train_utils.py 17.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

11
from datetime import date, datetime
12
from kerastuner import BayesianOptimization, Hyperband
13
from kerastuner import HyperParameters
14
from kerastuner_tensorboard_logger import TensorBoardLogger
lucas_miranda's avatar
lucas_miranda committed
15
from sklearn.metrics import roc_auc_score
16
from tensorboard.plugins.hparams import api as hp
17
from typing import Tuple, Union, Any, List
18
19
20
21
22
23
24
import deepof.hypermodels
import deepof.model_utils
import numpy as np
import os
import pickle
import tensorflow as tf

25
26
27
28
29
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


30
class CustomStopper(tf.keras.callbacks.EarlyStopping):
31
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


49
def load_hparams(hparams):
50
51
52
53
54
55
56
57
    """Loads hyperparameters from a custom dictionary pickled on disc.
    Thought to be used with the output of hyperparameter_tuning.py"""

    if hparams is not None:
        with open(hparams, "rb") as handle:
            hparams = pickle.load(handle)
    else:
        hparams = {
58
59
60
61
62
            "bidirectional_merge": "ave",
            "clipvalue": 1.0,
            "dense_activation": "relu",
            "dense_layers_per_branch": 1,
            "dropout_rate": 1e-3,
63
            "learning_rate": 1e-3,
64
65
66
            "units_conv": 160,
            "units_dense2": 120,
            "units_lstm": 300,
67
68
69
70
71
72
73
74
75
76
77
        }
    return hparams


def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
            os.path.join(
                train_path,
78
                [i for i in os.listdir(train_path) if i.endswith(".pkl")][0],
79
80
81
82
83
84
85
86
87
88
89
            ),
            "rb",
        ) as handle:
            treatment_dict = pickle.load(handle)
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
lucas_miranda's avatar
lucas_miranda committed
90
91
92
93
    X_train: np.array,
    batch_size: int,
    cp: bool,
    variational: bool,
94
    phenotype_class: float,
lucas_miranda's avatar
lucas_miranda committed
95
96
    predictor: float,
    loss: str,
97
    logparam: dict = None,
98
    outpath: str = ".",
99
) -> List[Union[Any]]:
100
    """Generates callbacks for model training, including:
101
102
103
104
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
105

106
    run_ID = "{}{}{}{}{}{}_{}".format(
107
        ("GMVAE" if variational else "AE"),
lucas_miranda's avatar
lucas_miranda committed
108
        ("_Pred={}".format(predictor) if predictor > 0 and variational else ""),
109
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
110
        ("_loss={}".format(loss) if variational else ""),
111
112
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
113
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
114
115
    )

116
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
117
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
118
119
120
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
121
122
123
    )

    onecycle = deepof.model_utils.one_cycle_scheduler(
124
125
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
126
127
    )

128
129
130
131
    callbacks = [run_ID, tensorboard_callback, onecycle]

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
132
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
133
134
135
136
137
138
139
140
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
141
142


lucas_miranda's avatar
lucas_miranda committed
143
def log_hyperparameters(phenotype_class: float, rec: str):
lucas_miranda's avatar
lucas_miranda committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
lucas_miranda's avatar
lucas_miranda committed
195
196
197
198
199
200
201
202
203
204
def tensorboard_metric_logging(
    run_dir: str,
    hpms: Any,
    ae: Any,
    X_val: np.ndarray,
    y_val: np.ndarray,
    phenotype_class: float,
    predictor: float,
    rec: str,
):
lucas_miranda's avatar
lucas_miranda committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    """Autoencoder metric logging in tensorboard"""

    output = ae.predict(X_val)
    if phenotype_class or predictor:
        reconstruction = output[0]
        prediction = output[1]
        pheno = output[-1]
    else:
        reconstruction = output

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
        val_mae = tf.reduce_mean(
            tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
        )
        val_mse = tf.reduce_mean(
            tf.keras.metrics.mean_squared_error(X_val, reconstruction)
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

        if predictor:
            pred_mae = tf.reduce_mean(
                tf.keras.metrics.mean_absolute_error(X_val, prediction)
            )
            pred_mse = tf.reduce_mean(
                tf.keras.metrics.mean_squared_error(X_val, prediction)
            )
            tf.summary.scalar("val_prediction_mae".format(rec), pred_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), pred_mse, step=1)

        if phenotype_class:
            pheno_acc = tf.keras.metrics.binary_accuracy(y_val, tf.squeeze(pheno))
            pheno_auc = roc_auc_score(y_val, pheno)

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)


244
def autoencoder_fitting(
245
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
246
247
    batch_size: int,
    encoding_size: int,
248
    epochs: int,
249
250
251
252
253
254
255
256
257
258
259
260
261
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
    mmd_warmup,
    montecarlo_kl,
    n_components,
    output_path,
    phenotype_class,
    predictor: float,
    pretrained: str,
    save_checkpoints: bool,
262
    save_weights: bool,
263
    variational: bool,
264
265
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
266
):
267
268
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

269
    # Load data
270
271
272
273
274
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

275
    # Defines what to log on tensorboard (useful for trying out different models)
276
277
    logparam = {
        "encoding": encoding_size,
278
        "k": n_components,
279
280
281
282
283
        "loss": loss,
    }
    if phenotype_class:
        logparam["pheno_weight"] = phenotype_class

284
    # Load callbacks
285
    run_ID, *cbacks = get_callbacks(
286
287
288
289
        X_train=X_train,
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
290
        phenotype_class=phenotype_class,
291
292
293
294
295
        predictor=predictor,
        loss=loss,
        logparam=logparam,
        outpath=output_path,
    )
296
297
    if not log_history:
        cbacks = cbacks[1:]
298

299
    # Logs hyperparameters to tensorboard
lucas_miranda's avatar
lucas_miranda committed
300
    rec = "reconstruction_" if phenotype_class else ""
301
    if log_hparams:
lucas_miranda's avatar
lucas_miranda committed
302
        logparams, metrics = log_hyperparameters(phenotype_class, rec)
303
304
305
306
307
308
309
310

        with tf.summary.create_file_writer(
            os.path.join(output_path, "hparams", run_ID)
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
311

312
    # Build models
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
        (
            encoder,
            generator,
            grouper,
            ae,
            kl_warmup_callback,
            mmd_warmup_callback,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            phenotype_prediction=phenotype_class,
            predictor=predictor,
341
342
            reg_cat_clusters=reg_cat_clusters,
            reg_cluster_variance=reg_cluster_variance,
343
344
345
346
347
348
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
349
        # If pretrained models are specified, load weights and return
350
351
352
353
354
355
356
357
358
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
359
                epochs=epochs,
360
361
362
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
363
364
                callbacks=cbacks
                + [
365
366
367
368
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
369
                        start_epoch=max(kl_warmup, mmd_warmup),
370
371
372
373
                    ),
                ],
            )

374
375
376
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

377
378
        else:

379
            callbacks_ = cbacks + [
380
381
382
383
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
384
                    start_epoch=max(kl_warmup, mmd_warmup),
385
386
387
                ),
            ]

388
            if "ELBO" in loss and kl_warmup > 0:
389
390
                # noinspection PyUnboundLocalVariable
                callbacks_.append(kl_warmup_callback)
391
            if "MMD" in loss and mmd_warmup > 0:
392
393
394
                # noinspection PyUnboundLocalVariable
                callbacks_.append(mmd_warmup_callback)

395
396
397
398
399
400
401
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

            if predictor > 0.0:
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

402
            if phenotype_class > 0.0:
403
404
405
                ys += [y_train]
                yvals += [y_val]

406
            ae.fit(
407
408
                x=Xs,
                y=ys,
409
                epochs=epochs,
410
411
412
413
414
415
416
417
418
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

419
420
421
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

422
423
424
425
426
            if log_hparams:
                # Logparams to tensorboard
                tensorboard_metric_logging(
                    os.path.join(output_path, "hparams", run_ID),
                    logparam,
lucas_miranda's avatar
lucas_miranda committed
427
                    ae,
lucas_miranda's avatar
lucas_miranda committed
428
429
                    Xvals,
                    yvals[-1],
lucas_miranda's avatar
lucas_miranda committed
430
431
432
                    phenotype_class,
                    predictor,
                    rec,
433
                )
434

435
436
437
    return return_list


438
def tune_search(
439
    data: List[np.array],
440
    encoding_size: int,
441
442
    hypertun_trials: int,
    hpt_type: str,
443
444
    hypermodel: str,
    k: int,
445
    kl_warmup_epochs: int,
446
    loss: str,
447
    mmd_warmup_epochs: int,
448
    overlap_loss: float,
449
    phenotype_class: float,
450
451
    predictor: float,
    project_name: str,
452
    callbacks: List,
453
    n_epochs: int = 30,
454
    n_replicas: int = 1,
455
) -> Union[bool, Tuple[Any, Any]]:
456
457
    """Define the search space using keras-tuner and bayesian optimization

458
459
460
461
462
463
464
465
466
467
468
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
469
        - phenotype_class (float): adds an extra regularizing neural network to the model,
470
471
472
473
474
475
476
477
478
479
480
481
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
482
483
484

    """

485
486
    X_train, y_train, X_val, y_val = data

487
488
489
490
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
491
    if hypermodel == "S2SAE":  # pragma: no cover
492
        assert (
493
            predictor == 0.0 and phenotype_class == 0.0
494
        ), "Prediction branches are only available for variational models. See documentation for more details"
495
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
496
497
498

    elif hypermodel == "S2SGMVAE":
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
499
            input_shape=X_train.shape,
500
            encoding=encoding_size,
501
            kl_warmup_epochs=kl_warmup_epochs,
502
            loss=loss,
503
            mmd_warmup_epochs=mmd_warmup_epochs,
504
            number_of_components=k,
505
            overlap_loss=overlap_loss,
506
            phenotype_predictor=phenotype_class,
507
            predictor=predictor,
508
        )
lucas_miranda's avatar
lucas_miranda committed
509

510
511
512
    else:
        return False

513
514
515
516
517
518
519
520
521
522
523
524
525
526
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
        "logger": TensorBoardLogger(metrics=["val_mae"], logdir="./logs/hparams"),
        "objective": "val_mae",
        "project_name": project_name,
        "seed": 42,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
            directory="HyperBandx_{}_{}".format(loss, str(date.today())),
            max_epochs=hypertun_trials,
527
            hyperband_iterations=3,
lucas_miranda's avatar
lucas_miranda committed
528
            factor=2,
529
530
531
532
533
534
535
536
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
            directory="BayOpt_{}_{}".format(loss, str(date.today())),
            max_trials=hypertun_trials,
            **hpt_params
        )
537
538
539

    print(tuner.search_space_summary())

540
541
542
543
544
545
546
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

547
    if phenotype_class > 0.0:
548
549
550
        ys += [y_train]
        yvals += [y_val]

551
    tuner.search(
552
553
        Xs,
        ys,
554
        epochs=n_epochs,
555
        validation_data=(Xvals, yvals),
556
557
        verbose=1,
        batch_size=256,
lucas_miranda's avatar
lucas_miranda committed
558
        callbacks=callbacks,
559
560
561
562
563
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
564
565
    print(tuner.results_summary())

566
    return best_hparams, best_run