models.py 3.95 KB
Newer Older
1
2
3
# @author lucasmiranda42

from tensorflow.keras import Input, Model, Sequential
4
from tensorflow.keras.constraints import UnitNorm
5
from tensorflow.keras.layers import Bidirectional, Dense, Dropout
6
from tensorflow.keras.layers import Lambda, LSTM
7
8
9
from tensorflow.keras.layers import RepeatVector, TimeDistributed
from tensorflow.keras.losses import Huber
from tensorflow.keras.optimizers import Adam
10
from source.model_utils import *
11
12
13
14
import tensorflow as tf


class SEQ_2_SEQ_AE:
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    def __init__(
        self,
        input_shape,
        CONV_filters,
        LSTM_units_1,
        LSTM_units_2,
        DENSE_2,
        DROPOUT_RATE,
        ENCODING,
        learn_rate
    ):
        self.input_shape = input_shape
        self.CONV_filters = CONV_filters
        self.LSTM_units_1 = LSTM_units_1
        self.LSTM_units_2 = LSTM_units_2
        self.DENSE_1 = LSTM_units_2
        self.DENSE_2 = DENSE_2
        self.DROPOUT_RATE = DROPOUT_RATE
        self.ENCODING = ENCODING
        self.learn_rate = learn_rate

    def build(self):
        # Encoder Layers
        Model_E0 = tf.keras.layers.Conv1D(
            filters=self.CONV_filters,
            kernel_size=5,
            strides=1,
            padding="causal",
            activation="relu",
            input_shape=self.input_shape[1:],
        )
        Model_E1 = Bidirectional(
            LSTM(
                self.LSTM_units_1,
                activation="tanh",
                return_sequences=True,
                kernel_constraint=UnitNorm(axis=0),
            )
        )
        Model_E2 = Bidirectional(
            LSTM(
                self.LSTM_units_2,
                activation="tanh",
                return_sequences=False,
                kernel_constraint=UnitNorm(axis=0),
            )
        )
        Model_E3 = Dense(self.DENSE_1, activation="relu", kernel_constraint=UnitNorm(axis=0))
        Model_E4 = Dense(self.DENSE_2, activation="relu", kernel_constraint=UnitNorm(axis=0))
        Model_E5 = Dense(
            self.ENCODING,
            activation="relu",
            kernel_constraint=UnitNorm(axis=1),
            activity_regularizer=UncorrelatedFeaturesConstraint(3, weightage=1.0),
        )

        # Decoder layers
        Model_D4 = Bidirectional(
            LSTM(
                self.LSTM_units_1,
                activation="tanh",
                return_sequences=True,
                kernel_constraint=UnitNorm(axis=1),
            )
        )
        Model_D5 = Bidirectional(
            LSTM(
                self.LSTM_units_1,
                activation="sigmoid",
                return_sequences=True,
                kernel_constraint=UnitNorm(axis=1),
            )
        )

        # Define and instanciate encoder
        encoder = Sequential(name="DLC_encoder")
        encoder.add(Model_E0)
        encoder.add(Model_E1)
        encoder.add(Model_E2)
        encoder.add(Model_E3)
        encoder.add(Dropout(self.DROPOUT_RATE))
        encoder.add(Model_E4)
        encoder.add(Model_E5)

        # Define and instanciate decoder
        decoder = Sequential(name="DLC_Decoder")
        decoder.add(
            DenseTranspose(
                Model_E5, activation="relu", input_shape=(self.ENCODING,), output_dim=64
            )
        )
        decoder.add(DenseTranspose(Model_E4, activation="relu", output_dim=128))
        decoder.add(DenseTranspose(Model_E3, activation="relu", output_dim=256))
        decoder.add(RepeatVector(self.input_shape[1]))
        decoder.add(Model_D4)
        decoder.add(Model_D5)
        decoder.add(TimeDistributed(Dense(self.input_shape[2])))

        model = Sequential([encoder, decoder], name="DLC_Autoencoder")

        model.compile(
            loss=Huber(reduction="sum", delta=100.0),
            optimizer=Adam(
                lr=self.learn_rate,
                clipvalue=0.5,
            ),
            metrics=["mae"],
        )

        return model
125
126
127
128
129
130


class SEQ_2_SEQ_VAE:
    pass


131
class SEQ_2_SEQ_MVAE():
132
133
134
    pass


135
class SEQ_2_SEQ_MMVAE():
136
    pass