train_utils.py 18.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

lucas_miranda's avatar
lucas_miranda committed
11
12
import json
import os
13
from datetime import date, datetime
lucas_miranda's avatar
lucas_miranda committed
14
15
16
17
from typing import Tuple, Union, Any, List

import numpy as np
import tensorflow as tf
18
from kerastuner import BayesianOptimization, Hyperband
19
from kerastuner_tensorboard_logger import TensorBoardLogger
lucas_miranda's avatar
lucas_miranda committed
20
from sklearn.metrics import roc_auc_score
21
from tensorboard.plugins.hparams import api as hp
lucas_miranda's avatar
lucas_miranda committed
22

23
24
25
import deepof.hypermodels
import deepof.model_utils

26
27
28
29
30
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


31
class CustomStopper(tf.keras.callbacks.EarlyStopping):
32
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


50
51
52
53
54
def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
55
56
57
58
59
            os.path.join(
                train_path,
                [i for i in os.listdir(train_path) if i.endswith(".json")][0],
            ),
            "r",
60
        ) as handle:
61
            treatment_dict = json.load(handle)
62
63
64
65
66
67
68
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    X_train: np.array,
    batch_size: int,
    variational: bool,
    phenotype_class: float,
    predictor: float,
    loss: str,
    X_val: np.array = None,
    cp: bool = False,
    reg_cat_clusters: bool = False,
    reg_cluster_variance: bool = False,
    entropy_samples: int = 15000,
    entropy_knn: int = 100,
    logparam: dict = None,
    outpath: str = ".",
83
) -> List[Union[Any]]:
84
    """Generates callbacks for model training, including:
85
86
87
88
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
89

90
91
92
93
94
95
96
97
    latreg = "none"
    if reg_cat_clusters and not reg_cluster_variance:
        latreg = "categorical"
    elif reg_cluster_variance and not reg_cat_clusters:
        latreg = "variance"
    elif reg_cat_clusters and reg_cluster_variance:
        latreg = "categorical+variance"

98
    run_ID = "{}{}{}{}{}{}{}_{}".format(
99
        ("GMVAE" if variational else "AE"),
lucas_miranda's avatar
lucas_miranda committed
100
        ("_Pred={}".format(predictor) if predictor > 0 and variational else ""),
101
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
102
        ("_loss={}".format(loss) if variational else ""),
103
104
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
105
        ("_latreg={}".format(latreg)),
106
        ("entknn={}".format(entropy_knn)),
107
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
108
109
    )

110
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
111
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
112
113
114
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
115
116
    )

117
    entropy = deepof.model_utils.neighbor_latent_entropy(
118
        encoding_dim=logparam["encoding"],
119
        k=entropy_knn,
120
        samples=entropy_samples,
lucas_miranda's avatar
lucas_miranda committed
121
        validation_data=X_val,
122
        log_dir=os.path.join(outpath, "metrics", run_ID),
123
        variational=variational,
lucas_miranda's avatar
lucas_miranda committed
124
125
    )

126
    onecycle = deepof.model_utils.one_cycle_scheduler(
127
128
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
129
        log_dir=os.path.join(outpath, "metrics", run_ID),
130
131
    )

132
    callbacks = [run_ID, tensorboard_callback, entropy, onecycle]
133
134
135

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
136
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
137
138
139
140
141
142
143
144
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
145
146


lucas_miranda's avatar
lucas_miranda committed
147
def log_hyperparameters(phenotype_class: float, rec: str):
lucas_miranda's avatar
lucas_miranda committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    """Blueprint for hyperparameter and metric logging in tensorboard during hyperparameter tuning"""

    logparams = [
        hp.HParam(
            "encoding",
            hp.Discrete([2, 4, 6, 8, 12, 16]),
            display_name="encoding",
            description="encoding size dimensionality",
        ),
        hp.HParam(
            "k",
            hp.IntInterval(min_value=1, max_value=25),
            display_name="k",
            description="cluster_number",
        ),
        hp.HParam(
            "loss",
            hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
            display_name="loss function",
            description="loss function",
        ),
    ]

    metrics = [
        hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
        hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
    ]
    if phenotype_class:
        logparams.append(
            hp.HParam(
                "pheno_weight",
                hp.RealInterval(min_value=0.0, max_value=1000.0),
                display_name="pheno weight",
                description="weight applied to phenotypic classifier from the latent space",
            )
        )
        metrics += [
            hp.Metric(
                "phenotype_prediction_accuracy",
                display_name="phenotype_prediction_accuracy",
            ),
            hp.Metric(
                "phenotype_prediction_auc",
                display_name="phenotype_prediction_auc",
            ),
        ]

    return logparams, metrics


# noinspection PyUnboundLocalVariable
lucas_miranda's avatar
lucas_miranda committed
199
def tensorboard_metric_logging(
200
201
202
203
204
205
206
207
    run_dir: str,
    hpms: Any,
    ae: Any,
    X_val: np.ndarray,
    y_val: np.ndarray,
    phenotype_class: float,
    predictor: float,
    rec: str,
lucas_miranda's avatar
lucas_miranda committed
208
):
lucas_miranda's avatar
lucas_miranda committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    """Autoencoder metric logging in tensorboard"""

    output = ae.predict(X_val)
    if phenotype_class or predictor:
        reconstruction = output[0]
        prediction = output[1]
        pheno = output[-1]
    else:
        reconstruction = output

    with tf.summary.create_file_writer(run_dir).as_default():
        hp.hparams(hpms)  # record the values used in this trial
        val_mae = tf.reduce_mean(
            tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
        )
        val_mse = tf.reduce_mean(
            tf.keras.metrics.mean_squared_error(X_val, reconstruction)
        )
        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

        if predictor:
            pred_mae = tf.reduce_mean(
                tf.keras.metrics.mean_absolute_error(X_val, prediction)
            )
            pred_mse = tf.reduce_mean(
                tf.keras.metrics.mean_squared_error(X_val, prediction)
            )
            tf.summary.scalar("val_prediction_mae".format(rec), pred_mae, step=1)
            tf.summary.scalar("val_prediction_mse".format(rec), pred_mse, step=1)

        if phenotype_class:
            pheno_acc = tf.keras.metrics.binary_accuracy(y_val, tf.squeeze(pheno))
            pheno_auc = roc_auc_score(y_val, pheno)

            tf.summary.scalar("phenotype_prediction_accuracy", pheno_acc, step=1)
            tf.summary.scalar("phenotype_prediction_auc", pheno_auc, step=1)


248
def autoencoder_fitting(
249
250
251
252
253
254
255
256
257
258
259
260
261
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
    batch_size: int,
    encoding_size: int,
    epochs: int,
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
    mmd_warmup: int,
    montecarlo_kl: int,
    n_components: int,
    output_path: str,
262
263
264
    next_sequence_prediction: float,
    phenotype_prediction: float,
    rule_based_prediction: float,
265
266
267
268
269
270
271
272
    pretrained: str,
    save_checkpoints: bool,
    save_weights: bool,
    variational: bool,
    reg_cat_clusters: bool,
    reg_cluster_variance: bool,
    entropy_samples: int,
    entropy_knn: int,
273
):
274
275
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

276
    # Load data
277
278
279
280
281
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

282
    # Defines what to log on tensorboard (useful for trying out different models)
283
284
    logparam = {
        "encoding": encoding_size,
285
        "k": n_components,
286
287
        "loss": loss,
    }
288
289
    if phenotype_prediction:
        logparam["pheno_weight"] = phenotype_prediction
290

291
    # Load callbacks
292
    run_ID, *cbacks = get_callbacks(
293
        X_train=X_train,
lucas_miranda's avatar
lucas_miranda committed
294
        X_val=(X_val if X_val.shape != (0,) else None),
295
296
297
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
298
299
        phenotype_class=phenotype_prediction,
        predictor=next_sequence_prediction,
300
        loss=loss,
301
        entropy_samples=entropy_samples,
302
        entropy_knn=entropy_knn,
303
        reg_cat_clusters=reg_cat_clusters,
304
        reg_cluster_variance=reg_cluster_variance,
305
306
307
        logparam=logparam,
        outpath=output_path,
    )
308
309
    if not log_history:
        cbacks = cbacks[1:]
310

311
    # Logs hyperparameters to tensorboard
312
    rec = "reconstruction_" if phenotype_prediction else ""
313
    if log_hparams:
314
        logparams, metrics = log_hyperparameters(phenotype_prediction, rec)
315
316

        with tf.summary.create_file_writer(
317
            os.path.join(output_path, "hparams", run_ID)
318
319
320
321
322
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
323

324
    # Build models
325
326
327
328
329
330
331
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
332
333
334
335
336
337
338
339
        (
            encoder,
            generator,
            grouper,
            ae,
            prior,
            posterior,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
340
341
342
343
344
345
346
347
348
349
350
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
351
352
353
354
355
356
            next_sequence_prediction=next_sequence_prediction,
            phenotype_prediction=phenotype_prediction,
            rule_based_prediction=rule_based_prediction,
            rule_based_features=(
                y_train.shape[1] if not phenotype_prediction else y_train.shape[1] - 1
            ),
357
358
            reg_cat_clusters=reg_cat_clusters,
            reg_cluster_variance=reg_cluster_variance,
359
360
361
        ).build(
            X_train.shape
        )
362
363
364
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
365
        # If pretrained models are specified, load weights and return
366
367
368
369
370
371
372
373
374
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
375
                epochs=epochs,
376
377
378
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
379
                callbacks=cbacks
380
381
382
383
384
385
386
387
                + [
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
                        start_epoch=max(kl_warmup, mmd_warmup),
                    ),
                ],
388
389
            )

390
391
392
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

393
394
        else:

395
            callbacks_ = cbacks + [
396
397
398
399
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
400
                    start_epoch=max(kl_warmup, mmd_warmup),
401
402
403
                ),
            ]

404
405
406
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

407
            if next_sequence_prediction > 0.0:
408
409
410
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

411
412
413
414
415
416
417
418
419
            if phenotype_prediction > 0.0:
                ys += [y_train[:, 0]]
                yvals += [y_val[:, 0]]

                # Remove the used column (phenotype) from both y arrays
                y_train = y_train[:, 1:]
                y_val = y_val[:, 1:]

            if rule_based_prediction > 0.0:
420
421
422
                ys += [y_train]
                yvals += [y_val]

423
            ae.fit(
424
425
                x=Xs,
                y=ys,
426
                epochs=epochs,
427
428
429
430
431
432
433
434
435
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

436
            if not os.path.exists(os.path.join(output_path, "trained_weights")):
437
438
                os.makedirs("trained_weights")

439
            if save_weights:
440
441
                ae.save_weights(
                    os.path.join(
442
443
444
                        "{}".format(output_path),
                        "trained_weights",
                        "{}_final_weights.h5".format(run_ID),
445
446
                    )
                )
447

448
449
450
451
452
            if log_hparams:
                # Logparams to tensorboard
                tensorboard_metric_logging(
                    os.path.join(output_path, "hparams", run_ID),
                    logparam,
lucas_miranda's avatar
lucas_miranda committed
453
                    ae,
lucas_miranda's avatar
lucas_miranda committed
454
455
                    Xvals,
                    yvals[-1],
456
457
                    phenotype_prediction,
                    next_sequence_prediction,
lucas_miranda's avatar
lucas_miranda committed
458
                    rec,
459
                )
460

461
462
463
    return return_list


464
def tune_search(
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    data: List[np.array],
    encoding_size: int,
    hypertun_trials: int,
    hpt_type: str,
    hypermodel: str,
    k: int,
    kl_warmup_epochs: int,
    loss: str,
    mmd_warmup_epochs: int,
    overlap_loss: float,
    phenotype_class: float,
    predictor: float,
    project_name: str,
    callbacks: List,
    n_epochs: int = 30,
    n_replicas: int = 1,
    outpath: str = ".",
482
) -> Union[bool, Tuple[Any, Any]]:
483
484
    """Define the search space using keras-tuner and bayesian optimization

485
486
487
488
489
490
491
492
493
494
495
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
496
        - phenotype_class (float): adds an extra regularizing neural network to the model,
497
498
499
500
501
502
503
504
505
506
507
508
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
509
510
511

    """

512
513
    X_train, y_train, X_val, y_val = data

514
515
516
517
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
518
    if hypermodel == "S2SAE":  # pragma: no cover
519
        assert (
520
            predictor == 0.0 and phenotype_class == 0.0
521
        ), "Prediction branches are only available for variational models. See documentation for more details"
522
        batch_size = 1
523
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
524
525

    elif hypermodel == "S2SGMVAE":
526
        batch_size = 64
527
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
528
            input_shape=X_train.shape,
529
            encoding=encoding_size,
530
            kl_warmup_epochs=kl_warmup_epochs,
531
            loss=loss,
532
            mmd_warmup_epochs=mmd_warmup_epochs,
533
            number_of_components=k,
534
            overlap_loss=overlap_loss,
535
            phenotype_predictor=phenotype_class,
536
            predictor=predictor,
537
        )
lucas_miranda's avatar
lucas_miranda committed
538

539
540
541
    else:
        return False

542
543
544
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
545
546
547
        "logger": TensorBoardLogger(
            metrics=["val_mae"], logdir=os.path.join(outpath, "logged_hparams")
        ),
548
549
550
551
552
553
554
        "objective": "val_mae",
        "project_name": project_name,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
555
556
557
            directory=os.path.join(
                outpath, "HyperBandx_{}_{}".format(loss, str(date.today()))
            ),
558
559
            max_epochs=35,
            hyperband_iterations=hypertun_trials,
560
            factor=3,
561
562
563
564
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
565
566
567
            directory=os.path.join(
                outpath, "BayOpt_{}_{}".format(loss, str(date.today()))
            ),
568
569
570
            max_trials=hypertun_trials,
            **hpt_params
        )
571
572
573

    print(tuner.search_space_summary())

574
575
576
577
578
579
580
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

581
    if phenotype_class > 0.0:
582
583
584
        ys += [y_train]
        yvals += [y_val]

585
    tuner.search(
586
587
        Xs,
        ys,
588
        epochs=n_epochs,
589
        validation_data=(Xvals, yvals),
590
        verbose=1,
591
        batch_size=batch_size,
lucas_miranda's avatar
lucas_miranda committed
592
        callbacks=callbacks,
593
594
595
596
597
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
598
599
    print(tuner.results_summary())

600
    return best_hparams, best_run