train_utils.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

lucas_miranda's avatar
lucas_miranda committed
11
12
import json
import os
13
from datetime import date, datetime
lucas_miranda's avatar
lucas_miranda committed
14
15
16
17
from typing import Tuple, Union, Any, List

import numpy as np
import tensorflow as tf
18
from kerastuner import BayesianOptimization, Hyperband
19
from kerastuner_tensorboard_logger import TensorBoardLogger
lucas_miranda's avatar
lucas_miranda committed
20
from sklearn.metrics import roc_auc_score
21
from tensorboard.plugins.hparams import api as hp
lucas_miranda's avatar
lucas_miranda committed
22

23
24
25
import deepof.hypermodels
import deepof.model_utils

26
27
28
29
30
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


31
class CustomStopper(tf.keras.callbacks.EarlyStopping):
32
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


50
51
52
53
54
def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
55
56
57
58
59
            os.path.join(
                train_path,
                [i for i in os.listdir(train_path) if i.endswith(".json")][0],
            ),
            "r",
60
        ) as handle:
61
            treatment_dict = json.load(handle)
62
63
64
65
66
67
68
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
69
70
71
    X_train: np.array,
    batch_size: int,
    variational: bool,
72
73
74
    phenotype_prediction: float,
    next_sequence_prediction: float,
    rule_based_prediction: float,
75
76
77
78
79
80
81
82
83
    loss: str,
    X_val: np.array = None,
    cp: bool = False,
    reg_cat_clusters: bool = False,
    reg_cluster_variance: bool = False,
    entropy_samples: int = 15000,
    entropy_knn: int = 100,
    logparam: dict = None,
    outpath: str = ".",
84
) -> List[Union[Any]]:
85
    """Generates callbacks for model training, including:
86
87
88
89
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
90

91
92
93
94
95
96
97
98
    latreg = "none"
    if reg_cat_clusters and not reg_cluster_variance:
        latreg = "categorical"
    elif reg_cluster_variance and not reg_cat_clusters:
        latreg = "variance"
    elif reg_cat_clusters and reg_cluster_variance:
        latreg = "categorical+variance"

99
    run_ID = "{}{}{}{}{}{}{}_{}".format(
100
        ("GMVAE" if variational else "AE"),
101
102
103
        ("_NextSeqPred={}".format(next_sequence_prediction) if next_sequence_prediction > 0 and variational else ""),
        ("_PhenoPred={}".format(phenotype_prediction) if phenotype_prediction > 0 else ""),
        ("_RuleBasedPred={}".format(rule_based_prediction) if rule_based_prediction > 0 else ""),
104
        ("_loss={}".format(loss) if variational else ""),
105
106
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
107
        ("_latreg={}".format(latreg)),
108
        ("entknn={}".format(entropy_knn)),
109
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
110
111
    )

112
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
113
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
114
115
116
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
117
118
    )

119
    entropy = deepof.model_utils.neighbor_latent_entropy(
120
        encoding_dim=logparam["encoding"],
121
        k=entropy_knn,
122
        samples=entropy_samples,
lucas_miranda's avatar
lucas_miranda committed
123
        validation_data=X_val,
124
        log_dir=os.path.join(outpath, "metrics", run_ID),
125
        variational=variational,
lucas_miranda's avatar
lucas_miranda committed
126
127
    )

128
    onecycle = deepof.model_utils.one_cycle_scheduler(
129
130
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
131
        log_dir=os.path.join(outpath, "metrics", run_ID),
132
133
    )

134
    callbacks = [run_ID, tensorboard_callback, entropy, onecycle]
135
136
137

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
138
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
139
140
141
142
143
144
145
146
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
147
148


lucas_miranda's avatar
lucas_miranda committed
149
def log_hyperparameters(phenotype_class: float, rec: str):
lucas_miranda's avatar
lucas_miranda committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
lucas_miranda's avatar
lucas_miranda committed
201
def tensorboard_metric_logging(
202
203
204
205
206
207
208
209
    run_dir: str,
    hpms: Any,
    ae: Any,
    X_val: np.ndarray,
    y_val: np.ndarray,
    phenotype_class: float,
    predictor: float,
    rec: str,
lucas_miranda's avatar
lucas_miranda committed
210
):
lucas_miranda's avatar
lucas_miranda committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    """Autoencoder metric logging in tensorboard"""

    output = ae.predict(X_val)
    if phenotype_class or predictor:
        reconstruction = output[0]
        prediction = output[1]
        pheno = output[-1]
    else:
        reconstruction = output

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
        val_mae = tf.reduce_mean(
            tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
        )
        val_mse = tf.reduce_mean(
            tf.keras.metrics.mean_squared_error(X_val, reconstruction)
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

        if predictor:
            pred_mae = tf.reduce_mean(
                tf.keras.metrics.mean_absolute_error(X_val, prediction)
            )
            pred_mse = tf.reduce_mean(
                tf.keras.metrics.mean_squared_error(X_val, prediction)
            )
            tf.summary.scalar("val_prediction_mae".format(rec), pred_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), pred_mse, step=1)

        if phenotype_class:
            pheno_acc = tf.keras.metrics.binary_accuracy(y_val, tf.squeeze(pheno))
            pheno_auc = roc_auc_score(y_val, pheno)

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)


250
def autoencoder_fitting(
251
252
253
254
255
256
257
258
259
260
261
262
263
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
    batch_size: int,
    encoding_size: int,
    epochs: int,
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
    mmd_warmup: int,
    montecarlo_kl: int,
    n_components: int,
    output_path: str,
264
265
266
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
267
268
269
270
271
272
273
274
    pretrained: str,
    save_checkpoints: bool,
    save_weights: bool,
    variational: bool,
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
    entropy_samples: int,
    entropy_knn: int,
275
):
276
277
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

278
    # Load data
279
280
281
282
283
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

284
    # Defines what to log on tensorboard (useful for trying out different models)
285
286
    logparam = {
        "encoding": encoding_size,
287
        "k": n_components,
288
289
        "loss": loss,
    }
290
291
    if phenotype_prediction:
        logparam["pheno_weight"] = phenotype_prediction
292

293
    # Load callbacks
294
    run_ID, *cbacks = get_callbacks(
295
        X_train=X_train,
lucas_miranda's avatar
lucas_miranda committed
296
        X_val=(X_val if X_val.shape != (0,) else None),
297
298
299
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
300
301
302
        next_sequence_prediction=next_sequence_prediction,
        phenotype_prediction=phenotype_prediction,
        rule_based_prediction=rule_based_prediction,
303
        loss=loss,
304
        entropy_samples=entropy_samples,
305
        entropy_knn=entropy_knn,
306
        reg_cat_clusters=reg_cat_clusters,
307
        reg_cluster_variance=reg_cluster_variance,
308
309
310
        logparam=logparam,
        outpath=output_path,
    )
311
312
    if not log_history:
        cbacks = cbacks[1:]
313

314
    # Logs hyperparameters to tensorboard
315
    rec = "reconstruction_" if phenotype_prediction else ""
316
    if log_hparams:
317
        logparams, metrics = log_hyperparameters(phenotype_prediction, rec)
318
319

        with tf.summary.create_file_writer(
320
            os.path.join(output_path, "hparams", run_ID)
321
322
323
324
325
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
326

327
    # Build models
328
329
330
331
332
333
334
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
335
336
337
338
339
340
341
342
        (
            encoder,
            generator,
            grouper,
            ae,
            prior,
            posterior,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
343
344
345
346
347
348
349
350
351
352
353
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
354
355
356
357
358
359
            next_sequence_prediction=next_sequence_prediction,
            phenotype_prediction=phenotype_prediction,
            rule_based_prediction=rule_based_prediction,
            rule_based_features=(
                y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1
            ),
360
361
            reg_cat_clusters=reg_cat_clusters,
            reg_cluster_variance=reg_cluster_variance,
362
363
364
        ).build(
            X_train.shape
        )
365
366
367
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
368
        # If pretrained models are specified, load weights and return
369
370
371
372
373
374
375
376
377
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
378
                epochs=epochs,
379
380
381
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
382
                callbacks=cbacks
383
384
385
386
387
388
389
390
                + [
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
                        start_epoch=max(kl_warmup, mmd_warmup),
                    ),
                ],
391
392
            )

393
394
395
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

396
397
        else:

398
            callbacks_ = cbacks + [
399
400
401
402
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
403
                    start_epoch=max(kl_warmup, mmd_warmup),
404
405
406
                ),
            ]

407
408
409
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

410
            if next_sequence_prediction > 0.0:
411
412
413
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

414
415
416
417
418
419
420
421
422
            if phenotype_prediction > 0.0:
                ys += [y_train[:, 0]]
                yvals += [y_val[:, 0]]

                # Remove the used column (phenotype) from both y arrays
                y_train = y_train[:, 1:]
                y_val = y_val[:, 1:]

            if rule_based_prediction > 0.0:
423
424
425
                ys += [y_train]
                yvals += [y_val]

426
            ae.fit(
427
428
                x=Xs,
                y=ys,
429
                epochs=epochs,
430
431
432
433
434
435
436
437
438
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

439
            if not os.path.exists(os.path.join(output_path, "trained_weights")):
440
441
                os.makedirs("trained_weights")

442
            if save_weights:
443
444
                ae.save_weights(
                    os.path.join(
445
446
447
                        "{}".format(output_path),
                        "trained_weights",
                        "{}_final_weights.h5".format(run_ID),
448
449
                    )
                )
450

451
452
453
454
455
            if log_hparams:
                # Logparams to tensorboard
                tensorboard_metric_logging(
                    os.path.join(output_path, "hparams", run_ID),
                    logparam,
lucas_miranda's avatar
lucas_miranda committed
456
                    ae,
lucas_miranda's avatar
lucas_miranda committed
457
458
                    Xvals,
                    yvals[-1],
459
460
                    phenotype_prediction,
                    next_sequence_prediction,
lucas_miranda's avatar
lucas_miranda committed
461
                    rec,
462
                )
463

464
465
466
    return return_list


467
def tune_search(
468
469
470
471
472
473
474
475
476
477
    data: List[np.array],
    encoding_size: int,
    hypertun_trials: int,
    hpt_type: str,
    hypermodel: str,
    k: int,
    kl_warmup_epochs: int,
    loss: str,
    mmd_warmup_epochs: int,
    overlap_loss: float,
478
479
480
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
481
482
483
484
485
    project_name: str,
    callbacks: List,
    n_epochs: int = 30,
    n_replicas: int = 1,
    outpath: str = ".",
486
) -> Union[bool, Tuple[Any, Any]]:
487
488
    """Define the search space using keras-tuner and bayesian optimization

489
490
491
492
493
494
495
496
497
498
499
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
500
        - phenotype_class (float): adds an extra regularizing neural network to the model,
501
502
503
504
505
506
507
508
509
510
511
512
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
513
514
515

    """

516
517
    X_train, y_train, X_val, y_val = data

518
519
520
521
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
522
    if hypermodel == "S2SAE":  # pragma: no cover
523
        assert (
524
            next_sequence_prediction == 0.0 and phenotype_prediction == 0.0
525
        ), "Prediction branches are only available for variational models. See documentation for more details"
526
        batch_size = 1
527
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
528
529

    elif hypermodel == "S2SGMVAE":
530
        batch_size = 64
531
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
532
            input_shape=X_train.shape,
533
            encoding=encoding_size,
534
            kl_warmup_epochs=kl_warmup_epochs,
535
            loss=loss,
536
            mmd_warmup_epochs=mmd_warmup_epochs,
537
            number_of_components=k,
538
            overlap_loss=overlap_loss,
539
540
541
            next_sequence_prediction=next_sequence_prediction,
            phenotype_prediction=phenotype_prediction,
            rule_based_prediction=rule_based_prediction,
542
543
544
            rule_based_features=(
                y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1
            ),
545
        )
lucas_miranda's avatar
lucas_miranda committed
546

547
548
549
    else:
        return False

550
551
552
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
553
554
555
        "logger": TensorBoardLogger(
            metrics=["val_mae"], logdir=os.path.join(outpath, "logged_hparams")
        ),
556
557
558
559
560
561
562
        "objective": "val_mae",
        "project_name": project_name,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
563
564
565
            directory=os.path.join(
                outpath, "HyperBandx_{}_{}".format(loss, str(date.today()))
            ),
566
567
            max_epochs=35,
            hyperband_iterations=hypertun_trials,
568
            factor=3,
569
570
571
572
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
573
574
575
            directory=os.path.join(
                outpath, "BayOpt_{}_{}".format(loss, str(date.today()))
            ),
576
577
578
            max_trials=hypertun_trials,
            **hpt_params
        )
579
580
581

    print(tuner.search_space_summary())

582
583
584
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

585
    if next_sequence_prediction > 0.0:
586
587
588
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

589
590
591
592
593
594
595
596
597
    if phenotype_prediction > 0.0:
        ys += [y_train[:, 0]]
        yvals += [y_val[:, 0]]

        # Remove the used column (phenotype) from both y arrays
        y_train = y_train[:, 1:]
        y_val = y_val[:, 1:]

    if rule_based_prediction > 0.0:
598
599
600
        ys += [y_train]
        yvals += [y_val]

601
    tuner.search(
602
603
        Xs,
        ys,
604
        epochs=n_epochs,
605
        validation_data=(Xvals, yvals),
606
        verbose=1,
607
        batch_size=batch_size,
lucas_miranda's avatar
lucas_miranda committed
608
        callbacks=callbacks,
609
610
611
612
613
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
614
615
    print(tuner.results_summary())

616
    return best_hparams, best_run