train_utils.py 18.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

11
from datetime import date, datetime
12
from kerastuner import BayesianOptimization, Hyperband
13
from kerastuner import HyperParameters
14
from kerastuner_tensorboard_logger import TensorBoardLogger
lucas_miranda's avatar
lucas_miranda committed
15
from sklearn.metrics import roc_auc_score
16
from tensorboard.plugins.hparams import api as hp
17
from typing import Tuple, Union, Any, List
18
19
20
21
22
23
24
import deepof.hypermodels
import deepof.model_utils
import numpy as np
import os
import pickle
import tensorflow as tf

25
26
27
28
29
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


30
class CustomStopper(tf.keras.callbacks.EarlyStopping):
31
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


49
50
51
52
53
def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
54
55
56
57
58
            os.path.join(
                train_path,
                [i for i in os.listdir(train_path) if i.endswith(".pkl")][0],
            ),
            "rb",
59
60
61
62
63
64
65
66
67
        ) as handle:
            treatment_dict = pickle.load(handle)
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
68
69
70
71
72
73
74
75
76
77
78
    X_train: np.array,
    batch_size: int,
    variational: bool,
    phenotype_class: float,
    predictor: float,
    loss: str,
    X_val: np.array = None,
    cp: bool = False,
    reg_cat_clusters: bool = False,
    reg_cluster_variance: bool = False,
    entropy_samples: int = 15000,
79
    entropy_min_n: int = 5,
80
81
    logparam: dict = None,
    outpath: str = ".",
82
) -> List[Union[Any]]:
83
    """Generates callbacks for model training, including:
84
85
86
87
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
88

89
90
91
92
93
94
95
96
    latreg = "none"
    if reg_cat_clusters and not reg_cluster_variance:
        latreg = "categorical"
    elif reg_cluster_variance and not reg_cat_clusters:
        latreg = "variance"
    elif reg_cat_clusters and reg_cluster_variance:
        latreg = "categorical+variance"

97
    run_ID = "{}{}{}{}{}{}{}_{}".format(
98
        ("GMVAE" if variational else "AE"),
lucas_miranda's avatar
lucas_miranda committed
99
        ("_Pred={}".format(predictor) if predictor > 0 and variational else ""),
100
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
101
        ("_loss={}".format(loss) if variational else ""),
102
103
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
104
        ("_latreg={}".format(latreg)),
105
        ("_minneigh={}".format(entropy_min_n)),
106
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
107
108
    )

109
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
110
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
111
112
113
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
114
115
    )

116
    entropy = deepof.model_utils.neighbor_cluster_purity(
117
        encoding_dim=logparam["encoding"],
118
        samples=entropy_samples,
lucas_miranda's avatar
lucas_miranda committed
119
        validation_data=X_val,
120
        log_dir=os.path.join(outpath, "metrics", run_ID),
121
        variational=variational,
122
        min_n=entropy_min_n,
lucas_miranda's avatar
lucas_miranda committed
123
124
    )

125
    onecycle = deepof.model_utils.one_cycle_scheduler(
126
127
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
128
        log_dir=os.path.join(outpath, "metrics", run_ID),
129
130
    )

131
    callbacks = [run_ID, tensorboard_callback, entropy, onecycle]
132
133
134

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
135
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
136
137
138
139
140
141
142
143
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
144
145


lucas_miranda's avatar
lucas_miranda committed
146
def log_hyperparameters(phenotype_class: float, rec: str):
lucas_miranda's avatar
lucas_miranda committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
lucas_miranda's avatar
lucas_miranda committed
198
def tensorboard_metric_logging(
199
200
201
202
203
204
205
206
    run_dir: str,
    hpms: Any,
    ae: Any,
    X_val: np.ndarray,
    y_val: np.ndarray,
    phenotype_class: float,
    predictor: float,
    rec: str,
lucas_miranda's avatar
lucas_miranda committed
207
):
lucas_miranda's avatar
lucas_miranda committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    """Autoencoder metric logging in tensorboard"""

    output = ae.predict(X_val)
    if phenotype_class or predictor:
        reconstruction = output[0]
        prediction = output[1]
        pheno = output[-1]
    else:
        reconstruction = output

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
        val_mae = tf.reduce_mean(
            tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
        )
        val_mse = tf.reduce_mean(
            tf.keras.metrics.mean_squared_error(X_val, reconstruction)
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

        if predictor:
            pred_mae = tf.reduce_mean(
                tf.keras.metrics.mean_absolute_error(X_val, prediction)
            )
            pred_mse = tf.reduce_mean(
                tf.keras.metrics.mean_squared_error(X_val, prediction)
            )
            tf.summary.scalar("val_prediction_mae".format(rec), pred_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), pred_mse, step=1)

        if phenotype_class:
            pheno_acc = tf.keras.metrics.binary_accuracy(y_val, tf.squeeze(pheno))
            pheno_auc = roc_auc_score(y_val, pheno)

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)


247
def autoencoder_fitting(
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
    batch_size: int,
    encoding_size: int,
    epochs: int,
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
    mmd_warmup: int,
    montecarlo_kl: int,
    n_components: int,
    output_path: str,
    phenotype_class: float,
    predictor: float,
    pretrained: str,
    save_checkpoints: bool,
    save_weights: bool,
    variational: bool,
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
    entropy_samples: int,
270
    entropy_min_n: int,
271
):
272
273
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

274
    # Load data
275
276
277
278
279
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

280
    # Defines what to log on tensorboard (useful for trying out different models)
281
282
    logparam = {
        "encoding": encoding_size,
283
        "k": n_components,
284
285
286
287
288
        "loss": loss,
    }
    if phenotype_class:
        logparam["pheno_weight"] = phenotype_class

289
    # Load callbacks
290
    run_ID, *cbacks = get_callbacks(
291
        X_train=X_train,
lucas_miranda's avatar
lucas_miranda committed
292
        X_val=(X_val if X_val.shape != (0,) else None),
293
294
295
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
296
        phenotype_class=phenotype_class,
297
298
        predictor=predictor,
        loss=loss,
299
        entropy_samples=entropy_samples,
300
        entropy_min_n=entropy_min_n,
301
        reg_cat_clusters=reg_cat_clusters,
302
        reg_cluster_variance=reg_cluster_variance,
303
304
305
        logparam=logparam,
        outpath=output_path,
    )
306
307
    if not log_history:
        cbacks = cbacks[1:]
308

309
    # Logs hyperparameters to tensorboard
lucas_miranda's avatar
lucas_miranda committed
310
    rec = "reconstruction_" if phenotype_class else ""
311
    if log_hparams:
lucas_miranda's avatar
lucas_miranda committed
312
        logparams, metrics = log_hyperparameters(phenotype_class, rec)
313
314

        with tf.summary.create_file_writer(
315
            os.path.join(output_path, "hparams", run_ID)
316
317
318
319
320
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
321

322
    # Build models
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
        (
            encoder,
            generator,
            grouper,
            ae,
            kl_warmup_callback,
            mmd_warmup_callback,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            phenotype_prediction=phenotype_class,
            predictor=predictor,
351
352
            reg_cat_clusters=reg_cat_clusters,
            reg_cluster_variance=reg_cluster_variance,
353
354
355
356
357
358
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
359
        # If pretrained models are specified, load weights and return
360
361
362
363
364
365
366
367
368
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
369
                epochs=epochs,
370
371
372
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
373
                callbacks=cbacks
374
375
376
377
378
379
380
381
                + [
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
                        start_epoch=max(kl_warmup, mmd_warmup),
                    ),
                ],
382
383
            )

384
385
386
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

387
388
        else:

389
            callbacks_ = cbacks + [
390
391
392
393
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
394
                    start_epoch=max(kl_warmup, mmd_warmup),
395
396
397
                ),
            ]

398
            if "ELBO" in loss and kl_warmup > 0:
399
400
                # noinspection PyUnboundLocalVariable
                callbacks_.append(kl_warmup_callback)
401
            if "MMD" in loss and mmd_warmup > 0:
402
403
404
                # noinspection PyUnboundLocalVariable
                callbacks_.append(mmd_warmup_callback)

405
406
407
408
409
410
411
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

            if predictor > 0.0:
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

412
            if phenotype_class > 0.0:
413
414
415
                ys += [y_train]
                yvals += [y_val]

416
            ae.fit(
417
418
                x=Xs,
                y=ys,
419
                epochs=epochs,
420
421
422
423
424
425
426
427
428
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

429
            if not os.path.exists(os.path.join(output_path, "trained_weights")):
430
431
                os.makedirs("trained_weights")

432
            if save_weights:
433
434
                ae.save_weights(
                    os.path.join(
435
436
437
                        "{}".format(output_path),
                        "trained_weights",
                        "{}_final_weights.h5".format(run_ID),
438
439
                    )
                )
440

441
442
443
444
445
            if log_hparams:
                # Logparams to tensorboard
                tensorboard_metric_logging(
                    os.path.join(output_path, "hparams", run_ID),
                    logparam,
lucas_miranda's avatar
lucas_miranda committed
446
                    ae,
lucas_miranda's avatar
lucas_miranda committed
447
448
                    Xvals,
                    yvals[-1],
lucas_miranda's avatar
lucas_miranda committed
449
450
451
                    phenotype_class,
                    predictor,
                    rec,
452
                )
453

454
455
456
    return return_list


457
def tune_search(
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    data: List[np.array],
    encoding_size: int,
    hypertun_trials: int,
    hpt_type: str,
    hypermodel: str,
    k: int,
    kl_warmup_epochs: int,
    loss: str,
    mmd_warmup_epochs: int,
    overlap_loss: float,
    phenotype_class: float,
    predictor: float,
    project_name: str,
    callbacks: List,
    n_epochs: int = 30,
    n_replicas: int = 1,
    outpath: str = ".",
475
) -> Union[bool, Tuple[Any, Any]]:
476
477
    """Define the search space using keras-tuner and bayesian optimization

478
479
480
481
482
483
484
485
486
487
488
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
489
        - phenotype_class (float): adds an extra regularizing neural network to the model,
490
491
492
493
494
495
496
497
498
499
500
501
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
502
503
504

    """

505
506
    X_train, y_train, X_val, y_val = data

507
508
509
510
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
511
    if hypermodel == "S2SAE":  # pragma: no cover
512
        assert (
513
            predictor == 0.0 and phenotype_class == 0.0
514
        ), "Prediction branches are only available for variational models. See documentation for more details"
515
        batch_size = 1
516
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
517
518

    elif hypermodel == "S2SGMVAE":
519
        batch_size = 64
520
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
521
            input_shape=X_train.shape,
522
            encoding=encoding_size,
523
            kl_warmup_epochs=kl_warmup_epochs,
524
            loss=loss,
525
            mmd_warmup_epochs=mmd_warmup_epochs,
526
            number_of_components=k,
527
            overlap_loss=overlap_loss,
528
            phenotype_predictor=phenotype_class,
529
            predictor=predictor,
530
        )
lucas_miranda's avatar
lucas_miranda committed
531

532
533
534
    else:
        return False

535
536
537
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
538
539
540
        "logger": TensorBoardLogger(
            metrics=["val_mae"], logdir=os.path.join(outpath, "logged_hparams")
        ),
541
542
543
544
545
546
547
        "objective": "val_mae",
        "project_name": project_name,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
548
549
550
            directory=os.path.join(
                outpath, "HyperBandx_{}_{}".format(loss, str(date.today()))
            ),
551
552
            max_epochs=35,
            hyperband_iterations=hypertun_trials,
553
            factor=3,
554
555
556
557
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
558
559
560
            directory=os.path.join(
                outpath, "BayOpt_{}_{}".format(loss, str(date.today()))
            ),
561
562
563
            max_trials=hypertun_trials,
            **hpt_params
        )
564
565
566

    print(tuner.search_space_summary())

567
568
569
570
571
572
573
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

574
    if phenotype_class > 0.0:
575
576
577
        ys += [y_train]
        yvals += [y_val]

578
    tuner.search(
579
580
        Xs,
        ys,
581
        epochs=n_epochs,
582
        validation_data=(Xvals, yvals),
583
        verbose=1,
584
        batch_size=batch_size,
lucas_miranda's avatar
lucas_miranda committed
585
        callbacks=callbacks,
586
587
588
589
590
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
591
592
    print(tuner.results_summary())

593
    return best_hparams, best_run