmup, mmd_warmup),
        ),
    ]
420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
    Xs, ys = X_train, [X_train]
    Xvals, yvals = X_val, [X_val]

    if next_sequence_prediction > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

    if phenotype_prediction > 0.0:
        ys += [y_train[-Xs.shape[0] :, 0]]
        yvals += [y_val[-Xvals.shape[0] :, 0]]

        # Remove the used column (phenotype) from both y arrays
        y_train = y_train[:, 1:]
        y_val = y_val[:, 1:]
435

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    if rule_based_prediction > 0.0:
        ys += [y_train[-Xs.shape[0] :]]
        yvals += [y_val[-Xvals.shape[0] :]]

    # Convert data to tf.data.Dataset objects
    train_dataset = (
        tf.data.Dataset.from_tensor_slices((Xs, tuple(ys)))
        .batch(batch_size * strategy.num_replicas_in_sync)
        .shuffle(buffer_size=X_train.shape[0])
        .with_options(options)
    )
    val_dataset = (
        tf.data.Dataset.from_tensor_slices((Xvals, tuple(yvals)))
        .batch(batch_size * strategy.num_replicas_in_sync)
        .with_options(options)
    )

    ae.fit(
        x=train_dataset,
        epochs=epochs,
        verbose=1,
        validation_data=val_dataset,
        callbacks=callbacks_,
    )

    if not os.path.exists(os.path.join(output_path, "trained_weights")):
        os.makedirs(os.path.join(output_path, "trained_weights"))

    if save_weights:
        ae.save_weights(
            os.path.join(
                "{}".format(output_path),
                "trained_weights",
                "{}_final_weights.h5".format(run_ID),
470
            )
471
        )
472

473
474
475
476
477
478
479
480
481
482
483
484
485
    if log_hparams:
        # Logparams to tensorboard
        tensorboard_metric_logging(
            run_dir=os.path.join(output_path, "hparams", run_ID),
            hpms=logparam,
            ae=ae,
            X_val=Xvals,
            y_val=yvals,
            next_sequence_prediction=next_sequence_prediction,
            phenotype_prediction=phenotype_prediction,
            rule_based_prediction=rule_based_prediction,
            rec=rec,
        )
486

487
488
489
    return return_list


490
def tune_search(
491
492
493
494
495
496
497
498
499
    data: List[np.array],
    encoding_size: int,
    hypertun_trials: int,
    hpt_type: str,
    k: int,
    kl_warmup_epochs: int,
    loss: str,
    mmd_warmup_epochs: int,
    overlap_loss: float,
500
501
502
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
503
504
505
506
507
    project_name: str,
    callbacks: List,
    n_epochs: int = 30,
    n_replicas: int = 1,
    outpath: str = ".",
508
) -> Union[bool, Tuple[Any, Any]]:
509
510
    """Define the search space using keras-tuner and bayesian optimization

511
512
513
514
515
516
517
518
519
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
520
        - phenotype_class (float): adds an extra regularizing neural network to the model,
521
522
523
524
525
526
527
528
529
530
531
532
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
533
534
535

    """

536
537
    X_train, y_train, X_val, y_val = data

538
539
540
541
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    batch_size = 64
    hypermodel = deepof.hypermodels.GMVAE(
        input_shape=X_train.shape,
        encoding=encoding_size,
        kl_warmup_epochs=kl_warmup_epochs,
        loss=loss,
        mmd_warmup_epochs=mmd_warmup_epochs,
        number_of_components=k,
        overlap_loss=overlap_loss,
        next_sequence_prediction=next_sequence_prediction,
        phenotype_prediction=phenotype_prediction,
        rule_based_prediction=rule_based_prediction,
        rule_based_features=(
            y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1
        ),
    )
558

559
560
561
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
562
563
564
        "logger": TensorBoardLogger(
            metrics=["val_mae"], logdir=os.path.join(outpath, "logged_hparams")
        ),
565
566
567
568
569
570
571
        "objective": "val_mae",
        "project_name": project_name,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
572
573
574
            directory=os.path.join(
                outpath, "HyperBandx_{}_{}".format(loss, str(date.today()))
            ),
575
            max_epochs=30,
576
            hyperband_iterations=hypertun_trials,
577
            factor=3,
578
579
580
581
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
582
583
584
            directory=os.path.join(
                outpath, "BayOpt_{}_{}".format(loss, str(date.today()))
            ),
585
586
587
            max_trials=hypertun_trials,
            **hpt_params
        )
588
589
590

    print(tuner.search_space_summary())

591
592
593
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

594
    if next_sequence_prediction > 0.0:
595
596
597
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

598
    if phenotype_prediction > 0.0:
599
600
        ys += [y_train[-Xs.shape[0] :, 0]]
        yvals += [y_val[-Xvals.shape[0] :, 0]]
601
602
603
604
605
606

        # Remove the used column (phenotype) from both y arrays
        y_train = y_train[:, 1:]
        y_val = y_val[:, 1:]

    if rule_based_prediction > 0.0:
607
608
        ys += [y_train[-Xs.shape[0] :]]
        yvals += [y_val[-Xvals.shape[0] :]]
609

610
    tuner.search(
611
612
        Xs,
        ys,
613
        epochs=n_epochs,
614
        validation_data=(Xvals, yvals),
615
        verbose=1,
616
        batch_size=batch_size,
lucas_miranda's avatar
lucas_miranda committed
617
        callbacks=callbacks,
618
619
620
621
622
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
623
624
    print(tuner.results_summary())

625
    return best_hparams, best_run