train_utils.py 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""
10
from datetime import date, datetime
11

12
from kerastuner import BayesianOptimization, Hyperband
13
from kerastuner import HyperParameters
14
from kerastuner_tensorboard_logger import TensorBoardLogger
15
from tensorboard.plugins.hparams import api as hp
16
from typing import Tuple, Union, Any, List
17
18
19
20
21
22
23
import deepof.hypermodels
import deepof.model_utils
import numpy as np
import os
import pickle
import tensorflow as tf

24
25
hp = HyperParameters()

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class CustomStopper(tf.keras.callbacks.EarlyStopping):
    """ Custom callback for """

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


46
def load_hparams(hparams):
47
48
49
50
51
52
53
54
    """Loads hyperparameters from a custom dictionary pickled on disc.
    Thought to be used with the output of hyperparameter_tuning.py"""

    if hparams is not None:
        with open(hparams, "rb") as handle:
            hparams = pickle.load(handle)
    else:
        hparams = {
55
56
57
58
59
            "bidirectional_merge": "ave",
            "clipvalue": 1.0,
            "dense_activation": "relu",
            "dense_layers_per_branch": 1,
            "dropout_rate": 1e-3,
60
            "learning_rate": 1e-3,
61
62
63
            "units_conv": 160,
            "units_dense2": 120,
            "units_lstm": 300,
64
65
66
67
68
69
70
71
72
73
74
        }
    return hparams


def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
            os.path.join(
                train_path,
75
                [i for i in os.listdir(train_path) if i.endswith(".pkl")][0],
76
77
78
79
80
81
82
83
84
85
86
            ),
            "rb",
        ) as handle:
            treatment_dict = pickle.load(handle)
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
lucas_miranda's avatar
lucas_miranda committed
87
88
89
90
    X_train: np.array,
    batch_size: int,
    cp: bool,
    variational: bool,
91
    phenotype_class: float,
lucas_miranda's avatar
lucas_miranda committed
92
93
    predictor: float,
    loss: str,
94
    logparam: dict = None,
95
    outpath: str = ".",
96
) -> List[Union[Any]]:
97
    """Generates callbacks for model training, including:
98
99
100
101
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
102

103
    run_ID = "{}{}{}{}{}{}_{}".format(
104
        ("GMVAE" if variational else "AE"),
105
106
        ("Pred={}".format(predictor) if predictor > 0 and variational else ""),
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
107
        ("_loss={}".format(loss) if variational else ""),
108
109
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
110
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
111
112
    )

113
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
114
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
115
116
117
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
118
119
120
    )

    onecycle = deepof.model_utils.one_cycle_scheduler(
121
122
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
123
124
    )

125
126
127
128
    callbacks = [run_ID, tensorboard_callback, onecycle]

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
129
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
130
131
132
133
134
135
136
137
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
138
139


140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def deep_unsupervised_embedding():
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

    # Load all
    X_train, y_train, X_val, y_val = preprocessed_object

    # Load callbacks
    # To avoid stability issues
    tf.keras.backend.clear_session()

    run_ID, tensorboard_callback, onecycle, cp_callback = get_callbacks(
        X_train=X_train,
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
        phenotype_class=pheno_class,
        predictor=predictor,
        loss=loss,
        logparam=logparam,
        outpath=output_path,
    )

    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
        (
            encoder,
            generator,
            grouper,
            ae,
            kl_warmup_callback,
            mmd_warmup_callback,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            phenotype_prediction=phenotype_class,
            predictor=predictor,
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
                epochs=35,
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
                callbacks=[
                    tensorboard_callback,
                    cp_callback,
                    onecycle,
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
                        start_epoch=max(kl_wu, mmd_wu),
                    ),
                ],
            )

        else:

            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

            if predictor > 0.0:
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

            if pheno_class > 0.0:
                ys += [y_train]
                yvals += [y_val]

            gmvaep.fit(
                x=Xs,
                y=ys,
                epochs=35,
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

    return return_list


251
def tune_search(
252
    data: List[np.array],
253
    encoding_size: int,
254
255
    hypertun_trials: int,
    hpt_type: str,
256
257
    hypermodel: str,
    k: int,
258
    kl_warmup_epochs: int,
259
    loss: str,
260
    mmd_warmup_epochs: int,
261
    overlap_loss: float,
262
    pheno_class: float,
263
264
    predictor: float,
    project_name: str,
265
    callbacks: List,
266
    n_epochs: int = 30,
267
    n_replicas: int = 1,
268
) -> Union[bool, Tuple[Any, Any]]:
269
270
    """Define the search space using keras-tuner and bayesian optimization

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
        - pheno_class (float): adds an extra regularizing neural network to the model,
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
295
296
297

    """

298
299
    X_train, y_train, X_val, y_val = data

300
301
302
303
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
304
    if hypermodel == "S2SAE":  # pragma: no cover
305
306
307
        assert (
            predictor == 0.0 and pheno_class == 0.0
        ), "Prediction branches are only available for variational models. See documentation for more details"
308
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
309
310
311

    elif hypermodel == "S2SGMVAE":
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
312
            input_shape=X_train.shape,
313
            encoding=encoding_size,
314
            kl_warmup_epochs=kl_warmup_epochs,
315
            loss=loss,
316
            mmd_warmup_epochs=mmd_warmup_epochs,
317
            number_of_components=k,
318
            overlap_loss=overlap_loss,
319
            phenotype_predictor=pheno_class,
320
            predictor=predictor,
321
        )
lucas_miranda's avatar
lucas_miranda committed
322

323
324
325
    else:
        return False

326
327
328
329
330
331
332
333
334
335
336
337
338
339
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
        "logger": TensorBoardLogger(metrics=["val_mae"], logdir="./logs/hparams"),
        "objective": "val_mae",
        "project_name": project_name,
        "seed": 42,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
            directory="HyperBandx_{}_{}".format(loss, str(date.today())),
            max_epochs=hypertun_trials,
340
            hyperband_iterations=3,
lucas_miranda's avatar
lucas_miranda committed
341
            factor=2,
342
343
344
345
346
347
348
349
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
            directory="BayOpt_{}_{}".format(loss, str(date.today())),
            max_trials=hypertun_trials,
            **hpt_params
        )
350
351
352

    print(tuner.search_space_summary())

353
354
355
356
357
358
359
360
361
362
363
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

    if pheno_class > 0.0:
        ys += [y_train]
        yvals += [y_val]

364
    tuner.search(
365
366
        Xs,
        ys,
367
        epochs=n_epochs,
368
        validation_data=(Xvals, yvals),
369
370
        verbose=1,
        batch_size=256,
lucas_miranda's avatar
lucas_miranda committed
371
        callbacks=callbacks,
372
373
374
375
376
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
377
378
    print(tuner.results_summary())

379
    return best_hparams, best_run