train_utils.py 21.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

lucas_miranda's avatar
lucas_miranda committed
11
12
import json
import os
13
from datetime import date, datetime
lucas_miranda's avatar
lucas_miranda committed
14
15
16
17
from typing import Tuple, Union, Any, List

import numpy as np
import tensorflow as tf
18
from kerastuner import BayesianOptimization, Hyperband
19
from kerastuner_tensorboard_logger import TensorBoardLogger
lucas_miranda's avatar
lucas_miranda committed
20
from sklearn.metrics import roc_auc_score
21
from tensorboard.plugins.hparams import api as hp
lucas_miranda's avatar
lucas_miranda committed
22

23
24
25
import deepof.hypermodels
import deepof.model_utils

26
27
28
29
30
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


31
class CustomStopper(tf.keras.callbacks.EarlyStopping):
32
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


50
51
52
53
54
def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
55
56
57
58
59
            os.path.join(
                train_path,
                [i for i in os.listdir(train_path) if i.endswith(".json")][0],
            ),
            "r",
60
        ) as handle:
61
            treatment_dict = json.load(handle)
62
63
64
65
66
67
68
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
69
70
71
    X_train: np.array,
    batch_size: int,
    variational: bool,
72
73
74
    phenotype_prediction: float,
    next_sequence_prediction: float,
    rule_based_prediction: float,
75
    loss: str,
76
77
    loss_warmup: int = 0,
    warmup_mode: str = "none",
78
    X_val: np.array = None,
79
    input_type: str = False,
80
81
82
83
84
85
86
    cp: bool = False,
    reg_cat_clusters: bool = False,
    reg_cluster_variance: bool = False,
    entropy_samples: int = 15000,
    entropy_knn: int = 100,
    logparam: dict = None,
    outpath: str = ".",
87
    run: int = False,
88
) -> List[Union[Any]]:
89
    """Generates callbacks for model training, including:
90
91
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
92
93
94
95
    - cp_callback: for checkpoint saving;
    - onecycle: for learning rate scheduling;
    - entropy: neighborhood entropy in the latent space;
    """
96

97
98
99
100
101
102
103
104
    latreg = "none"
    if reg_cat_clusters and not reg_cluster_variance:
        latreg = "categorical"
    elif reg_cluster_variance and not reg_cat_clusters:
        latreg = "variance"
    elif reg_cat_clusters and reg_cluster_variance:
        latreg = "categorical+variance"

105
    run_ID = "{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}".format(
106
        ("GMVAE" if variational else "AE"),
107
        ("_input_type={}".format(input_type) if input_type else "coords"),
108
        ("_window_size={}".format(X_train.shape[1])),
109
110
111
        ("_NextSeqPred={}".format(next_sequence_prediction) if variational else ""),
        ("_PhenoPred={}".format(phenotype_prediction) if variational else ""),
        ("_RuleBasedPred={}".format(rule_based_prediction) if variational else ""),
112
        ("_loss={}".format(loss) if variational else ""),
113
114
        ("_loss_warmup={}".format(loss_warmup)),
        ("_warmup_mode={}".format(warmup_mode)),
115
116
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
117
        ("_latreg={}".format(latreg)),
118
119
        ("_entknn={}".format(entropy_knn)),
        ("_run={}".format(run) if run else ""),
120
        ("_{}".format(datetime.now().strftime("%Y%m%d-%H%M%S")) if not run else ""),
121
122
    )

123
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
124
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
125
126
127
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
128
129
    )

130
    entropy = deepof.model_utils.neighbor_latent_entropy(
131
        encoding_dim=logparam["encoding"],
132
        k=entropy_knn,
133
        samples=entropy_samples,
lucas_miranda's avatar
lucas_miranda committed
134
        validation_data=X_val,
135
        log_dir=os.path.join(outpath, "metrics", run_ID),
136
        variational=variational,
lucas_miranda's avatar
lucas_miranda committed
137
138
    )

139
    onecycle = deepof.model_utils.one_cycle_scheduler(
140
141
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
142
        log_dir=os.path.join(outpath, "metrics", run_ID),
143
144
    )

145
    callbacks = [run_ID, tensorboard_callback, entropy, onecycle]
146
147
148

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
149
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
150
151
152
153
154
155
156
157
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
158
159


lucas_miranda's avatar
lucas_miranda committed
160
def log_hyperparameters(phenotype_class: float, rec: str):
lucas_miranda's avatar
lucas_miranda committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
lucas_miranda's avatar
lucas_miranda committed
212
def tensorboard_metric_logging(
213
214
215
216
217
    run_dir: str,
    hpms: Any,
    ae: Any,
    X_val: np.ndarray,
    y_val: np.ndarray,
218
219
220
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
221
    rec: str,
lucas_miranda's avatar
lucas_miranda committed
222
):
lucas_miranda's avatar
lucas_miranda committed
223
224
    """Autoencoder metric logging in tensorboard"""

225
226
    outputs = ae.predict(X_val)
    idx_generator = (idx for idx in range(len(outputs)))
lucas_miranda's avatar
lucas_miranda committed
227
228
229

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
230
231
        idx = next(idx_generator)

lucas_miranda's avatar
lucas_miranda committed
232
        val_mae = tf.reduce_mean(
233
            tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx])
lucas_miranda's avatar
lucas_miranda committed
234
235
        )
        val_mse = tf.reduce_mean(
236
            tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx])
lucas_miranda's avatar
lucas_miranda committed
237
238
239
240
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

241
        if next_sequence_prediction:
242
            idx = next(idx_generator)
lucas_miranda's avatar
lucas_miranda committed
243
            pred_mae = tf.reduce_mean(
244
                tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx])
lucas_miranda's avatar
lucas_miranda committed
245
246
            )
            pred_mse = tf.reduce_mean(
247
                tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx])
248
249
250
251
252
253
            )
            tf.summary.scalar(
                "val_next_sequence_prediction_mae".format(rec), pred_mae, step=1
            )
            tf.summary.scalar(
                "val_next_sequence_prediction_mse".format(rec), pred_mse, step=1
lucas_miranda's avatar
lucas_miranda committed
254
255
            )

256
        if phenotype_prediction:
257
            idx = next(idx_generator)
258
259
260
            pheno_acc = tf.keras.metrics.binary_accuracy(
                y_val[idx], tf.squeeze(outputs[idx])
            )
261
            pheno_auc = tf.keras.metrics.AUC()
262
            pheno_auc.update_state(y_val[idx], outputs[idx])
263
            pheno_auc = pheno_auc.result().numpy()
lucas_miranda's avatar
lucas_miranda committed
264
265
266
267

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)

268
        if rule_based_prediction:
269
            idx = next(idx_generator)
270
            rules_mae = tf.reduce_mean(
271
                tf.keras.metrics.mean_absolute_error(y_val[idx], outputs[idx])
272
273
            )
            rules_mse = tf.reduce_mean(
274
                tf.keras.metrics.mean_squared_error(y_val[idx], outputs[idx])
275
276
277
278
            )
            tf.summary.scalar("val_prediction_mae".format(rec), rules_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), rules_mse, step=1)

lucas_miranda's avatar
lucas_miranda committed
279

280
def autoencoder_fitting(
281
282
283
284
285
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
    batch_size: int,
    encoding_size: int,
    epochs: int,
    hparams: dict,
286
    kl_annealing_mode: str,
287
288
289
290
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
291
    mmd_annealing_mode: str,
292
293
294
295
    mmd_warmup: int,
    montecarlo_kl: int,
    n_components: int,
    output_path: str,
296
297
298
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
299
300
301
302
303
304
305
306
    pretrained: str,
    save_checkpoints: bool,
    save_weights: bool,
    variational: bool,
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
    entropy_samples: int,
    entropy_knn: int,
307
    input_type: str,
308
    run: int = 0,
309
):
310
311
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

312
    # Load data
313
314
315
316
317
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

318
    # Defines what to log on tensorboard (useful for trying out different models)
319
320
    logparam = {
        "encoding": encoding_size,
321
        "k": n_components,
322
323
        "loss": loss,
    }
324
325
    if phenotype_prediction:
        logparam["pheno_weight"] = phenotype_prediction
326

327
    # Load callbacks
328
    run_ID, *cbacks = get_callbacks(
329
330
331
        X_train=X_train,
        batch_size=batch_size,
        variational=variational,
332
        phenotype_prediction=phenotype_prediction,
333
        next_sequence_prediction=next_sequence_prediction,
334
        rule_based_prediction=rule_based_prediction,
335
        loss=loss,
336
337
        loss_warmup=kl_warmup,
        warmup_mode=kl_annealing_mode,
338
339
340
        input_type=input_type,
        X_val=(X_val if X_val.shape != (0,) else None),
        cp=save_checkpoints,
341
        reg_cat_clusters=reg_cat_clusters,
342
        reg_cluster_variance=reg_cluster_variance,
343
344
        entropy_samples=entropy_samples,
        entropy_knn=entropy_knn,
345
346
        logparam=logparam,
        outpath=output_path,
347
        run=run,
348
    )
349
350
    if not log_history:
        cbacks = cbacks[1:]
351

352
    # Logs hyperparameters to tensorboard
353
    rec = "reconstruction_" if phenotype_prediction else ""
354
    if log_hparams:
355
        logparams, metrics = log_hyperparameters(phenotype_prediction, rec)
356
357

        with tf.summary.create_file_writer(
358
            os.path.join(output_path, "hparams", run_ID)
359
360
361
362
363
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
364

365
366
367
368
369
370
371
372
    # Gets the number of rule-based features
    try:
        rule_based_features = (
            y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1
        )
    except IndexError:
        rule_based_features = 0

373
    # Build models
374
375
376
377
378
379
380
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

        (
            encoder,
            generator,
            grouper,
            ae,
            prior,
            posterior,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_annealing_mode=kl_annealing_mode,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_annealing_mode=mmd_annealing_mode,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            next_sequence_prediction=next_sequence_prediction,
            phenotype_prediction=phenotype_prediction,
            rule_based_prediction=rule_based_prediction,
            rule_based_features=rule_based_features,
            reg_cat_clusters=reg_cat_clusters,
            reg_cluster_variance=reg_cluster_variance,
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)
413
414

    if pretrained:
415
        # If pretrained models are specified, load weights and return
416
417
418
419
420
421
422
423
424
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
425
                epochs=epochs,
426
427
                verbose=1,
                validation_data=(X_val, X_val),
428
                callbacks=cbacks
429
430
431
432
433
434
435
436
                + [
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
                        start_epoch=max(kl_warmup, mmd_warmup),
                    ),
                ],
437
438
            )

439
440
441
            if not os.path.exists(os.path.join(output_path, "trained_weights")):
                os.makedirs(os.path.join(output_path, "trained_weights"))

442
            if save_weights:
443
444
445
446
447
448
449
                ae.save_weights(
                    os.path.join(
                        "{}".format(output_path),
                        "trained_weights",
                        "{}_final_weights.h5".format(run_ID),
                    )
                )
450

451
452
        else:

453
            callbacks_ = cbacks + [
454
455
456
457
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
458
                    start_epoch=max(kl_warmup, mmd_warmup),
459
460
461
                ),
            ]

462
463
            Xs, ys = X_train, [X_train]
            Xvals, yvals = X_val, [X_val]
464

465
            if next_sequence_prediction > 0.0:
466
467
468
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

469
            if phenotype_prediction > 0.0:
470
                ys += [y_train[-Xs.shape[0] :, 0]]
471
                yvals += [y_val[-Xvals.shape[0] :, 0]]
472
473
474
475
476
477

                # Remove the used column (phenotype) from both y arrays
                y_train = y_train[:, 1:]
                y_val = y_val[:, 1:]

            if rule_based_prediction > 0.0:
478
                ys += [y_train[-Xs.shape[0] :]]
479
                yvals += [y_val[-Xvals.shape[0] :]]
480

481
            ae.fit(
482
483
                x=Xs,
                y=ys,
484
                epochs=epochs,
485
                batch_size=batch_size,
486
487
488
489
490
491
492
493
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

494
            if not os.path.exists(os.path.join(output_path, "trained_weights")):
495
                os.makedirs(os.path.join(output_path, "trained_weights"))
496

497
            if save_weights:
498
499
                ae.save_weights(
                    os.path.join(
500
501
502
                        "{}".format(output_path),
                        "trained_weights",
                        "{}_final_weights.h5".format(run_ID),
503
504
                    )
                )
505

506
507
508
            if log_hparams:
                # Logparams to tensorboard
                tensorboard_metric_logging(
509
510
511
512
513
514
515
516
517
                    run_dir=os.path.join(output_path, "hparams", run_ID),
                    hpms=logparam,
                    ae=ae,
                    X_val=Xvals,
                    y_val=yvals,
                    next_sequence_prediction=next_sequence_prediction,
                    phenotype_prediction=phenotype_prediction,
                    rule_based_prediction=rule_based_prediction,
                    rec=rec,
518
                )
519

520
521
522
    return return_list


523
def tune_search(
524
525
526
527
528
529
530
531
532
533
    data: List[np.array],
    encoding_size: int,
    hypertun_trials: int,
    hpt_type: str,
    hypermodel: str,
    k: int,
    kl_warmup_epochs: int,
    loss: str,
    mmd_warmup_epochs: int,
    overlap_loss: float,
534
535
536
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
537
538
539
540
541
    project_name: str,
    callbacks: List,
    n_epochs: int = 30,
    n_replicas: int = 1,
    outpath: str = ".",
542
) -> Union[bool, Tuple[Any, Any]]:
543
544
    """Define the search space using keras-tuner and bayesian optimization

545
546
547
548
549
550
551
552
553
554
555
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
556
        - phenotype_class (float): adds an extra regularizing neural network to the model,
557
558
559
560
561
562
563
564
565
566
567
568
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
569
570
571

    """

572
573
    X_train, y_train, X_val, y_val = data

574
575
576
577
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
578
    if hypermodel == "S2SAE":  # pragma: no cover
579
        assert (
580
            next_sequence_prediction == 0.0 and phenotype_prediction == 0.0
581
        ), "Prediction branches are only available for variational models. See documentation for more details"
582
        batch_size = 1
583
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
584
585

    elif hypermodel == "S2SGMVAE":
586
        batch_size = 64
587
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
588
            input_shape=X_train.shape,
589
            encoding=encoding_size,
590
            kl_warmup_epochs=kl_warmup_epochs,
591
            loss=loss,
592
            mmd_warmup_epochs=mmd_warmup_epochs,
593
            number_of_components=k,
594
            overlap_loss=overlap_loss,
595
596
597
            next_sequence_prediction=next_sequence_prediction,
            phenotype_prediction=phenotype_prediction,
            rule_based_prediction=rule_based_prediction,
598
599
600
            rule_based_features=(
                y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1
            ),
601
        )
lucas_miranda's avatar
lucas_miranda committed
602

603
604
605
    else:
        return False

606
607
608
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
609
610
611
        "logger": TensorBoardLogger(
            metrics=["val_mae"], logdir=os.path.join(outpath, "logged_hparams")
        ),
612
613
614
615
616
617
618
        "objective": "val_mae",
        "project_name": project_name,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
619
620
621
            directory=os.path.join(
                outpath, "HyperBandx_{}_{}".format(loss, str(date.today()))
            ),
622
            max_epochs=30,
623
            hyperband_iterations=hypertun_trials,
624
            factor=3,
625
626
627
628
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
629
630
631
            directory=os.path.join(
                outpath, "BayOpt_{}_{}".format(loss, str(date.today()))
            ),
632
633
634
            max_trials=hypertun_trials,
            **hpt_params
        )
635
636
637

    print(tuner.search_space_summary())

638
639
640
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

641
    if next_sequence_prediction > 0.0:
642
643
644
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

645
    if phenotype_prediction > 0.0:
646
647
        ys += [y_train[-Xs.shape[0] :, 0]]
        yvals += [y_val[-Xvals.shape[0] :, 0]]
648
649
650
651
652
653

        # Remove the used column (phenotype) from both y arrays
        y_train = y_train[:, 1:]
        y_val = y_val[:, 1:]

    if rule_based_prediction > 0.0:
654
655
        ys += [y_train[-Xs.shape[0] :]]
        yvals += [y_val[-Xvals.shape[0] :]]
656

657
    tuner.search(
658
659
        Xs,
        ys,
660
        epochs=n_epochs,
661
        validation_data=(Xvals, yvals),
662
        verbose=1,
663
        batch_size=batch_size,
lucas_miranda's avatar
lucas_miranda committed
664
        callbacks=callbacks,
665
666
667
668
669
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
670
671
    print(tuner.results_summary())

672
    return best_hparams, best_run