model_utils.py 18.2 KB
Newer Older
1
# @author lucasmiranda42
2
3
4
5
6
7
8
9
# encoding: utf-8
# module deepof

"""

Functions and general utilities for the deepof tensorflow models. See documentation for details

"""
10

11
from itertools import combinations
lucas_miranda's avatar
lucas_miranda committed
12
from typing import Any, Tuple
13
from scipy.stats import entropy
14
from sklearn.neighbors import NearestNeighbors
15
from tensorflow.keras import backend as K
16
17
from tensorflow.keras.constraints import Constraint
from tensorflow.keras.layers import Layer
18
import matplotlib.pyplot as plt
lucas_miranda's avatar
lucas_miranda committed
19
import numpy as np
20
import tensorflow as tf
21
import tensorflow_probability as tfp
22

23
tfd = tfp.distributions
24
tfpl = tfp.layers
25

lucas_miranda's avatar
lucas_miranda committed
26

27
# Helper functions and classes
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
class exponential_learning_rate(tf.keras.callbacks.Callback):
    """Simple class that allows to grow learning rate exponentially during training"""

    def __init__(self, factor):
        super().__init__()
        self.factor = factor
        self.rates = []
        self.losses = []

    # noinspection PyMethodOverriding
    def on_batch_end(self, batch, logs):
        """This callback acts after processing each batch"""

        self.rates.append(K.get_value(self.model.optimizer.lr))
        self.losses.append(logs["loss"])
        K.set_value(self.model.optimizer.lr, self.model.optimizer.lr * self.factor)


def find_learning_rate(
    model, X, y, epochs=1, batch_size=32, min_rate=10 ** -5, max_rate=10
):
    """Trains the provided model for an epoch with an exponentially increasing learning rate"""

    init_weights = model.get_weights()
    iterations = len(X) // batch_size * epochs
    factor = K.exp(K.log(max_rate / min_rate) / iterations)
    init_lr = K.get_value(model.optimizer.lr)
    K.set_value(model.optimizer.lr, min_rate)
    exp_lr = exponential_learning_rate(factor)
    model.fit(X, y, epochs=epochs, batch_size=batch_size, callbacks=[exp_lr])
    K.set_value(model.optimizer.lr, init_lr)
    model.set_weights(init_weights)
    return exp_lr.rates, exp_lr.losses


def plot_lr_vs_loss(rates, losses):  # pragma: no cover
    """Plots learing rate versus the loss function of the model"""

    plt.plot(rates, losses)
    plt.gca().set_xscale("log")
    plt.hlines(min(losses), min(rates), max(rates))
    plt.axis([min(rates), max(rates), min(losses), (losses[0] + min(losses)) / 2])
    plt.xlabel("Learning rate")
    plt.ylabel("Loss")


lucas_miranda's avatar
lucas_miranda committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def compute_kernel(x: tf.Tensor, y: tf.Tensor) -> tf.Tensor:
    """

    Computes the MMD between the two specified vectors using a gaussian kernel.

        Parameters:
            - x (tf.Tensor): left tensor
            - y (tf.Tensor): right tensor

        Returns
            - kernel (tf.Tensor): returns the result of applying the kernel, for
            each training instance

    """

89
90
91
92
93
94
95
96
97
    x_size = tf.shape(x)[0]
    y_size = tf.shape(y)[0]
    dim = tf.shape(x)[1]
    tiled_x = tf.tile(
        tf.reshape(x, tf.stack([x_size, 1, dim])), tf.stack([1, y_size, 1])
    )
    tiled_y = tf.tile(
        tf.reshape(y, tf.stack([1, y_size, dim])), tf.stack([x_size, 1, 1])
    )
lucas_miranda's avatar
lucas_miranda committed
98
    kernel = tf.exp(
99
        -tf.reduce_mean(tf.square(tiled_x - tiled_y), axis=2) / tf.cast(dim, tf.float32)
100
    )
lucas_miranda's avatar
lucas_miranda committed
101
    return kernel
102
103


104
@tf.function
105
def compute_mmd(tensors: Tuple[Any]) -> tf.Tensor:
lucas_miranda's avatar
lucas_miranda committed
106
107
    """

108
    Computes the MMD between the two specified vectors using a gaussian kernel.
lucas_miranda's avatar
lucas_miranda committed
109

110
111
        Parameters:
            - tensors (tuple): tuple containing two tf.Tensor objects
lucas_miranda's avatar
lucas_miranda committed
112

113
114
115
        Returns
            - mmd (tf.Tensor): returns the maximum mean discrepancy for each
            training instance
lucas_miranda's avatar
lucas_miranda committed
116

117
    """
118
119
120
121

    x = tensors[0]
    y = tensors[1]

122
123
124
    x_kernel = compute_kernel(x, x)
    y_kernel = compute_kernel(y, y)
    xy_kernel = compute_kernel(x, y)
lucas_miranda's avatar
lucas_miranda committed
125
    mmd = (
126
127
128
129
        tf.reduce_mean(x_kernel)
        + tf.reduce_mean(y_kernel)
        - 2 * tf.reduce_mean(xy_kernel)
    )
lucas_miranda's avatar
lucas_miranda committed
130
    return mmd
131
132


133
# Custom auxiliary classes
lucas_miranda's avatar
lucas_miranda committed
134
135
136
137
138
139
140
141
class one_cycle_scheduler(tf.keras.callbacks.Callback):
    """

    One cycle learning rate scheduler.
    Based on https://arxiv.org/pdf/1506.01186.pdf

    """

142
143
    def __init__(
        self,
lucas_miranda's avatar
lucas_miranda committed
144
145
146
147
148
        iterations: int,
        max_rate: float,
        start_rate: float = None,
        last_iterations: int = None,
        last_rate: float = None,
lucas_miranda's avatar
lucas_miranda committed
149
        log_dir: str = ".",
150
    ):
lucas_miranda's avatar
lucas_miranda committed
151
        super().__init__()
152
153
154
155
156
157
158
        self.iterations = iterations
        self.max_rate = max_rate
        self.start_rate = start_rate or max_rate / 10
        self.last_iterations = last_iterations or iterations // 10 + 1
        self.half_iteration = (iterations - self.last_iterations) // 2
        self.last_rate = last_rate or self.start_rate / 1000
        self.iteration = 0
159
        self.history = {}
lucas_miranda's avatar
lucas_miranda committed
160
        self.log_dir = log_dir
161

lucas_miranda's avatar
lucas_miranda committed
162
    def _interpolate(self, iter1: int, iter2: int, rate1: float, rate2: float) -> float:
163
164
        return (rate2 - rate1) * (self.iteration - iter1) / (iter2 - iter1) + rate1

lucas_miranda's avatar
lucas_miranda committed
165
166
167
    # noinspection PyMethodOverriding,PyTypeChecker
    def on_batch_begin(self, batch: int, logs):
        """ Defines computations to perform for each batch """
168
169
170

        self.history.setdefault("lr", []).append(K.get_value(self.model.optimizer.lr))

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        if self.iteration < self.half_iteration:
            rate = self._interpolate(
                0, self.half_iteration, self.start_rate, self.max_rate
            )
        elif self.iteration < 2 * self.half_iteration:
            rate = self._interpolate(
                self.half_iteration,
                2 * self.half_iteration,
                self.max_rate,
                self.start_rate,
            )
        else:
            rate = self._interpolate(
                2 * self.half_iteration,
                self.iterations,
                self.start_rate,
                self.last_rate,
            )
            rate = max(rate, self.last_rate)
        self.iteration += 1
        K.set_value(self.model.optimizer.lr, rate)
192

lucas_miranda's avatar
lucas_miranda committed
193
194
195
196
197
198
199
    def on_epoch_end(self, epoch, logs=None):
        """Logs the learning rate to tensorboard"""

        writer = tf.summary.create_file_writer(self.log_dir)

        with writer.as_default():
            tf.summary.scalar(
lucas_miranda's avatar
lucas_miranda committed
200
201
202
                "learning_rate",
                data=self.model.optimizer.lr,
                step=epoch,
lucas_miranda's avatar
lucas_miranda committed
203
            )
204
205


206
class neighbor_latent_entropy(tf.keras.callbacks.Callback):
207
208
    """

209
210
    Latent space entropy callback. Computes the entropy of cluster assignment across k nearest neighbors of a subset
    of samples in the latent space.
211
212
213

    """

214
    def __init__(
215
        self,
216
217
218
        encoding_dim: int,
        variational: bool = True,
        validation_data: np.ndarray = None,
219
        k: int = 100,
220
221
        samples: int = 10000,
        log_dir: str = ".",
222
    ):
223
        super().__init__()
224
        self.enc = encoding_dim
225
        self.variational = variational
lucas_miranda's avatar
lucas_miranda committed
226
        self.validation_data = validation_data
227
        self.k = k
lucas_miranda's avatar
lucas_miranda committed
228
        self.samples = samples
lucas_miranda's avatar
lucas_miranda committed
229
        self.log_dir = log_dir
230
231

    # noinspection PyMethodOverriding,PyTypeChecker
lucas_miranda's avatar
lucas_miranda committed
232
    def on_epoch_end(self, epoch, logs=None):
233
234
        """ Passes samples through the encoder and computes cluster purity on the latent embedding """

235
        if self.validation_data is not None and self.variational:
lucas_miranda's avatar
lucas_miranda committed
236
237

            # Get encoer and grouper from full model
238
239
240
241
            latent_distribution = [
                layer
                for layer in self.model.layers
                if layer.name == "latent_distribution"
lucas_miranda's avatar
lucas_miranda committed
242
243
244
245
246
247
248
249
            ][0]
            cluster_assignment = [
                layer
                for layer in self.model.layers
                if layer.name == "cluster_assignment"
            ][0]

            encoder = tf.keras.models.Model(
250
                self.model.layers[0].input, latent_distribution.output
lucas_miranda's avatar
lucas_miranda committed
251
            )
lucas_miranda's avatar
lucas_miranda committed
252
253
            grouper = tf.keras.models.Model(
                self.model.layers[0].input, cluster_assignment.output
lucas_miranda's avatar
lucas_miranda committed
254
255
            )

lucas_miranda's avatar
lucas_miranda committed
256
257
258
259
            # Use encoder and grouper to predict on validation data
            encoding = encoder.predict(self.validation_data)
            groups = grouper.predict(self.validation_data)
            hard_groups = groups.argmax(axis=1)
260
            max_groups = groups.max(axis=1)
lucas_miranda's avatar
lucas_miranda committed
261

262
            # compute pairwise distances on latent space
263
            knn = NearestNeighbors().fit(encoding)
lucas_miranda's avatar
lucas_miranda committed
264

265
            # Iterate over samples and compute purity across neighbourhood
266
            self.samples = np.min([self.samples, encoding.shape[0]])
lucas_miranda's avatar
lucas_miranda committed
267
268
269
270
            random_idxs = np.random.choice(
                range(encoding.shape[0]), self.samples, replace=False
            )
            purity_vector = np.zeros(self.samples)
271

lucas_miranda's avatar
lucas_miranda committed
272
            for i, sample in enumerate(random_idxs):
273

274
275
276
277
                neighborhood = knn.kneighbors(
                    encoding[sample][np.newaxis, :], self.k, return_distance=False
                ).flatten()

278
                z = hard_groups[neighborhood]
279

280
                # Compute Shannon entropy across samples
281
                neigh_entropy = entropy(np.bincount(z))
282

283
                # Add result to pre allocated array
284
                purity_vector[i] = neigh_entropy
lucas_miranda's avatar
lucas_miranda committed
285

lucas_miranda's avatar
lucas_miranda committed
286
287
288
            writer = tf.summary.create_file_writer(self.log_dir)
            with writer.as_default():
                tf.summary.scalar(
289
                    "average_neighborhood_cluster_entropy",
290
                    data=np.average(purity_vector, weights=max_groups[random_idxs]),
291
292
293
294
295
296
297
                    step=epoch,
                )
                tf.summary.scalar(
                    "average_confidence_in_selected_cluster",
                    data=np.average(max_groups),
                    step=epoch,
                )
298
299


lucas_miranda's avatar
lucas_miranda committed
300
301
302
class uncorrelated_features_constraint(Constraint):
    """

303
    tf.keras.constraints.Constraint subclass that forces a layer to have uncorrelated features.
lucas_miranda's avatar
lucas_miranda committed
304
305
306
307
    Useful, among others, for auto encoder bottleneck layers

    """

308
309
310
311
    def __init__(self, encoding_dim, weightage=1.0):
        self.encoding_dim = encoding_dim
        self.weightage = weightage

312
    def get_config(self):  # pragma: no cover
313
        """Updates Constraint metadata"""
314
315

        config = super().get_config().copy()
316
        config.update({"encoding_dim": self.encoding_dim, "weightage": self.weightage})
317
318
319
        return config

    def get_covariance(self, x):
320
321
        """Computes the covariance of the elements of the passed layer"""

322
323
324
        x_centered_list = []

        for i in range(self.encoding_dim):
325
            x_centered_list.append(x[:, i] - K.mean(x[:, i]))
326
327

        x_centered = tf.stack(x_centered_list)
328
        covariance = K.dot(x_centered, K.transpose(x_centered)) / tf.cast(
329
330
331
332
333
334
            x_centered.get_shape()[0], tf.float32
        )

        return covariance

    # Constraint penalty
335
    # noinspection PyUnusedLocal
336
    def uncorrelated_feature(self, x):
337
338
        """Adds a penalty on feature correlation, forcing more independent sets of weights"""

339
        if self.encoding_dim <= 1:  # pragma: no cover
340
341
            return 0.0
        else:
342
343
            output = K.sum(
                K.square(
344
                    self.covariance
345
                    - tf.math.multiply(self.covariance, tf.eye(self.encoding_dim))
346
347
348
349
350
351
352
353
354
                )
            )
            return output

    def __call__(self, x):
        self.covariance = self.get_covariance(x)
        return self.weightage * self.uncorrelated_feature(x)


355
356
# Custom Layers
class MCDropout(tf.keras.layers.Dropout):
357
358
359
    """Equivalent to tf.keras.layers.Dropout, but with training mode enabled at prediction time.
    Useful for Montecarlo predictions"""

360
    def call(self, inputs, **kwargs):
361
        """Overrides the call method of the subclassed function"""
362
363
364
365
        return super().call(inputs, training=True)


class DenseTranspose(Layer):
366
367
368
369
    """Mirrors a tf.keras.layers.Dense instance with transposed weights.
    Useful for decoder layers in autoencoders, to force structure and
    decrease the effective number of parameters to train"""

370
371
372
373
374
375
    def __init__(self, dense, output_dim, activation=None, **kwargs):
        self.dense = dense
        self.output_dim = output_dim
        self.activation = tf.keras.activations.get(activation)
        super().__init__(**kwargs)

376
    def get_config(self):  # pragma: no cover
377
378
        """Updates Constraint metadata"""

379
380
381
382
383
384
385
386
387
388
        config = super().get_config().copy()
        config.update(
            {
                "dense": self.dense,
                "output_dim": self.output_dim,
                "activation": self.activation,
            }
        )
        return config

389
    # noinspection PyAttributeOutsideInit
390
    def build(self, batch_input_shape):
391
392
        """Updates Layer's build method"""

393
        self.biases = self.add_weight(
lucas_miranda's avatar
lucas_miranda committed
394
            name="bias",
lucas_miranda's avatar
lucas_miranda committed
395
            shape=self.dense.get_input_at(-1).get_shape().as_list()[1:],
lucas_miranda's avatar
lucas_miranda committed
396
            initializer="zeros",
397
398
399
400
        )
        super().build(batch_input_shape)

    def call(self, inputs, **kwargs):
401
402
        """Updates Layer's call method"""

403
404
405
        z = tf.matmul(inputs, self.dense.weights[0], transpose_b=True)
        return self.activation(z + self.biases)

406
    def compute_output_shape(self, input_shape):  # pragma: no cover
407
408
        """Outputs the transposed shape"""

409
410
411
        return input_shape[0], self.output_dim


412
class KLDivergenceLayer(tfpl.KLDivergenceAddLoss):
413
    """
414
415
    Identity transform layer that adds KL Divergence
    to the final model loss.
416
417
    """

418
    def __init__(self, iters, warm_up_iters, *args, **kwargs):
419
        super(KLDivergenceLayer, self).__init__(*args, **kwargs)
420
421
422
        self.is_placeholder = True
        self._iters = iters
        self._warm_up_iters = warm_up_iters
423

424
    def get_config(self):  # pragma: no cover
425
426
        """Updates Constraint metadata"""

427
        config = super().get_config().copy()
428
        config.update({"is_placeholder": self.is_placeholder})
429
430
        config.update({"_iters": self._iters})
        config.update({"_warm_up_iters": self._warm_up_iters})
431
432
433
        return config

    def call(self, distribution_a):
434
435
        """Updates Layer's call method"""

436
437
438
439
440
441
442
443
444
445
        # Define and update KL weight for warmup
        if self._warm_up_iters > 0:
            kl_weight = tf.cast(
                K.min([self._iters / self._warm_up_iters, 1.0]), tf.float32
            )
        else:
            kl_weight = tf.cast(1.0, tf.float32)

        kl_batch = kl_weight * self._regularizer(distribution_a)

446
447
        self.add_loss(kl_batch, inputs=[distribution_a])
        self.add_metric(
448
449
450
            kl_batch,
            aggregation="mean",
            name="kl_divergence",
451
        )
452
        # noinspection PyProtectedMember
453
        self.add_metric(kl_weight, aggregation="mean", name="kl_rate")
454
455
456
457

        return distribution_a


458
class MMDiscrepancyLayer(Layer):
459
    """
460
    Identity transform layer that adds MM Discrepancy
461
462
463
    to the final model loss.
    """

464
465
    def __init__(self, batch_size, prior, iters, warm_up_iters, *args, **kwargs):
        super(MMDiscrepancyLayer, self).__init__(*args, **kwargs)
466
        self.is_placeholder = True
467
        self.batch_size = batch_size
468
        self.prior = prior
469
470
        self._iters = iters
        self._warm_up_iters = warm_up_iters
471

472
    def get_config(self):  # pragma: no cover
473
474
        """Updates Constraint metadata"""

475
        config = super().get_config().copy()
476
        config.update({"batch_size": self.batch_size})
477
478
        config.update({"_iters": self._iters})
        config.update({"_warmup_iters": self._warm_up_iters})
479
        config.update({"prior": self.prior})
480
481
        return config

482
    def call(self, z, **kwargs):
483
484
        """Updates Layer's call method"""

485
        true_samples = self.prior.sample(self.batch_size)
486

487
488
489
490
491
492
493
494
        # Define and update MMD weight for warmup
        if self._warm_up_iters > 0:
            mmd_weight = tf.cast(
                K.min([self._iters / self._warm_up_iters, 1.0]), tf.float32
            )
        else:
            mmd_weight = tf.cast(1.0, tf.float32)

495
        mmd_batch = mmd_weight * compute_mmd((true_samples, z))
496

497
        self.add_loss(K.mean(mmd_batch), inputs=z)
498
        self.add_metric(mmd_batch, aggregation="mean", name="mmd")
499
        self.add_metric(mmd_weight, aggregation="mean", name="mmd_rate")
500
501

        return z
502
503


504
class Cluster_overlap(Layer):
505
506
    """
    Identity layer that measures the overlap between the components of the latent Gaussian Mixture
507
    using the average inter-cluster MMD as a metric
508
509
    """

510
    def __init__(self, lat_dims, n_components, loss=False, samples=10, *args, **kwargs):
511
512
513
514
        self.lat_dims = lat_dims
        self.n_components = n_components
        self.loss = loss
        self.samples = samples
515
        super(Cluster_overlap, self).__init__(*args, **kwargs)
516

517
    def get_config(self):  # pragma: no cover
lucas_miranda's avatar
lucas_miranda committed
518
519
        """Updates Constraint metadata"""

520
521
522
523
524
525
526
        config = super().get_config().copy()
        config.update({"lat_dims": self.lat_dims})
        config.update({"n_components": self.n_components})
        config.update({"loss": self.loss})
        config.update({"samples": self.samples})
        return config

lucas_miranda's avatar
lucas_miranda committed
527
528
529
    @tf.function
    def call(self, target, **kwargs):
        """Updates Layer's call method"""
530
531
532
533

        dists = []
        for k in range(self.n_components):
            locs = (target[..., : self.lat_dims, k],)
lucas_miranda's avatar
lucas_miranda committed
534
            scales = tf.keras.activations.softplus(target[..., self.lat_dims :, k])
535

536
537
538
            dists.append(
                tfd.BatchReshape(tfd.MultivariateNormalDiag(locs, scales), [-1])
            )
539
540
541

        dists = [tf.transpose(gauss.sample(self.samples), [1, 0, 2]) for gauss in dists]

lucas_miranda's avatar
lucas_miranda committed
542
        # MMD-based overlap #
543
        intercomponent_mmd = K.mean(
544
545
            tf.convert_to_tensor(
                [
546
                    tf.vectorized_map(compute_mmd, [dists[c[0]], dists[c[1]]])
547
548
549
                    for c in combinations(range(len(dists)), 2)
                ],
                dtype=tf.float32,
550
            )
551
        )
552

553
        self.add_metric(
554
            -intercomponent_mmd, aggregation="mean", name="intercomponent_mmd"
555
        )
556

557
558
        if self.loss:
            self.add_loss(-intercomponent_mmd, inputs=[target])
559
560
561
562

        return target


563
class Dead_neuron_control(Layer):
564
565
566
567
    """
    Identity layer that adds latent space and clustering stats
    to the metrics compiled by the model
    """
568

569
570
    def __init__(self, *args, **kwargs):
        super(Dead_neuron_control, self).__init__(*args, **kwargs)
571

lucas_miranda's avatar
lucas_miranda committed
572
573
574
    # noinspection PyMethodOverriding
    def call(self, target, **kwargs):
        """Updates Layer's call method"""
575
576
        # Adds metric that monitors dead neurons in the latent space
        self.add_metric(
lucas_miranda's avatar
lucas_miranda committed
577
            tf.math.zero_fraction(target), aggregation="mean", name="dead_neurons"
578
579
        )

lucas_miranda's avatar
lucas_miranda committed
580
        return target