model_utils.py 17.6 KB
Newer Older
1
# @author lucasmiranda42
2
3
4
5
6
7
8
9
# encoding: utf-8
# module deepof

"""

Functions and general utilities for the deepof tensorflow models. See documentation for details

"""
10

11
from itertools import combinations
lucas_miranda's avatar
lucas_miranda committed
12
from typing import Any, Tuple
lucas_miranda's avatar
lucas_miranda committed
13
from sklearn.neighbors import NearestNeighbors
14
from tensorflow.keras import backend as K
15
16
from tensorflow.keras.constraints import Constraint
from tensorflow.keras.layers import Layer
17
import matplotlib.pyplot as plt
18
import tensorflow as tf
19
import tensorflow_probability as tfp
20

21
tfd = tfp.distributions
22
tfpl = tfp.layers
23

lucas_miranda's avatar
lucas_miranda committed
24

25
# Helper functions and classes
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class exponential_learning_rate(tf.keras.callbacks.Callback):
    """Simple class that allows to grow learning rate exponentially during training"""

    def __init__(self, factor):
        super().__init__()
        self.factor = factor
        self.rates = []
        self.losses = []

    # noinspection PyMethodOverriding
    def on_batch_end(self, batch, logs):
        """This callback acts after processing each batch"""

        self.rates.append(K.get_value(self.model.optimizer.lr))
        self.losses.append(logs["loss"])
        K.set_value(self.model.optimizer.lr, self.model.optimizer.lr * self.factor)


def find_learning_rate(
    model, X, y, epochs=1, batch_size=32, min_rate=10 ** -5, max_rate=10
):
    """Trains the provided model for an epoch with an exponentially increasing learning rate"""

    init_weights = model.get_weights()
    iterations = len(X) // batch_size * epochs
    factor = K.exp(K.log(max_rate / min_rate) / iterations)
    init_lr = K.get_value(model.optimizer.lr)
    K.set_value(model.optimizer.lr, min_rate)
    exp_lr = exponential_learning_rate(factor)
    model.fit(X, y, epochs=epochs, batch_size=batch_size, callbacks=[exp_lr])
    K.set_value(model.optimizer.lr, init_lr)
    model.set_weights(init_weights)
    return exp_lr.rates, exp_lr.losses


def plot_lr_vs_loss(rates, losses):  # pragma: no cover
    """Plots learing rate versus the loss function of the model"""

    plt.plot(rates, losses)
    plt.gca().set_xscale("log")
    plt.hlines(min(losses), min(rates), max(rates))
    plt.axis([min(rates), max(rates), min(losses), (losses[0] + min(losses)) / 2])
    plt.xlabel("Learning rate")
    plt.ylabel("Loss")


lucas_miranda's avatar
lucas_miranda committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
def compute_kernel(x: tf.Tensor, y: tf.Tensor) -> tf.Tensor:
    """

    Computes the MMD between the two specified vectors using a gaussian kernel.

        Parameters:
            - x (tf.Tensor): left tensor
            - y (tf.Tensor): right tensor

        Returns
            - kernel (tf.Tensor): returns the result of applying the kernel, for
            each training instance

    """

87
88
89
90
91
92
93
94
95
    x_size = tf.shape(x)[0]
    y_size = tf.shape(y)[0]
    dim = tf.shape(x)[1]
    tiled_x = tf.tile(
        tf.reshape(x, tf.stack([x_size, 1, dim])), tf.stack([1, y_size, 1])
    )
    tiled_y = tf.tile(
        tf.reshape(y, tf.stack([1, y_size, dim])), tf.stack([x_size, 1, 1])
    )
lucas_miranda's avatar
lucas_miranda committed
96
    kernel = tf.exp(
97
        -tf.reduce_mean(tf.square(tiled_x - tiled_y), axis=2) / tf.cast(dim, tf.float32)
98
    )
lucas_miranda's avatar
lucas_miranda committed
99
    return kernel
100
101


102
@tf.function
103
def compute_mmd(tensors: Tuple[Any]) -> tf.Tensor:
lucas_miranda's avatar
lucas_miranda committed
104
105
    """

106
    Computes the MMD between the two specified vectors using a gaussian kernel.
lucas_miranda's avatar
lucas_miranda committed
107

108
109
        Parameters:
            - tensors (tuple): tuple containing two tf.Tensor objects
lucas_miranda's avatar
lucas_miranda committed
110

111
112
113
        Returns
            - mmd (tf.Tensor): returns the maximum mean discrepancy for each
            training instance
lucas_miranda's avatar
lucas_miranda committed
114

115
    """
116
117
118
119

    x = tensors[0]
    y = tensors[1]

120
121
122
    x_kernel = compute_kernel(x, x)
    y_kernel = compute_kernel(y, y)
    xy_kernel = compute_kernel(x, y)
lucas_miranda's avatar
lucas_miranda committed
123
    mmd = (
124
125
126
127
        tf.reduce_mean(x_kernel)
        + tf.reduce_mean(y_kernel)
        - 2 * tf.reduce_mean(xy_kernel)
    )
lucas_miranda's avatar
lucas_miranda committed
128
    return mmd
129
130


131
# Custom auxiliary classes
lucas_miranda's avatar
lucas_miranda committed
132
133
134
135
136
137
138
139
class one_cycle_scheduler(tf.keras.callbacks.Callback):
    """

    One cycle learning rate scheduler.
    Based on https://arxiv.org/pdf/1506.01186.pdf

    """

140
141
    def __init__(
        self,
lucas_miranda's avatar
lucas_miranda committed
142
143
144
145
146
        iterations: int,
        max_rate: float,
        start_rate: float = None,
        last_iterations: int = None,
        last_rate: float = None,
lucas_miranda's avatar
lucas_miranda committed
147
        log_dir: str = ".",
148
    ):
lucas_miranda's avatar
lucas_miranda committed
149
        super().__init__()
150
151
152
153
154
155
156
        self.iterations = iterations
        self.max_rate = max_rate
        self.start_rate = start_rate or max_rate / 10
        self.last_iterations = last_iterations or iterations // 10 + 1
        self.half_iteration = (iterations - self.last_iterations) // 2
        self.last_rate = last_rate or self.start_rate / 1000
        self.iteration = 0
157
        self.history = {}
lucas_miranda's avatar
lucas_miranda committed
158
        self.log_dir = log_dir
159

lucas_miranda's avatar
lucas_miranda committed
160
    def _interpolate(self, iter1: int, iter2: int, rate1: float, rate2: float) -> float:
161
162
        return (rate2 - rate1) * (self.iteration - iter1) / (iter2 - iter1) + rate1

lucas_miranda's avatar
lucas_miranda committed
163
164
165
    # noinspection PyMethodOverriding,PyTypeChecker
    def on_batch_begin(self, batch: int, logs):
        """ Defines computations to perform for each batch """
166
167
168

        self.history.setdefault("lr", []).append(K.get_value(self.model.optimizer.lr))

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        if self.iteration < self.half_iteration:
            rate = self._interpolate(
                0, self.half_iteration, self.start_rate, self.max_rate
            )
        elif self.iteration < 2 * self.half_iteration:
            rate = self._interpolate(
                self.half_iteration,
                2 * self.half_iteration,
                self.max_rate,
                self.start_rate,
            )
        else:
            rate = self._interpolate(
                2 * self.half_iteration,
                self.iterations,
                self.start_rate,
                self.last_rate,
            )
            rate = max(rate, self.last_rate)
        self.iteration += 1
        K.set_value(self.model.optimizer.lr, rate)
190

lucas_miranda's avatar
lucas_miranda committed
191
192
193
194
195
196
197
198
199
    def on_epoch_end(self, epoch, logs=None):
        """Logs the learning rate to tensorboard"""

        writer = tf.summary.create_file_writer(self.log_dir)

        with writer.as_default():
            tf.summary.scalar(
                "learning_rate", data=self.model.optimizer.lr, step=epoch,
            )
200
201
202
203
204
205
206
207
208


class knn_cluster_purity(tf.keras.callbacks.Callback):
    """

    Cluster purity callback. Computes assignment purity over K nearest neighbors in the latent space

    """

lucas_miranda's avatar
lucas_miranda committed
209
    def __init__(self, validation_data=None, k=100, samples=10000):
210
        super().__init__()
lucas_miranda's avatar
lucas_miranda committed
211
        self.validation_data = validation_data
212
        self.k = k
lucas_miranda's avatar
lucas_miranda committed
213
        self.samples = samples
214
215

    # noinspection PyMethodOverriding,PyTypeChecker
lucas_miranda's avatar
lucas_miranda committed
216
    def on_epoch_end(self, epoch, logs=None):
217
218
        """ Passes samples through the encoder and computes cluster purity on the latent embedding """

lucas_miranda's avatar
lucas_miranda committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        if self.validation_data is not None:

            # Get encoer and grouper from full model
            cluster_means = [
                layer for layer in self.model.layers if layer.name == "cluster_means"
            ][0]
            cluster_assignment = [
                layer
                for layer in self.model.layers
                if layer.name == "cluster_assignment"
            ][0]

            encoder = tf.keras.models.Model(
                self.model.layers[0].input, cluster_means.output
lucas_miranda's avatar
lucas_miranda committed
233
            )
lucas_miranda's avatar
lucas_miranda committed
234
235
            grouper = tf.keras.models.Model(
                self.model.layers[0].input, cluster_assignment.output
lucas_miranda's avatar
lucas_miranda committed
236
237
            )

lucas_miranda's avatar
lucas_miranda committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
            print(self.validation_data)

            # Use encoder and grouper to predict on validation data
            encoding = encoder.predict(self.validation_data)
            groups = grouper.predict(self.validation_data)

            # Multiply encodings by groups, to get a weighted version of the matrix
            encoding = (
                encoding
                * tf.tile(groups, [1, encoding.shape[1] // groups.shape[1]]).numpy()
            )
            hard_groups = groups.argmax(axis=1)

            # Fit KNN model
            knn = NearestNeighbors().fit(encoding)

            # Iterate over samples and compute purity over k neighbours
            random_idxs = np.random.choice(
                range(encoding.shape[0]), self.samples, replace=False
            )
            purity_vector = np.zeros(self.samples)
            for i, sample in enumerate(random_idxs):
                indexes = knn.kneighbors(
                    encoding[sample][np.newaxis, :], self.k, return_distance=False
                )
                purity_vector[i] = (
                    np.sum(hard_groups[indexes] == hard_groups[sample])
                    / self.k
                    * np.max(groups[sample])
                )

lucas_miranda's avatar
lucas_miranda committed
269
270
271
            tf.summary.scalar(
                "knn_cluster_purity", data=purity_vector.mean(), step=epoch,
            )
272
273


lucas_miranda's avatar
lucas_miranda committed
274
275
276
class uncorrelated_features_constraint(Constraint):
    """

277
    tf.keras.constraints.Constraint subclass that forces a layer to have uncorrelated features.
lucas_miranda's avatar
lucas_miranda committed
278
279
280
281
    Useful, among others, for auto encoder bottleneck layers

    """

282
283
284
285
    def __init__(self, encoding_dim, weightage=1.0):
        self.encoding_dim = encoding_dim
        self.weightage = weightage

286
    def get_config(self):  # pragma: no cover
287
        """Updates Constraint metadata"""
288
289

        config = super().get_config().copy()
290
        config.update({"encoding_dim": self.encoding_dim, "weightage": self.weightage})
291
292
293
        return config

    def get_covariance(self, x):
294
295
        """Computes the covariance of the elements of the passed layer"""

296
297
298
        x_centered_list = []

        for i in range(self.encoding_dim):
299
            x_centered_list.append(x[:, i] - K.mean(x[:, i]))
300
301

        x_centered = tf.stack(x_centered_list)
302
        covariance = K.dot(x_centered, K.transpose(x_centered)) / tf.cast(
303
304
305
306
307
308
            x_centered.get_shape()[0], tf.float32
        )

        return covariance

    # Constraint penalty
309
    # noinspection PyUnusedLocal
310
    def uncorrelated_feature(self, x):
311
312
        """Adds a penalty on feature correlation, forcing more independent sets of weights"""

313
        if self.encoding_dim <= 1:  # pragma: no cover
314
315
            return 0.0
        else:
316
317
            output = K.sum(
                K.square(
318
                    self.covariance
319
                    - tf.math.multiply(self.covariance, tf.eye(self.encoding_dim))
320
321
322
323
324
325
326
327
328
                )
            )
            return output

    def __call__(self, x):
        self.covariance = self.get_covariance(x)
        return self.weightage * self.uncorrelated_feature(x)


329
330
# Custom Layers
class MCDropout(tf.keras.layers.Dropout):
331
332
333
    """Equivalent to tf.keras.layers.Dropout, but with training mode enabled at prediction time.
    Useful for Montecarlo predictions"""

334
    def call(self, inputs, **kwargs):
335
        """Overrides the call method of the subclassed function"""
336
337
338
339
        return super().call(inputs, training=True)


class DenseTranspose(Layer):
340
341
342
343
    """Mirrors a tf.keras.layers.Dense instance with transposed weights.
    Useful for decoder layers in autoencoders, to force structure and
    decrease the effective number of parameters to train"""

344
345
346
347
348
349
    def __init__(self, dense, output_dim, activation=None, **kwargs):
        self.dense = dense
        self.output_dim = output_dim
        self.activation = tf.keras.activations.get(activation)
        super().__init__(**kwargs)

350
    def get_config(self):  # pragma: no cover
351
352
        """Updates Constraint metadata"""

353
354
355
356
357
358
359
360
361
362
        config = super().get_config().copy()
        config.update(
            {
                "dense": self.dense,
                "output_dim": self.output_dim,
                "activation": self.activation,
            }
        )
        return config

363
    # noinspection PyAttributeOutsideInit
364
    def build(self, batch_input_shape):
365
366
        """Updates Layer's build method"""

367
        self.biases = self.add_weight(
lucas_miranda's avatar
lucas_miranda committed
368
            name="bias",
lucas_miranda's avatar
lucas_miranda committed
369
            shape=self.dense.get_input_at(-1).get_shape().as_list()[1:],
lucas_miranda's avatar
lucas_miranda committed
370
            initializer="zeros",
371
372
373
374
        )
        super().build(batch_input_shape)

    def call(self, inputs, **kwargs):
375
376
        """Updates Layer's call method"""

377
378
379
        z = tf.matmul(inputs, self.dense.weights[0], transpose_b=True)
        return self.activation(z + self.biases)

380
    def compute_output_shape(self, input_shape):  # pragma: no cover
381
382
        """Outputs the transposed shape"""

383
384
385
        return input_shape[0], self.output_dim


386
class KLDivergenceLayer(tfpl.KLDivergenceAddLoss):
387
    """
388
389
    Identity transform layer that adds KL Divergence
    to the final model loss.
390
391
    """

392
393
394
395
    def __init__(self, *args, **kwargs):
        self.is_placeholder = True
        super(KLDivergenceLayer, self).__init__(*args, **kwargs)

396
    def get_config(self):  # pragma: no cover
397
398
        """Updates Constraint metadata"""

399
        config = super().get_config().copy()
400
        config.update({"is_placeholder": self.is_placeholder})
401
402
403
        return config

    def call(self, distribution_a):
404
405
        """Updates Layer's call method"""

406
407
408
        kl_batch = self._regularizer(distribution_a)
        self.add_loss(kl_batch, inputs=[distribution_a])
        self.add_metric(
409
410
411
            kl_batch,
            aggregation="mean",
            name="kl_divergence",
412
        )
413
        # noinspection PyProtectedMember
414
415
416
417
418
        self.add_metric(self._regularizer._weight, aggregation="mean", name="kl_rate")

        return distribution_a


419
class MMDiscrepancyLayer(Layer):
420
    """
421
    Identity transform layer that adds MM Discrepancy
422
423
424
    to the final model loss.
    """

425
    def __init__(self, batch_size, prior, beta=1.0, *args, **kwargs):
426
        self.is_placeholder = True
427
        self.batch_size = batch_size
428
        self.beta = beta
429
        self.prior = prior
430
431
        super(MMDiscrepancyLayer, self).__init__(*args, **kwargs)

432
    def get_config(self):  # pragma: no cover
433
434
        """Updates Constraint metadata"""

435
        config = super().get_config().copy()
436
        config.update({"batch_size": self.batch_size})
437
        config.update({"beta": self.beta})
438
        config.update({"prior": self.prior})
439
440
        return config

441
    def call(self, z, **kwargs):
442
443
        """Updates Layer's call method"""

444
        true_samples = self.prior.sample(self.batch_size)
lucas_miranda's avatar
lucas_miranda committed
445
        # noinspection PyTypeChecker
446
        mmd_batch = self.beta * compute_mmd((true_samples, z))
447
        self.add_loss(K.mean(mmd_batch), inputs=z)
448
        self.add_metric(mmd_batch, aggregation="mean", name="mmd")
449
        self.add_metric(self.beta, aggregation="mean", name="mmd_rate")
450
451

        return z
452
453


454
class Cluster_overlap(Layer):
455
456
    """
    Identity layer that measures the overlap between the components of the latent Gaussian Mixture
457
    using the average inter-cluster MMD as a metric
458
459
    """

460
    def __init__(self, lat_dims, n_components, loss=False, samples=10, *args, **kwargs):
461
462
463
464
        self.lat_dims = lat_dims
        self.n_components = n_components
        self.loss = loss
        self.samples = samples
465
        super(Cluster_overlap, self).__init__(*args, **kwargs)
466

467
    def get_config(self):  # pragma: no cover
lucas_miranda's avatar
lucas_miranda committed
468
469
        """Updates Constraint metadata"""

470
471
472
473
474
475
476
        config = super().get_config().copy()
        config.update({"lat_dims": self.lat_dims})
        config.update({"n_components": self.n_components})
        config.update({"loss": self.loss})
        config.update({"samples": self.samples})
        return config

lucas_miranda's avatar
lucas_miranda committed
477
478
479
    @tf.function
    def call(self, target, **kwargs):
        """Updates Layer's call method"""
480
481
482
483

        dists = []
        for k in range(self.n_components):
            locs = (target[..., : self.lat_dims, k],)
lucas_miranda's avatar
lucas_miranda committed
484
            scales = tf.keras.activations.softplus(target[..., self.lat_dims :, k])
485

486
487
488
            dists.append(
                tfd.BatchReshape(tfd.MultivariateNormalDiag(locs, scales), [-1])
            )
489
490
491

        dists = [tf.transpose(gauss.sample(self.samples), [1, 0, 2]) for gauss in dists]

lucas_miranda's avatar
lucas_miranda committed
492
        # MMD-based overlap #
493
        intercomponent_mmd = K.mean(
494
495
            tf.convert_to_tensor(
                [
496
                    tf.vectorized_map(compute_mmd, [dists[c[0]], dists[c[1]]])
497
498
499
                    for c in combinations(range(len(dists)), 2)
                ],
                dtype=tf.float32,
500
            )
501
        )
502

503
        self.add_metric(
504
            -intercomponent_mmd, aggregation="mean", name="intercomponent_mmd"
505
        )
506

507
508
        if self.loss:
            self.add_loss(-intercomponent_mmd, inputs=[target])
509
510
511
512

        return target


513
class Dead_neuron_control(Layer):
514
515
516
517
    """
    Identity layer that adds latent space and clustering stats
    to the metrics compiled by the model
    """
518

519
520
    def __init__(self, *args, **kwargs):
        super(Dead_neuron_control, self).__init__(*args, **kwargs)
521

lucas_miranda's avatar
lucas_miranda committed
522
523
524
    # noinspection PyMethodOverriding
    def call(self, target, **kwargs):
        """Updates Layer's call method"""
525
526
        # Adds metric that monitors dead neurons in the latent space
        self.add_metric(
lucas_miranda's avatar
lucas_miranda committed
527
            tf.math.zero_fraction(target), aggregation="mean", name="dead_neurons"
528
529
        )

lucas_miranda's avatar
lucas_miranda committed
530
        return target
531
532
533
534
535
536
537


class Entropy_regulariser(Layer):
    """
    Identity layer that adds cluster weight entropy to the loss function
    """

lucas_miranda's avatar
lucas_miranda committed
538
    def __init__(self, weight=1.0, axis=1, *args, **kwargs):
539
        self.weight = weight
lucas_miranda's avatar
lucas_miranda committed
540
        self.axis = axis
541
542
        super(Entropy_regulariser, self).__init__(*args, **kwargs)

543
    def get_config(self):  # pragma: no cover
lucas_miranda's avatar
lucas_miranda committed
544
545
        """Updates Constraint metadata"""

546
547
        config = super().get_config().copy()
        config.update({"weight": self.weight})
lucas_miranda's avatar
lucas_miranda committed
548
        config.update({"axis": self.axis})
549
550

    def call(self, z, **kwargs):
lucas_miranda's avatar
lucas_miranda committed
551
552
        """Updates Layer's call method"""

553
554
        # axis=1 increases the entropy of a cluster across instances
        # axis=0 increases the entropy of the assignment for a given instance
lucas_miranda's avatar
lucas_miranda committed
555
        entropy = K.sum(tf.multiply(z + 1e-5, tf.math.log(z) + 1e-5), axis=self.axis)
556
557

        # Adds metric that monitors dead neurons in the latent space
558
        self.add_metric(entropy, aggregation="mean", name="-weight_entropy")
559

560
561
        if self.weight > 0:
            self.add_loss(self.weight * K.sum(entropy), inputs=[z])
562
563

        return z