test_utils.py 16.8 KB
Newer Older
1
2
3
# @author lucasmiranda42

from hypothesis import given
lucas_miranda's avatar
lucas_miranda committed
4
from hypothesis import settings
5
6
7
8
from hypothesis import strategies as st
from hypothesis.extra.numpy import arrays
from hypothesis.extra.pandas import range_indexes, columns, data_frames
from scipy.spatial import distance
lucas_miranda's avatar
lucas_miranda committed
9
from deepof.utils import *
10
11
import deepof.preprocess
import pytest
12

lucas_miranda's avatar
lucas_miranda committed
13
14
15
16
17
18
# AUXILIARY FUNCTIONS #


def autocorr(x, t=1):
    return np.round(np.corrcoef(np.array([x[:-t], x[t:]]))[0, 1], 5)

19

20
21
22
# QUALITY CONTROL AND PREPROCESSING #


lucas_miranda's avatar
lucas_miranda committed
23
@settings(deadline=None)
lucas_miranda's avatar
lucas_miranda committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@given(
    mult=st.integers(min_value=1, max_value=10),
    dframe=data_frames(
        index=range_indexes(min_size=1),
        columns=columns(["X", "y", "likelihood"], dtype=float),
        rows=st.tuples(
            st.floats(
                min_value=0, max_value=1000, allow_nan=False, allow_infinity=False
            ),
            st.floats(
                min_value=0, max_value=1000, allow_nan=False, allow_infinity=False
            ),
            st.floats(
                min_value=0.01, max_value=1.0, allow_nan=False, allow_infinity=False
            ),
        ),
    ),
    threshold=st.data(),
)
def test_likelihood_qc(mult, dframe, threshold):
    thresh1 = threshold.draw(st.floats(min_value=0.1, max_value=1.0, allow_nan=False))
    thresh2 = threshold.draw(
        st.floats(min_value=thresh1, max_value=1.0, allow_nan=False)
    )

    dframe = pd.concat([dframe] * mult, axis=0)
    idx = pd.MultiIndex.from_product(
        [list(dframe.columns[: len(dframe.columns) // 3]), ["X", "y", "likelihood"]],
        names=["bodyparts", "coords"],
    )
    dframe.columns = idx

    filt1 = likelihood_qc(dframe, thresh1)
    filt2 = likelihood_qc(dframe, thresh2)

    assert np.sum(filt1) <= dframe.shape[0]
    assert np.sum(filt2) <= dframe.shape[0]
    assert np.sum(filt1) >= np.sum(filt2)


lucas_miranda's avatar
lucas_miranda committed
64
@settings(deadline=None)
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
@given(
    tab=data_frames(
        index=range_indexes(min_size=1),
        columns=columns(["X", "y"], dtype=float),
        rows=st.tuples(
            st.floats(
                min_value=0, max_value=1000, allow_nan=False, allow_infinity=False
            ),
            st.floats(
                min_value=0, max_value=1000, allow_nan=False, allow_infinity=False
            ),
        ),
    )
)
def test_bp2polar(tab):
    polar = bp2polar(tab)
    assert np.allclose(polar["rho"], np.sqrt(tab["X"] ** 2 + tab["y"] ** 2))
    assert np.allclose(polar["phi"], np.arctan2(tab["y"], tab["X"]))


lucas_miranda's avatar
lucas_miranda committed
85
@settings(deadline=None)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
@given(
    mult=st.integers(min_value=1, max_value=10),
    cartdf=data_frames(
        index=range_indexes(min_size=1),
        columns=columns(["X", "y"], dtype=float),
        rows=st.tuples(
            st.floats(
                min_value=0, max_value=1000, allow_nan=False, allow_infinity=False
            ),
            st.floats(
                min_value=0, max_value=1000, allow_nan=False, allow_infinity=False
            ),
        ),
    ),
)
def test_tab2polar(mult, cartdf):
    cart_df = pd.concat([cartdf] * mult, axis=0)
    idx = pd.MultiIndex.from_product(
        [list(cart_df.columns[: len(cart_df.columns) // 2]), ["X", "y"]],
        names=["bodyparts", "coords"],
    )
    cart_df.columns = idx

    assert cart_df.shape == tab2polar(cart_df).shape


lucas_miranda's avatar
lucas_miranda committed
112
@settings(deadline=None)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
@given(
    pair_array=arrays(
        dtype=float,
        shape=st.tuples(
            st.integers(min_value=1, max_value=1000),
            st.integers(min_value=4, max_value=4),
        ),
        elements=st.floats(min_value=-1000, max_value=1000, allow_nan=False),
    ),
    arena_abs=st.integers(min_value=1, max_value=1000),
    arena_rel=st.integers(min_value=1, max_value=1000),
)
def test_compute_dist(pair_array, arena_abs, arena_rel):
    assert np.allclose(
        compute_dist(pair_array, arena_abs, arena_rel),
        pd.DataFrame(distance.cdist(pair_array[:, :2], pair_array[:, 2:]).diagonal())
        * arena_abs
        / arena_rel,
    )


lucas_miranda's avatar
lucas_miranda committed
134
@settings(deadline=None)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
@given(
    cordarray=arrays(
        dtype=float,
        shape=st.tuples(
            st.integers(min_value=1, max_value=100),
            st.integers(min_value=2, max_value=5).map(lambda x: 4 * x),
        ),
        elements=st.floats(
            min_value=-1000, max_value=1000, allow_nan=False, allow_infinity=False
        ),
    ),
)
def test_bpart_distance(cordarray):
    cord_df = pd.DataFrame(cordarray)
    idx = pd.MultiIndex.from_product(
        [list(cord_df.columns[: len(cord_df.columns) // 2]), ["X", "y"]],
        names=["bodyparts", "coords"],
    )
    cord_df.columns = idx

    bpart = bpart_distance(cord_df)

    assert bpart.shape[0] == cord_df.shape[0]
    assert bpart.shape[1] == len(list(combinations(range(cord_df.shape[1] // 2), 2)))


lucas_miranda's avatar
lucas_miranda committed
161
@settings(deadline=None)
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
@given(
    abc=arrays(
        dtype=float,
        shape=st.tuples(
            st.integers(min_value=3, max_value=3),
            st.integers(min_value=5, max_value=100),
            st.integers(min_value=2, max_value=2),
        ),
        elements=st.floats(
            min_value=1, max_value=10, allow_nan=False, allow_infinity=False
        ).map(lambda x: x + np.random.uniform(0, 10)),
    ),
)
def test_angle(abc):
    a, b, c = abc

    angles = []
    for i, j, k in zip(a, b, c):
        ang = np.arccos(
            (np.dot(i - j, k - j) / (np.linalg.norm(i - j) * np.linalg.norm(k - j)))
        )
        angles.append(ang)

    print(angle(a, b, c), np.array(angles))

    assert np.allclose(angle(a, b, c), np.array(angles))


lucas_miranda's avatar
lucas_miranda committed
190
@settings(deadline=None)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
@given(
    array=arrays(
        dtype=float,
        shape=st.tuples(
            st.integers(min_value=3, max_value=3),
            st.integers(min_value=5, max_value=100),
            st.integers(min_value=2, max_value=2),
        ),
        elements=st.floats(
            min_value=1, max_value=10, allow_nan=False, allow_infinity=False
        ).map(lambda x: x + np.random.uniform(0, 10)),
    )
)
def test_angle_trio(array):
    assert len(angle_trio(array)) == 3


lucas_miranda's avatar
lucas_miranda committed
208
@settings(deadline=None)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
@given(
    p=arrays(
        dtype=float,
        shape=st.tuples(
            st.integers(min_value=2, max_value=100),
            st.integers(min_value=2, max_value=2),
        ),
        elements=st.floats(
            min_value=1, max_value=10, allow_nan=False, allow_infinity=False
        ),
    )
)
def test_rotate(p):
    assert np.allclose(rotate(p, 2 * np.pi), p)
    assert np.allclose(rotate(p, np.pi), -p)
lucas_miranda's avatar
lucas_miranda committed
224
    assert np.allclose(rotate(p, 0), p)
225
226


lucas_miranda's avatar
lucas_miranda committed
227
@settings(deadline=None)
228
229
230
231
232
233
234
235
236
237
238
@given(
    data=arrays(
        dtype=float,
        shape=st.tuples(
            st.integers(min_value=1, max_value=100),
            st.integers(min_value=3, max_value=100),
            st.integers(min_value=1, max_value=10).map(lambda x: 2 * x),
        ),
        elements=st.floats(
            min_value=1, max_value=10, allow_nan=False, allow_infinity=False
        ),
239
    ),
lucas_miranda's avatar
lucas_miranda committed
240
    mode_idx=st.integers(min_value=0, max_value=2),
241
)
242
def test_align_trajectories(data, mode_idx):
lucas_miranda's avatar
lucas_miranda committed
243
    mode = ["center", "all", "none"][mode_idx]
244
245
246
247
248
249
    aligned = align_trajectories(data, mode)
    assert aligned.shape == data.shape
    if mode == "center":
        assert np.allclose(aligned[:, (data.shape[1] - 1) // 2, 0], 0)
    elif mode == "all":
        assert np.allclose(aligned[:, :, 0], 0)
lucas_miranda's avatar
lucas_miranda committed
250
251
    elif mode == "none":
        assert np.allclose(aligned, data)
252
253


lucas_miranda's avatar
lucas_miranda committed
254
@settings(deadline=None)
255
256
257
@given(a=arrays(dtype=bool, shape=st.tuples(st.integers(min_value=3, max_value=1000))))
def test_smooth_boolean_array(a):
    smooth = smooth_boolean_array(a)
lucas_miranda's avatar
lucas_miranda committed
258
259
260
261

    def trans(x):
        return sum([i + 1 != i for i in range(x.shape[0] - 1)])

262
263
264
    assert trans(a) >= trans(smooth)


lucas_miranda's avatar
lucas_miranda committed
265
@settings(deadline=None)
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
@given(
    a=arrays(
        dtype=float,
        shape=st.tuples(
            st.integers(min_value=1000, max_value=10000),
            st.integers(min_value=1, max_value=10).map(lambda x: 2 * x),
        ),
        elements=st.floats(
            min_value=1, max_value=10, allow_nan=False, allow_infinity=False
        ),
    ),
    window=st.data(),
)
def test_rolling_window(a, window):
    window_step = window.draw(st.integers(min_value=1, max_value=10))
    window_size = window.draw(
        st.integers(min_value=1, max_value=10).map(lambda x: x * window_step)
    )

    rolled_shape = rolling_window(a, window_size, window_step).shape

287
    assert len(rolled_shape) == len(a.shape) + 1
288
    assert rolled_shape[1] == window_size
lucas_miranda's avatar
lucas_miranda committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319


@settings(deadline=None)
@given(
    alpha=st.data(),
    series=arrays(
        dtype=float,
        shape=st.tuples(st.integers(min_value=10, max_value=1000),),
        elements=st.floats(
            min_value=1.0, max_value=1.0, allow_nan=False, allow_infinity=False
        ),
    ),
)
def test_smooth_mult_trajectory(alpha, series):
    alpha1 = alpha.draw(
        st.floats(min_value=0.1, max_value=1.0, allow_nan=False, allow_infinity=False)
    )
    alpha2 = alpha.draw(
        st.floats(
            min_value=alpha1, max_value=1.0, allow_nan=False, allow_infinity=False
        )
    )

    series *= +np.random.normal(0, 1, len(series))

    smoothed1 = smooth_mult_trajectory(series, alpha1)
    smoothed2 = smooth_mult_trajectory(series, alpha2)

    assert autocorr(smoothed1) >= autocorr(series)
    assert autocorr(smoothed2) >= autocorr(series)
    assert autocorr(smoothed2) <= autocorr(smoothed1)
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336


# BEHAVIOUR RECOGNITION FUNCTIONS #


@settings(deadline=None)
@given(
    pos_dframe=data_frames(
        index=range_indexes(min_size=5),
        columns=columns(["X1", "y1", "X2", "y2"], dtype=float),
        rows=st.tuples(
            st.floats(min_value=1, max_value=10, allow_nan=False, allow_infinity=False),
            st.floats(min_value=1, max_value=10, allow_nan=False, allow_infinity=False),
            st.floats(min_value=1, max_value=10, allow_nan=False, allow_infinity=False),
            st.floats(min_value=1, max_value=10, allow_nan=False, allow_infinity=False),
        ),
    ),
337
    tol=st.floats(min_value=0.01, max_value=4.98),
338
339
340
341
342
343
344
345
346
347
)
def test_close_single_contact(pos_dframe, tol):

    idx = pd.MultiIndex.from_product(
        [["bpart1", "bpart2"], ["X", "y"]], names=["bodyparts", "coords"],
    )
    pos_dframe.columns = idx
    close_contact = close_single_contact(pos_dframe, "bpart1", "bpart2", tol)
    assert close_contact.dtype == bool
    assert np.array(close_contact).shape[0] <= pos_dframe.shape[0]
348
349
350
351
352
353
354
355


@settings(deadline=None)
@given(
    pos_dframe=data_frames(
        index=range_indexes(min_size=5),
        columns=columns(["X1", "y1", "X2", "y2", "X3", "y3", "X4", "y4"], dtype=float),
        rows=st.tuples(
lucas_miranda's avatar
lucas_miranda committed
356
357
358
359
360
361
362
363
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        ),
    ),
    tol=st.floats(min_value=0.01, max_value=4.98),
    rev=st.booleans(),
)
def test_close_double_contact(pos_dframe, tol, rev):

    idx = pd.MultiIndex.from_product(
        [["bpart1", "bpart2", "bpart3", "bpart4"], ["X", "y"]],
        names=["bodyparts", "coords"],
    )
    pos_dframe.columns = idx
    close_contact = close_double_contact(
        pos_dframe, "bpart1", "bpart2", "bpart3", "bpart4", tol, rev
    )
    assert close_contact.dtype == bool
    assert np.array(close_contact).shape[0] <= pos_dframe.shape[0]
lucas_miranda's avatar
lucas_miranda committed
381
382


383
@settings(deadline=None)
384
385
@given(indexes=st.data())
def test_recognize_arena_and_subfunctions(indexes):
lucas_miranda's avatar
lucas_miranda committed
386

387
    path = "./tests/test_examples/Videos/"
lucas_miranda's avatar
lucas_miranda committed
388
389
390
391
392
    videos = [i for i in os.listdir(path) if i.endswith("mp4")]

    vid_index = indexes.draw(st.integers(min_value=0, max_value=len(videos) - 1))
    recoglimit = indexes.draw(st.integers(min_value=1, max_value=10))

393
    assert recognize_arena(videos, vid_index, path, recoglimit, "") == 0
394
    assert len(recognize_arena(videos, vid_index, path, recoglimit, "circular")) == 3
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430


@settings(deadline=None)
@given(
    arena=st.lists(
        min_size=3, max_size=3, elements=st.integers(min_value=300, max_value=500)
    ),
    tol=st.data(),
)
def test_climb_wall(arena, tol):

    tol1 = tol.draw(st.floats(min_value=0.001, max_value=10))
    tol2 = tol.draw(st.floats(min_value=tol1, max_value=10))

    prun = (
        deepof.preprocess.project(
            path="./tests/test_examples",
            arena="circular",
            arena_dims=[arena[0]],
            angles=False,
            video_format=".mp4",
            table_format=".h5",
        )
        .run(verbose=False)
        .get_coords()
    )

    climb1 = climb_wall("circular", arena, prun["test"], tol1, nose="Nose")
    climb2 = climb_wall("circular", arena, prun["test"], tol2, nose="Nose")

    assert climb1.dtype == bool
    assert climb2.dtype == bool
    assert np.sum(climb1) >= np.sum(climb2)

    with pytest.raises(NotImplementedError):
        climb_wall("", arena, prun["test"], tol1, nose="Nose")
lucas_miranda's avatar
lucas_miranda committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466


@settings(deadline=None)
@given(
    dframe=data_frames(
        index=range_indexes(min_size=50),
        columns=columns(["X1", "y1", "X2", "y2"], dtype=float),
        rows=st.tuples(
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
            st.floats(min_value=1, max_value=10),
        ),
    ),
    sampler=st.data(),
)
def test_rolling_speed(dframe, sampler):

    dframe *= np.random.uniform(0, 1, dframe.shape)

    order1 = sampler.draw(st.integers(min_value=1, max_value=3))
    order2 = sampler.draw(st.integers(min_value=order1, max_value=3))
    window2 = sampler.draw(st.integers(min_value=10, max_value=25))

    idx = pd.MultiIndex.from_product(
        [["bpart1", "bpart2"], ["X", "y"]], names=["bodyparts", "coords"],
    )
    dframe.columns = idx

    speeds1 = rolling_speed(dframe, 5, 10, order1)
    speeds2 = rolling_speed(dframe, 5, 10, order2)
    speeds3 = rolling_speed(dframe, window2, 10, order1)

    assert speeds1.shape[0] == dframe.shape[0]
    assert speeds1.shape[1] == dframe.shape[1] // 2
    assert np.all(np.std(speeds1) >= np.std(speeds2))
lucas_miranda's avatar
lucas_miranda committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522


@settings(deadline=None)
@given(
    pos_dframe=data_frames(
        index=range_indexes(min_size=5),
        columns=columns(
            [
                "X1",
                "y1",
                "X2",
                "y2",
                "X3",
                "y3",
                "X4",
                "y4",
                "X5",
                "y5",
                "X6",
                "y6",
                "X7",
                "y7",
                "X8",
                "y8",
            ],
            dtype=float,
            elements=st.floats(min_value=-20, max_value=20),
        ),
    ),
    tol_forward=st.floats(min_value=0.01, max_value=4.98),
    tol_spine=st.floats(min_value=0.01, max_value=4.98),
)
def test_huddle(pos_dframe, tol_forward, tol_spine):

    idx = pd.MultiIndex.from_product(
        [
            [
                "Left_ear",
                "Right_ear",
                "Left_fhip",
                "Right_fhip",
                "Spine1",
                "Center",
                "Spine2",
                "Tail_base",
            ],
            ["X", "y"],
        ],
        names=["bodyparts", "coords"],
    )
    pos_dframe.columns = idx
    hudd = huddle(pos_dframe, tol_forward, tol_spine)

    assert hudd.dtype == bool
    assert np.array(hudd).shape[0] == pos_dframe.shape[0]
    assert np.sum(np.array(hudd)) <= pos_dframe.shape[0]
lucas_miranda's avatar
lucas_miranda committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575


@settings(deadline=None)
@given(
    distance_dframe=data_frames(
        index=range_indexes(min_size=20, max_size=20),
        columns=columns(
            ["d1", "d2", "d3", "d4",],
            dtype=float,
            elements=st.floats(min_value=-20, max_value=20),
        ),
    ),
    position_dframe=data_frames(
        index=range_indexes(min_size=20, max_size=20),
        columns=columns(
            ["X1", "y1", "X2", "y2", "X3", "y3", "X4", "y4",],
            dtype=float,
            elements=st.floats(min_value=-20, max_value=20),
        ),
    ),
    frames=st.integers(min_value=1, max_value=20),
    tol=st.floats(min_value=0.01, max_value=4.98),
)
def test_following_path(distance_dframe, position_dframe, frames, tol):

    bparts = [
        "A_Nose",
        "B_Nose",
        "A_Tail_base",
        "B_Tail_base",
    ]

    pos_idx = pd.MultiIndex.from_product(
        [bparts, ["X", "y"],], names=["bodyparts", "coords"],
    )

    position_dframe.columns = pos_idx
    distance_dframe.columns = [c for c in combinations(bparts, 2) if c[0][0] != c[1][0]]

    follow = following_path(
        distance_dframe,
        position_dframe,
        follower="A",
        followed="B",
        frames=frames,
        tol=tol,
    )

    assert follow.dtype == bool
    assert len(follow) == position_dframe.shape[0]
    assert len(follow) == distance_dframe.shape[0]
    assert np.sum(follow) <= position_dframe.shape[0]
    assert np.sum(follow) <= distance_dframe.shape[0]