train_utils.py 21.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

lucas_miranda's avatar
lucas_miranda committed
11
12
import json
import os
13
from datetime import date, datetime
lucas_miranda's avatar
lucas_miranda committed
14
15
16
17
from typing import Tuple, Union, Any, List

import numpy as np
import tensorflow as tf
18
from kerastuner import BayesianOptimization, Hyperband
19
from kerastuner_tensorboard_logger import TensorBoardLogger
lucas_miranda's avatar
lucas_miranda committed
20
from sklearn.metrics import roc_auc_score
21
from tensorboard.plugins.hparams import api as hp
lucas_miranda's avatar
lucas_miranda committed
22

23
24
25
import deepof.hypermodels
import deepof.model_utils

26
27
28
29
30
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


31
class CustomStopper(tf.keras.callbacks.EarlyStopping):
32
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


50
51
52
53
54
def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
55
56
57
58
59
            os.path.join(
                train_path,
                [i for i in os.listdir(train_path) if i.endswith(".json")][0],
            ),
            "r",
60
        ) as handle:
61
            treatment_dict = json.load(handle)
62
63
64
65
66
67
68
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
69
70
71
    X_train: np.array,
    batch_size: int,
    variational: bool,
72
73
74
    phenotype_prediction: float,
    next_sequence_prediction: float,
    rule_based_prediction: float,
75
76
    loss: str,
    X_val: np.array = None,
77
    input_type: str = False,
78
79
80
81
82
83
84
    cp: bool = False,
    reg_cat_clusters: bool = False,
    reg_cluster_variance: bool = False,
    entropy_samples: int = 15000,
    entropy_knn: int = 100,
    logparam: dict = None,
    outpath: str = ".",
85
    run: int = False,
86
) -> List[Union[Any]]:
87
    """Generates callbacks for model training, including:
88
89
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
90
91
92
93
    - cp_callback: for checkpoint saving;
    - onecycle: for learning rate scheduling;
    - entropy: neighborhood entropy in the latent space;
    """
94

95
96
97
98
99
100
101
102
    latreg = "none"
    if reg_cat_clusters and not reg_cluster_variance:
        latreg = "categorical"
    elif reg_cluster_variance and not reg_cat_clusters:
        latreg = "variance"
    elif reg_cat_clusters and reg_cluster_variance:
        latreg = "categorical+variance"

103
    run_ID = "{}{}{}{}{}{}{}{}{}{}{}{}{}".format(
104
        ("GMVAE" if variational else "AE"),
105
        ("_input_type={}".format(input_type) if input_type else "coords"),
106
        ("_window_size={}".format(X_train.shape[1])),
107
108
109
        ("_NextSeqPred={}".format(next_sequence_prediction) if variational else ""),
        ("_PhenoPred={}".format(phenotype_prediction) if variational else ""),
        ("_RuleBasedPred={}".format(rule_based_prediction) if variational else ""),
110
        ("_loss={}".format(loss) if variational else ""),
111
112
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
113
        ("_latreg={}".format(latreg)),
114
115
        ("_entknn={}".format(entropy_knn)),
        ("_run={}".format(run) if run else ""),
116
        ("_{}".format(datetime.now().strftime("%Y%m%d-%H%M%S")) if not run else ""),
117
118
    )

119
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
120
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
121
122
123
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
124
125
    )

126
    entropy = deepof.model_utils.neighbor_latent_entropy(
127
        encoding_dim=logparam["encoding"],
128
        k=entropy_knn,
129
        samples=entropy_samples,
lucas_miranda's avatar
lucas_miranda committed
130
        validation_data=X_val,
131
        log_dir=os.path.join(outpath, "metrics", run_ID),
132
        variational=variational,
lucas_miranda's avatar
lucas_miranda committed
133
134
    )

135
    onecycle = deepof.model_utils.one_cycle_scheduler(
136
137
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
138
        log_dir=os.path.join(outpath, "metrics", run_ID),
139
140
    )

141
    callbacks = [run_ID, tensorboard_callback, entropy, onecycle]
142
143
144

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
145
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
146
147
148
149
150
151
152
153
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
154
155


lucas_miranda's avatar
lucas_miranda committed
156
def log_hyperparameters(phenotype_class: float, rec: str):
lucas_miranda's avatar
lucas_miranda committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
lucas_miranda's avatar
lucas_miranda committed
208
def tensorboard_metric_logging(
209
210
211
212
213
    run_dir: str,
    hpms: Any,
    ae: Any,
    X_val: np.ndarray,
    y_val: np.ndarray,
214
215
216
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
217
    rec: str,
lucas_miranda's avatar
lucas_miranda committed
218
):
lucas_miranda's avatar
lucas_miranda committed
219
220
    """Autoencoder metric logging in tensorboard"""

221
222
    outputs = ae.predict(X_val)
    idx_generator = (idx for idx in range(len(outputs)))
lucas_miranda's avatar
lucas_miranda committed
223
224
225

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
226
227
        idx = next(idx_generator)

lucas_miranda's avatar
lucas_miranda committed
228
        val_mae = tf.reduce_mean(
229
            tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx])
lucas_miranda's avatar
lucas_miranda committed
230
231
        )
        val_mse = tf.reduce_mean(
232
            tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx])
lucas_miranda's avatar
lucas_miranda committed
233
234
235
236
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

237
        if next_sequence_prediction:
238
            idx = next(idx_generator)
lucas_miranda's avatar
lucas_miranda committed
239
            pred_mae = tf.reduce_mean(
240
                tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx])
lucas_miranda's avatar
lucas_miranda committed
241
242
            )
            pred_mse = tf.reduce_mean(
243
                tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx])
244
245
246
247
248
249
            )
            tf.summary.scalar(
                "val_next_sequence_prediction_mae".format(rec), pred_mae, step=1
            )
            tf.summary.scalar(
                "val_next_sequence_prediction_mse".format(rec), pred_mse, step=1
lucas_miranda's avatar
lucas_miranda committed
250
251
            )

252
        if phenotype_prediction:
253
            idx = next(idx_generator)
254
255
256
            pheno_acc = tf.keras.metrics.binary_accuracy(
                y_val[idx], tf.squeeze(outputs[idx])
            )
257
            pheno_auc = tf.keras.metrics.AUC()
258
            pheno_auc.update_state(y_val[idx], outputs[idx])
259
            pheno_auc = pheno_auc.result().numpy()
lucas_miranda's avatar
lucas_miranda committed
260
261
262
263

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)

264
        if rule_based_prediction:
265
            idx = next(idx_generator)
266
            rules_mae = tf.reduce_mean(
267
                tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx])
268
269
            )
            rules_mse = tf.reduce_mean(
270
                tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx])
271
272
273
274
            )
            tf.summary.scalar("val_prediction_mae".format(rec), rules_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), rules_mse, step=1)

lucas_miranda's avatar
lucas_miranda committed
275

276
def autoencoder_fitting(
277
278
279
280
281
282
283
284
285
286
287
288
289
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
    batch_size: int,
    encoding_size: int,
    epochs: int,
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
    mmd_warmup: int,
    montecarlo_kl: int,
    n_components: int,
    output_path: str,
290
291
292
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
293
294
295
296
297
298
299
300
    pretrained: str,
    save_checkpoints: bool,
    save_weights: bool,
    variational: bool,
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
    entropy_samples: int,
    entropy_knn: int,
301
    input_type: str,
302
    run: int = 0,
303
):
304
305
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

306
    # Load data
307
308
309
310
311
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

312
    # Defines what to log on tensorboard (useful for trying out different models)
313
314
    logparam = {
        "encoding": encoding_size,
315
        "k": n_components,
316
317
        "loss": loss,
    }
318
319
    if phenotype_prediction:
        logparam["pheno_weight"] = phenotype_prediction
320

321
    # Load callbacks
322
    run_ID, *cbacks = get_callbacks(
323
324
325
        X_train=X_train,
        batch_size=batch_size,
        variational=variational,
326
        phenotype_prediction=phenotype_prediction,
327
        next_sequence_prediction=next_sequence_prediction,
328
        rule_based_prediction=rule_based_prediction,
329
        loss=loss,
330
331
332
        input_type=input_type,
        X_val=(X_val if X_val.shape != (0,) else None),
        cp=save_checkpoints,
333
        reg_cat_clusters=reg_cat_clusters,
334
        reg_cluster_variance=reg_cluster_variance,
335
336
        entropy_samples=entropy_samples,
        entropy_knn=entropy_knn,
337
338
        logparam=logparam,
        outpath=output_path,
339
        run=run,
340
    )
341
342
    if not log_history:
        cbacks = cbacks[1:]
343

344
    # Logs hyperparameters to tensorboard
345
    rec = "reconstruction_" if phenotype_prediction else ""
346
    if log_hparams:
347
        logparams, metrics = log_hyperparameters(phenotype_prediction, rec)
348
349

        with tf.summary.create_file_writer(
350
            os.path.join(output_path, "hparams", run_ID)
351
352
353
354
355
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
356

357
358
359
360
361
362
363
364
    # Gets the number of rule-based features
    try:
        rule_based_features = (
            y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1
        )
    except IndexError:
        rule_based_features = 0

365
    # Build models
366
367
368
369
370
371
372
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
373
374
375
376
377
378
379
380
        (
            encoder,
            generator,
            grouper,
            ae,
            prior,
            posterior,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
381
382
383
384
385
386
387
388
389
390
391
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
392
393
394
            next_sequence_prediction=next_sequence_prediction,
            phenotype_prediction=phenotype_prediction,
            rule_based_prediction=rule_based_prediction,
395
            rule_based_features=rule_based_features,
396
397
            reg_cat_clusters=reg_cat_clusters,
            reg_cluster_variance=reg_cluster_variance,
398
399
400
        ).build(
            X_train.shape
        )
401
402
403
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
404
        # If pretrained models are specified, load weights and return
405
406
407
408
409
410
411
412
413
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
414
                epochs=epochs,
415
416
417
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
418
                callbacks=cbacks
419
420
421
422
423
424
425
426
                + [
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
                        start_epoch=max(kl_warmup, mmd_warmup),
                    ),
                ],
427
428
            )

429
430
431
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

432
433
        else:

434
            callbacks_ = cbacks + [
435
436
437
438
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
439
                    start_epoch=max(kl_warmup, mmd_warmup),
440
441
442
                ),
            ]

443
444
            Xs, ys = X_train, [X_train]
            Xvals, yvals = X_val, [X_val]
445

446
            if next_sequence_prediction > 0.0:
447
448
449
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

450
            if phenotype_prediction > 0.0:
451
452
                ys += [y_train[-Xs.shape[0] :, 0]]
                yvals += [y_val[-Xs.shape[0] :, 0]]
453
454
455
456
457
458

                # Remove the used column (phenotype) from both y arrays
                y_train = y_train[:, 1:]
                y_val = y_val[:, 1:]

            if rule_based_prediction > 0.0:
459
460
                ys += [y_train[-Xs.shape[0] :]]
                yvals += [y_val[-Xs.shape[0] :]]
461

462
            ae.fit(
463
464
                x=Xs,
                y=ys,
465
                epochs=epochs,
466
467
468
469
470
471
472
473
474
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

475
            if not os.path.exists(os.path.join(output_path, "trained_weights")):
476
477
                os.makedirs("trained_weights")

478
            if save_weights:
479
480
                ae.save_weights(
                    os.path.join(
481
482
483
                        "{}".format(output_path),
                        "trained_weights",
                        "{}_final_weights.h5".format(run_ID),
484
485
                    )
                )
486

487
488
489
            if log_hparams:
                # Logparams to tensorboard
                tensorboard_metric_logging(
490
491
492
493
494
495
496
497
498
                    run_dir=os.path.join(output_path, "hparams", run_ID),
                    hpms=logparam,
                    ae=ae,
                    X_val=Xvals,
                    y_val=yvals,
                    next_sequence_prediction=next_sequence_prediction,
                    phenotype_prediction=phenotype_prediction,
                    rule_based_prediction=rule_based_prediction,
                    rec=rec,
499
                )
500

501
502
503
    return return_list


504
def tune_search(
505
506
507
508
509
510
511
512
513
514
    data: List[np.array],
    encoding_size: int,
    hypertun_trials: int,
    hpt_type: str,
    hypermodel: str,
    k: int,
    kl_warmup_epochs: int,
    loss: str,
    mmd_warmup_epochs: int,
    overlap_loss: float,
515
516
517
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
518
519
520
521
522
    project_name: str,
    callbacks: List,
    n_epochs: int = 30,
    n_replicas: int = 1,
    outpath: str = ".",
523
) -> Union[bool, Tuple[Any, Any]]:
524
525
    """Define the search space using keras-tuner and bayesian optimization

526
527
528
529
530
531
532
533
534
535
536
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
537
        - phenotype_class (float): adds an extra regularizing neural network to the model,
538
539
540
541
542
543
544
545
546
547
548
549
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
550
551
552

    """

553
554
    X_train, y_train, X_val, y_val = data

555
556
557
558
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
559
    if hypermodel == "S2SAE":  # pragma: no cover
560
        assert (
561
            next_sequence_prediction == 0.0 and phenotype_prediction == 0.0
562
        ), "Prediction branches are only available for variational models. See documentation for more details"
563
        batch_size = 1
564
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
565
566

    elif hypermodel == "S2SGMVAE":
567
        batch_size = 64
568
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
569
            input_shape=X_train.shape,
570
            encoding=encoding_size,
571
            kl_warmup_epochs=kl_warmup_epochs,
572
            loss=loss,
573
            mmd_warmup_epochs=mmd_warmup_epochs,
574
            number_of_components=k,
575
            overlap_loss=overlap_loss,
576
577
578
            next_sequence_prediction=next_sequence_prediction,
            phenotype_prediction=phenotype_prediction,
            rule_based_prediction=rule_based_prediction,
579
580
581
            rule_based_features=(
                y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1
            ),
582
        )
lucas_miranda's avatar
lucas_miranda committed
583

584
585
586
    else:
        return False

587
588
589
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
590
591
592
        "logger": TensorBoardLogger(
            metrics=["val_mae"], logdir=os.path.join(outpath, "logged_hparams")
        ),
593
594
595
596
597
598
599
        "objective": "val_mae",
        "project_name": project_name,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
600
601
602
            directory=os.path.join(
                outpath, "HyperBandx_{}_{}".format(loss, str(date.today()))
            ),
603
            max_epochs=50,
604
            hyperband_iterations=hypertun_trials,
605
            factor=3,
606
607
608
609
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
610
611
612
            directory=os.path.join(
                outpath, "BayOpt_{}_{}".format(loss, str(date.today()))
            ),
613
614
615
            max_trials=hypertun_trials,
            **hpt_params
        )
616
617
618

    print(tuner.search_space_summary())

619
620
621
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

622
    if next_sequence_prediction > 0.0:
623
624
625
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

626
627
628
629
630
631
632
633
634
    if phenotype_prediction > 0.0:
        ys += [y_train[:, 0]]
        yvals += [y_val[:, 0]]

        # Remove the used column (phenotype) from both y arrays
        y_train = y_train[:, 1:]
        y_val = y_val[:, 1:]

    if rule_based_prediction > 0.0:
635
636
637
        ys += [y_train]
        yvals += [y_val]

638
    tuner.search(
639
640
        Xs,
        ys,
641
        epochs=n_epochs,
642
        validation_data=(Xvals, yvals),
643
        verbose=1,
644
        batch_size=batch_size,
lucas_miranda's avatar
lucas_miranda committed
645
        callbacks=callbacks,
646
647
648
649
650
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
651
652
    print(tuner.results_summary())

653
    return best_hparams, best_run